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Classical threshold models assume that threshold values are constant and stable, which appears overly restrictive and unrealistic.
In this article, we extend Hansen’s (2000) constant threshold regression model by allowing for a time-varying threshold which
is approximated by a Fourier function. Least-square estimation of regression slopes and the time-varying threshold is proposed,
and test statistics for the existence of threshold effect and threshold constancy are constructed. We also develop the asymptotic
distribution theory for the time-varying threshold estimator. Through Monte Carlo simulations, we show that the proposed
estimation and testing procedures work reasonably well in finite samples, and there is little efficiency loss by the allowance
for Fourier approximation in the estimation procedure even when there is no time-varying feature in the threshold. On the
contrary, the slope estimates are seriously biased when the threshold is time-varying but being treated as a constant. The model
is illustrated with an empirical application to a nonlinear Taylor rule for the United States.
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1. INTRODUCTION

Threshold models have been widely applied in economics. The classical threshold models, which specify that
individual observations can be divided into subclasses/subsamples based on the value of an observed variable,
assume that threshold values are constant. Under this assumption, the econometric theory of threshold models has
been fully investigated by the literature such as Hansen (1996, 2000). However, varying-coefficient models have
attracted considerable attention in the past two decades, which is particularly true for both cross-sectional and time
series varying-coefficient models (Feng et al., 2017).

Clearly, it may be restrictive to assume that threshold values are time-invariant during the whole sampling
period. In fact, economic models are unlikely to have constant parameters over time and threshold models with
time-dependent thresholds are called for. The intuition of the time-varying threshold is that ‘usually high/small
values of an economic variable may sometimes be best thought of in relative terms’ (Dueker et al., 2013). For
example, public debt may be considered low or high not in absolute terms but relative to relevant macroeconomic
variables that shape the state of the economy (Yang and Su, 2018). Furthermore, a constant threshold setting is
questioned by the literature in other contexts. For instance, in the target-zone literature, Bessec (2003) demonstrates
that a constant threshold may be inappropriate in modeling a band of inaction, because the monetary authorities
may modify the band at various times, resulting into a better definition of the band of inaction in the time-varying
threshold model; in the classical return-to-schooling literature it is reasonable to believe that the threshold levels
of education for men and women should be different (Yu and Fan, 2020), leading to a threshold depending on a
dummy variable.
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Time-dependence or instability in the threshold so far in the literature may be implemented through either a
change-point mechanism or a function of candidate variables. Bessec (2003) proposes a Self-Exciting Threshold
Autoregressive (SETAR) model with time-varying thresholds using ‘a one-time break where the change point is
not estimated but corresponds to the time of the change in the official margins’, and finds that the data cannot
reject the time-varying threshold specification. Yu and Fan (2020) propose a threshold regression with a threshold
boundary, in which the threshold is modeled as a function of a dummy variable or other observable variables.
Dueker et al. (2013) present a model in which the threshold varies as a function of some observable variables,
and demonstrate that models with constant thresholds have been outperformed by models with a time-varying
threshold both in terms of in-sample fit and out-sample forecast accuracy.

A drawback in Bessec’s (2003) approach is that the dates and number of breaks are usually unknown in most
empirical analysis. It is now well-known that it is difficult to precisely estimate the number and magnitudes of mul-
tiple breaks especially when the breaks are of opposite sign (Prodan, 2008). Meanwhile, the approach proposed
by Dueker et al. (2013) and Yu and Fan (2020) requires that the variables affecting threshold are given or prede-
termined, but, in most applications, it is difficult to explore the factors which affect the threshold value in advance.

To complement the literature, we propose threshold models with time-varying thresholds which are approxi-
mated by a Fourier function. As pointed out by Enders and Lee (2012a,b), the Fourier form approximation has
several advantages. First, it works reasonably well for types of time-varying features often observed in economic
analysis. Second, the Fourier function with a single-frequency component can be a reasonable approximation for
a time-varying threshold of an unknown form even if the time-varying threshold itself is not periodic. Third, the
Fourier approximation involves only the choice of the appropriate component in the Fourier function and hence
avoids the complication of selecting break dates, the number of breaks and the form of breaks. Therefore, an
important advantage of our model is its simplicity in empirical applications.

The remainder of this article is organized as follows: Section 2 introduces the threshold model with a
time-varying threshold, describes least-square estimation of the model parameters, and constructs tests for the
threshold effect and threshold constancy. In this section, we also establish the asymptotic theory for the estimator
of the time-varying threshold. Sections 3 presents Monte Carlo experiments that assess the finite-sample proper-
ties of the estimation procedure and the test statistics. Section 4 provides an application and Section 5 concludes.
Throughout this article, the notation || ⋅ || stands for the Euclidean norm, that is, ||A|| = √

tr(A′A) for a matrix
A ∈ Rm×n, det(A) and A′ denote the determinant of a square matrix A and its transpose respectively.

2. THRESHOLD MODEL WITH A TIME-VARYING THRESHOLD

The model we consider in the article is given by

yt =

{
𝜷 ′

1xt + et, if qt ≤ 𝛾t

𝜷 ′
2xt + et, if qt > 𝛾t

, t = 1, 2, … ,T , (1)

where xt is a m-dimensional vector of exogenous regressors, qt is the threshold variable and is used to split
the sample into two subgroups. The random variable et is the regression disturbance, and 𝛾t is the time-varying
threshold.

If 𝛾t is an absolutely integrable function of time, then it can be approximated to any desired level of accuracy
by the sufficiently long Fourier series:

𝛾t = 𝛾0 +
n∑

k=1

𝛾1,k sin
(2𝜋kt

T

)
+

n∑
k=1

𝛾2,k cos
(2𝜋kt

T

)
; n <

T
2
, (2)

where n represents the number of frequencies, k represents a particular frequency, and T is the number of
observations.
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FIGURE 1. Fourier approximations. (a) 𝛾t = 0.8 if 62≤ t≤ 137, else 𝛾t = 1; (b) 𝛾t = 0.8 if t≤ 176, else 𝛾t = 1; (c) 𝛾t =
−1∕[1 + exp(0.0005(t − 0.75T)(t − 0.2T))] + 1.5; (d) 𝛾t = 1.5[1 − exp(−0.002(t − 0.75T)2)) − exp(−0.001(t − 0.2T)2]. The
solid line denotes the series containing time-varying features, and the dashed line denotes the Fourier approximation for the

time-varying series 𝛾t

As is illustrated by the literature (e.g. Becker et al., 2006), beginning with n= 1, it is always possible to improve
the approximation accuracy by using additional frequencies; the fit of 𝛾t will be perfect when n = T

2
. However,

there are several reasons why it is not suitable to use a large n as discussed by Enders and Lee (2012a). First,
using many frequency components can lead to an over-fitting problem. Second, n should be small because it
allows us to deal with a gradual change in threshold, as the higher frequencies may be associated with stochastic
parameter variability (Becker et al., 2006). Furthermore, Becker et al. (2006) and Enders and Lee (2012a) illustrate
that the essential characteristics of a time series containing time-varying features can often be captured using a
single-frequency component of a Fourier approximation, as can be seen in Figure 1. Therefore, in this article we
focus on the following single-frequency approximation:

𝛾t(𝜸) = 𝛾0 + 𝛾1 sin(2𝜋kt∕T) + 𝛾2 cos(2𝜋kt∕T), (3)

where 𝜸 = [𝛾0, 𝛾1, 𝛾2, k]′, 𝛾0 is a constant, 𝛾1 and 𝛾2 measure the amplitude and displacement of sinusoidal com-
ponents and k represents the frequency selected for the approximation.1 It is important to use the cumulative
frequencies in the threshold if our main interest is to obtain a precise time-varying threshold parameter. The

1 The conventional threshold model assumes that the threshold is constant. Instead, we treat the threshold as a time-varying parameter. Thus,
our methods are appropriate when the threshold is not constant, or when the researcher wishes to investigate the robustness of this assumption.
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proposed method can be easily extended to the case of cumulative frequencies, in which, instead of choosing an
optimal value of frequencies, we can choose the number of cumulative frequencies n for n≤ nmax = 5.2

It is worthy noting that, although the proposed time-varying threshold model can be used to deal with the cases
where the actual change is discrete, it is designed to work best when the actual change is gradual, because the
Fourier approximation seems to be less effective when the actual change is discrete, as can be seen from Figure 1.
The gradual threshold change might be expected to be seen in economic variables with a gradually evolving trend,
which is appropriate in many applications. For example, the reference (threshold) for changing monetary policy
may evolve gradually since such a reference often reflects a long-run equilibrium which tends to change gradually.

2.1. Estimation of Regression Slopes and Time-varying Threshold

For ease of manipulation, we express the model defined in (1) and (3) in a more compacted form.
Define 𝜷 = [𝜷 ′

2, 𝜷
′
1 − 𝜷 ′

2]
′, xt(𝛾t(𝜸)) = [x′

t , x
′
t{qt ≤ 𝛾t(𝜸)}]′, where {.} is the indicator function, then the model

defined in (1) and (3) can be rewritten as:

yt = 𝜷 ′xt(𝛾t(𝜸)) + et. (4)

For any fixed 𝛾t(𝜸), the regression slopes in (4) can be estimated by OLS, and we obtain

yt = �̂�
′
(𝜸)xt(𝛾t(𝜸)) + êt(𝛾t(𝜸)), (5)

where êt(𝛾t(𝜸)) is the regression error, and �̂�(𝜸) is given by

�̂�(𝜸) =

[
T∑

t=1

xt(𝛾t(𝜸))x′
t(𝛾t(𝜸))

]−1 [ T∑
t=1

xt(𝛾t(𝜸))yt

]
. (6)

The sum of squared errors is given by

SSRT (𝜸) =
T∑

t=1

ê2
t (𝛾t(𝜸)) =

T∑
t=1

(yt − �̂�
′
(𝜸)xt(𝛾t(𝜸)))2. (7)

Since 𝛾t(𝜸) = 𝛾0 + 𝛾1 sin(2𝜋kt∕T) + 𝛾2 cos(2𝜋kt∕T), the estimation of the time-varying threshold is as follows.
We define the profiled LS estimator of parameters in 𝛾t(𝜸) as

(k̂, �̂�0, �̂�1, �̂�2) = arg min
((𝛾0,𝛾1,𝛾2),k)∈Γ×Γk

SSRT (𝜸), (8)

where Γ = Γ0 × Γ1 × Γ2 , in which Γi is assumed to a bounded set such that Γi = [𝛾
i
, 𝛾 i] ⊂ R for i= 0, 1, 2,

and Γk = {1, 2, 3, 4, 5} which is following Becker et al. (2006). That is, we assume the integer frequency in this
article.3

It is computationally convenient to use a combination of concentration and grid search, as is typical in the
literature. For fixed k ∈ Γk, we first solve

(�̂�0(k), �̂�1(k), �̂�2(k)) = arg min
(𝛾0,𝛾1,𝛾2)∈Γ

SSRT (𝜸). (9)

2 We thank the anonymous referee to raise this point to us.
3 In applications, as illustrated by Becker et al. (2006), a better approximation of breaks can be achieved by employing a fractional frequency.
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TIME-VARYING THRESHOLD MODEL 5

Denote �̂� t(k) = �̂�0(k) + �̂�1(k) sin(2𝜋kt∕T) + �̂�2(k) cos(2𝜋kt∕T) for k ∈ Γk, and SSR∗
T (k) =∑T

t=1 (yt − �̂�
′
(�̂� t(k))xt(�̂� t(k)))2. Accordingly, the optimum frequency value can be given as

k̂ = arg min
k∈Γk

SSR∗
T (k) (10)

After k̂ is found, the estimates �̂�0, �̂�1, and �̂�2 are obtained by equation (9). Then the time-varying threshold is
estimated as �̂� t = 𝛾t(�̂�) = �̂�0 + �̂�1 sin(2𝜋k̂t∕T) + �̂�2 cos(2𝜋k̂t∕T).

2.2. Asymptotic Properties for the Estimates of Time-varying Threshold

Define the moment functionals E(xtx
′
t) = M, E(xtx

′
te

2
t ) = N, E(xtx

′
t{qt ≤ 𝛾t}) = M(𝛾t), E(xtx

′
te

2
t {qt ≤ 𝛾t}) = N(𝛾t),

E(xtx
′
t|qt) = D(qt), and E(xtx

′
te

2
t |qt) = V(qt). Note that this definition implies that D(qt) and V(qt) are function of

qt.
Let f (q) be the density function of the threshold variable qt, and denote 𝛾𝜏 = 𝛾0 + 𝛾1 sin(2𝜋k𝜏) + 𝛾2 cos(2𝜋k𝜏),

D𝜏 = D(𝛾0
𝜏
), V𝜏 = V(𝛾0

𝜏
) and f𝜏 = f (𝛾0

𝜏
), where 𝛾0

𝜏
is the true value of 𝛾𝜏 as 𝛾0

𝜏
= 𝛾0

0 +𝛾0
1 sin(2𝜋k0𝜏)+𝛾0

2 cos(2𝜋k0𝜏),
in which 𝛾0

0 , 𝛾0
1 , 𝛾0

2 , and k0 are the true values of 𝛾0, 𝛾1, 𝛾2, and k respectively.
To obtain the asymptotic properties of the estimator of the time-varying threshold, (�̂�0, �̂�1, �̂�2, k̂), we make the

following assumptions.

Assumption 1. We assume that

1. (xt, qt, et) is strictly stationary, ergodic and 𝜌-mixing, with 𝜌-mixing coefficients satisfying
∑∞

m=1 𝜌
1∕2
m < ∞.

2. There exists a filtration t, t = 1, … ,T , such that E(et|t−1) = 0.
3. E||xt||4 <∞ and E||xtet||4 <∞.
4. For all 𝛾i ∈ Γi (i= 0, 1, 2) and t, E(||xt||4|qt = 𝛾t(𝛾i)) ≤ C and E(||xtet||4|qt = 𝛾t(𝛾i)) ≤ C for some C <∞, and

0 < f (𝛾t(𝛾i)) ≤ f < ∞.
5. f (𝛾𝜏(𝛾i)), D(𝛾𝜏(𝛾i)) and V(𝛾𝜏(𝛾i)) are continuous at 𝛾i = 𝛾0

i for i= 0, 1, 2.
6. 𝜷1 − 𝜷2 = 𝜹T = cT−𝛼 with c ≠ 0 and 0 < 𝛼 < 1∕2, where c is a m× 1 vector of constant.
7. c′D𝜏c > 0, c′V𝜏c > 0, and f𝜏 > 0.
8. det(M) > det(M(𝛾t(𝛾i))) > 0 and det(N) > det(N(𝛾t(𝛾i))) > 0 for all 𝛾i ∈ Γi and t.

Assumptions 1.1–1.8 are natural extensions of Assumptions 1.1–1.8 in Hansen (2000), which are very conven-
tional in the literature of threshold models. Similar assumptions are employed in Hansen (2000), Caner and Hansen
(2001), Gonzalo and Pitarakis (2006, 2012) and Chen (2015). Assumption 1.1 supposes time series to be stationary
as in Hansen (2000), and controls the degree of time series dependence by the 𝜌−mixing assumption. Assumption
1.2 imposes that the model defined in (1) is correctly specified in terms of the conditional mean. Assumptions 1.3
and 1.4 restrict unconditional and conditional moment bounds to be finite. Assumption 1.5 requires the threshold
variable to have a continuous distribution. Assumption 1.6 is well-known as the small threshold effect assumption,
which is very conventional in the literature of threshold models. Assumptions 1.7 and 1.8 are full rank conditions
needed to have nondegenerate asymptotic distributions.

The following theorem establishes the consistency of the time-varying threshold estimator, (�̂�0, �̂�1, �̂�2, k̂).

Theorem 1. Under Assumption 1, we have

k̂
p
−−→ k0, and

�̂� i

p
−−→ 𝛾0

i , for i = 0, 1, 2. (11)

Proof of Theorem 1. See the Appendix. ◾

J. Time Ser. Anal. (2020) © 2020 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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Theorem 1 shows that the time-varying threshold estimators (�̂�0, �̂�1, �̂�2, k̂) are consistent. Hence �̂� t = �̂�0 +
�̂�1 sin(2𝜋k̂t∕T) + �̂�2 cos(2𝜋k̂t∕T) is a consistent estimator of the true time-varying threshold 𝛾0

t = 𝛾0
0 +

𝛾0
1 sin(2𝜋k0t∕T) + 𝛾0

2 cos(2𝜋k0t∕T). The consistency of the threshold estimator implies that the observations can
be correctly classified into subsets, and hence the true model parameters 𝜷1 and 𝜷2 in (1) can be consistently
estimated. On the contrary, if the true model is accompanied with a time-varying threshold, then any constant
threshold estimate would lead to misclassification of observations, and thus the true model parameters cannot be
retrieved from the estimation method based on the constant threshold model.

We next establish the convergence rate and asymptotic distribution of the time-varying threshold estimator
(�̂�0, �̂�1, �̂�2).4

Theorem 2. Under Assumption 1, we have

T1−2𝛼(�̂� i − 𝛾0
i )

d
−−→𝜛i ⋅ arg max

−∞<r<∞

[
−1

2
|r| + W(r)

]
, for i = 0, 1, 2,

where W(r) is a two-sided Brownian motion that is defined in Hansen (2000, p. 580),5 and 𝜛i = 𝜆i∕𝜇2
i , in which

𝜆0 = c′
(
∫

1

0
V𝜏 f𝜏d𝜏

)
c, 𝜇0 = c′

(
∫

1

0
D𝜏 f𝜏d𝜏

)
c,

𝜆1 = c′
(
∫

1

0
| sin(2𝜋k0𝜏)|V𝜏 f𝜏d𝜏

)
c, 𝜇1 = c′

(
∫

1

0
| sin(2𝜋k0𝜏)|D𝜏 f𝜏d𝜏

)
c,

𝜆2 = c′
(
∫

1

0
| cos(2𝜋k0𝜏)|V𝜏 f𝜏d𝜏

)
c, 𝜇2 = c′

(
∫

1

0
| cos(2𝜋k0𝜏)|D𝜏 f𝜏d𝜏

)
c.

Proof of Theorem 2. See the Appendix. ◾

Theorem 2 is a generalization to the asymptotic result of Hansen’s (2000) constant threshold model.6 Theorem 2
shows that the convergence rate of (�̂�0, �̂�1, �̂�2) is T1−2𝛼 , which is decreasing in 𝛼. This convergence rate of �̂�0 is
equal to the rate found for the constant threshold model in Hansen (2000). Hence, the inclusion of a time-varying
threshold does not affect the convergence rate of the constant threshold parameter. Moreover, the limiting dis-
tribution of (�̂�0, �̂�1, �̂�2) has the same form as that found for the constant threshold model in Hansen (2000),
but the scale factors 𝜛 i, for i= 0, 1, 2, are different. In our model, the scale factors depend on the Fourier
components.

4 It is noted that it is impossible to find the convergence rate and the asymptotic distribution of k̂. From the consistency result in Theorem 1
and definition of convergence in probability, for ∀𝜀> 0 we have

P(|k̂ − k0| < 𝜀) → 1.

Since we assume that the frequency is an integer, the distance between k̂ and k0 is also an integer (i.e. |k̂ − k0| ∈ Z). Based on the above
observation, if we choose arbitrary small 𝜀, say, 𝜀= 0.5, then

P(|k̂ − k0| < 0.5) → 1; therefore we obtain P(|k̂ − k0| = 0) → 1.

This result implies that even |k̂ − k0| is multiplied by some function of T , say 𝜈T , 𝜈T |k̂ − k0| still converges to zero in probability, that is
𝜈T |k̂ − k0| = op(1). Hence, we cannot obtain the convergence rate and asymptotic distribution of k̂.

5 A two-sided Brownian motion W(r) on the real line is defined as W(r) =

{
W1(−r), r < 0
0, r = 0
W2(r), r > 0

, where W1(r) and W2(r) are independent

standard Brownian motions on [0,∞).
6 In the constant threshold model, we have 𝛾0

1 = 𝛾0
2 = 0 and 𝛾0

t = 𝛾0
0 , that is, 𝛾0

t does not depend on t in this case; therefore, 𝛾𝜏 , D𝜏 , V𝜏 and f𝜏
do not depend on 𝜏. Denote D = D(𝛾0

0 ), V = V(𝛾0
0 ), and f = f (𝛾0

0 ), so we obtain 𝜆0 = c′(Vf ∫ 1
0 d𝜏)c = c′Vcf , 𝜇0 = c′(Df ∫ 1

0 d𝜏)c = c′Dcf ,
leading to the scale factor 𝜛0 becoming 𝜛0 = c′Vc∕[(c′Dc)2f ], which is the result of Hansen’s (2000) Theorem 1.

wileyonlinelibrary.com/journal/jtsa © 2020 John Wiley & Sons Ltd J. Time Ser. Anal. (2020)
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2.3. Test Statistics

Testing for the existence of the threshold effect and threshold constancy is important in applications. The test
hypothesis of no threshold effect in (1) can be represented as

H1
0 ∶ 𝜷1 = 𝜷2, v.s. H1

1 ∶ 𝜷1 ≠ 𝜷2.

Under H1
0 , the model defined in (1) and (3) shrinks to a linear regression model:

yt = 𝜷 ′
1xt + et. (12)

The threshold 𝛾t is not identified (and therefore k, 𝛾0, 𝛾1 and 𝛾2 are not identified), and hence the null distributions
of the test statistics are non-standard due to the well-known Davies’ problem and can be typically explored by
taking the supremum of all possible values of unidentified parameters (e.g. Davies, 1987; Hansen, 1996).

This regression model (12) can be estimated by OLS, yielding estimate �̃�1, residuals ẽt and sum of squared
errors S0 =

∑T
t=1 ẽ2

t . To test the null hypothesis H1
0 , it is natural to compare the sum of squared errors, S0, with that

of the time-varying threshold model, SSRT (𝜸). The sup-test statistic then is defined as

F1 = sup
((𝛾0,𝛾1,𝛾2),k)∈𝚪×Γk

S0 − SSRT (𝜸)
SSRT (𝜸)∕T − m

. (13)

We reject the null hypothesis that linear model is appropriate if F1 is large.
If the null hypothesis of no threshold effect in (1), H1

0 , is rejected, one can further examine whether or not
this threshold is constant. This hypothesis is equivalent to a restriction that the two coefficients of time-varying
threshold function are zeros. Consider the null hypothesis

H2
0 ∶ 𝛾1 = 𝛾2 = 0, v.s. H2

1 ∶ 𝛾1 ≠ 0 or 𝛾2 ≠ 0.

Under H2
0 , the model defined in (1) and (3) shrinks to a constant threshold model which has been investigated in

Hansen (2000):

yt =

{
𝜷 ′

1xt + et, if qt ≤ 𝛾0

𝜷 ′
2xt + et, if qt > 𝛾0

. (14)

The frequency k is not identified and hence the test again suffers the Davies’ problem.
To test the null hypothesis H2

0 , it is also natural to compare the sum of squared errors of the constant threshold
model with that of the time-varying threshold model. Define the sum of squared errors of the constant threshold
model as SSR2(�̂�0), in which �̂�0 is the estimated constant threshold value. For fixed frequency k, estimate the model
in (1) and denote the sum of squared errors as SSR1(k). Thus consider the following test statistic:

F2 = sup
k∈Γk

SSR2(�̂�0) − SSR1(k)
SSR1(k)∕T − m

. (15)

The null hypothesis of constant threshold, H2
0 ∶ 𝛾1 = 𝛾2 = 0, is rejected in favor of the time-varying threshold if

F2 is large.
Because of the above mentioned Davies’ problem, the test statistics F1 and F2 have non-standard distri-

butions. Many authors have examined the Davies’ problem, for example, Andrews and Ploberger (1994) and
Hansen (1996). In general, the construction of critical values for these distributions of test statistics is non-trivial
(Andrews and Ploberger, 1994) and bootstrapping becomes a realistic alternative. Following the literature (e.g.

J. Time Ser. Anal. (2020) © 2020 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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Mammen, 1993; Porter and Yu, 2015), we propose to construct the p-values of the test statistics F1 and F2 based
on a two-point wild bootstrap procedure, which enables the wild bootstrap to remain consistent even in the pres-
ence of heteroscedasticity or model misspecification as illustrated by Kline and Santos (2012). Specifically, the
following procedure is used in the test statistics F1 and F2.

Step 1: For t= 1, 2, … , T and j= 1, 2, generate two-point wild bootstrap residual e∗jt = êjt(1−
√

5)∕2 with prob-

ability (1 +
√

5)∕2
√

5, and e∗jt = êji(1 +
√

5)∕2 with probability (
√

5 − 1)∕2
√

5, where ê1t are the OLS
residual from model (12), and ê2t is the residuals of the constant threshold model (14).

Step 2: Generate y∗1t = �̂�
′
xt + e∗1t under the null H1

0 . Under the null H2
0 , we generate y∗2t = �̂�

′
(�̂�0)xt + e∗2t.

Step 3: Compute the sup-test Fb
1 from {y∗1t, xt}T

t=1, and Fb
2 from {y∗2t, xt, qt}T

t=1.
Step 4: Repeat Steps 1–3 B times. The empirical p-value can be obtained by calculating the frequency of

simulated Fb
1 (Fb

2) that exceeds the observed F1 (F2) when the number of B is sufficiently large.

3. SIMULATION STUDIES

The goal of this Monte Carlo study is to investigate the finite sample properties of the estimation procedure and
test statistics proposed in Section 2.

To evaluate the performance of the proposed estimation procedure, we consider the following data generating
process (DGP):

DGP1: yt =

{
𝛽11 + 𝛽12x1t + et, qt ≤ 𝛾t

𝛽21 + 𝛽22x2t + et, qt > 𝛾t

, (16)

where x1t = xt{qt ≤ 𝛾t}, x2t = xt{qt > 𝛾t}. xt ∼N(0, 22) , qt and et follow i.i.d.N(0, 1).
With regard to 𝛾t in (16), we first consider the Fourier-form threshold setting and the constant threshold setting

given by:

Case 1(a): 𝛾t = 𝛾0 + 𝛾1 sin(2𝜋kt∕T) + 𝛾2 cos(2𝜋kt∕T); (17)

Case 1(b): 𝛾t ≡ 0. (18)

Furthermore, to investigate the performance of the proposed model based on Fourier approximation, we also
consider the following threshold settings to match the patterns of threshold change in Figure 1:

Case 2(a): 𝛾t =
⎧⎪⎨⎪⎩

1 , t < T

3

0.8, if T

3
≤ t ≤ 2T

3

1 , t > 2T

3

; (19)

Case 2(b): 𝛾t =

{
0.8, if t ≤ 0.8T

1 , if t > 0.8T
; (20)

Case 2(c): 𝛾t = −1∕[1 + exp(0.0005(t − 0.75T)(t − 0.2T))] + 1.5; (21)

Case 2(d): 𝛾t = 1.5[1 − exp(−0.002(t − 0.75T)2)) − exp(−0.001(t − 0.2T)2]. (22)

wileyonlinelibrary.com/journal/jtsa © 2020 John Wiley & Sons Ltd J. Time Ser. Anal. (2020)
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Finally, to compare the performance of the proposed procedure with that of the comparable method using the
SETAR model and dummy variables proposed by Bessec (2003), we consider the following data generating process
(DGP):

DGP2: yt =

{
𝛼1 + 𝜌1yt−1 + et, yt−1 ≤ 𝛾t

𝛼2 + 𝜌2yt−1 + et, yt−1 > 𝛾t

, (23)

in which 𝛾t =
{

1 , if t ≤ 0.8T
1.5, if t > 0.8T , et follows i.i.d.N(0, 1).

3.1. The Estimation Procedure

We conduct Monte Carlo experiments to examine the finite performance of the estimation procedure proposed in
Section 2.1.

In the first experiment we consider two cases in DGP1: Case 1(a) with a Fourier-form threshold change and
Case 1(b) with a constant threshold. For all simulations in this experiment, the values of the parameters are set at
𝛽11 = 𝛽21 = 10, 𝛽12 = 10, 𝛽22 = 20, 𝛾0 = 0.5, 𝛾1 = 1, and 𝛾2 = 1. We vary the parameter k to assess the model’s
performance to the magnitude of the Fourier frequency. We set k= {1, 2, 3, 4, 5} and run experiments on a range
of sample sizes (T = 50, 100, 200). The number of replications is 1000.

We first consider the case where the time-varying threshold is given by Case 1(a), while the time-varying thresh-
old is overlooked in the estimation procedure (and hence the estimation procedure proposed by Hansen (2000) is
used). Figure 2 reports the kernel densities for the regression slope estimates. It is easily seen that the estimated
slopes in sub-samples cannot converge to the desired values by ignoring potentially time-varying features in the
threshold.

We next evaluate the performance of the estimation procedure proposed in Section 2.1. In doing so, we consider
two cases: Case 1(a) with a Fourier-form threshold change and Case 1(b) with a constant threshold. Figure 3
presents the kernel densities for the regression slope estimators for selected samples and the frequency k= 1. As
predicted by Theorem 1, the consistency of the time-varying threshold estimator implies that the observations can
be correctly classified into subsets, and hence the true model slope parameters 𝛽12 and 𝛽22 can be consistently
estimated. As can be seen from Figure 3, the parameter estimation procedure works well in the finite samples.

Table I presents the summary statistics (i.e. mean, and standard deviation) for the least-square parameter esti-
mates. Simulations show that the discrete frequency k can be almost estimated accurately,7 and hence its standard
deviation is not computed and reported. For all the parameters, the mean of each parameter comes close to its true
value, and the accuracy of the model improves as T increases, regardless of the frequency k, which is also consis-
tent with the results in Theorems 1 and 2. Moreover, lower panel of Table I show that there is little efficiency loss
by allowance for Fourier approximation in the estimation procedure even when there is no time-varying feature in
the threshold.8

In the second experiment, we evaluate the performance of the proposed estimation for different patterns of
threshold change given by Case 2(a)–2(d). That is, the true threshold change is given by Case 2(a)–2(d), while
approximated by a Fourier function. In these simulations, we set 𝛽11 = 𝛽12 = 1, and 𝛽21 = 𝛽22 = 2. The simulation
results are reported in Table II, in which we report the summary statistics (i.e. mean and standard deviation) for
the estimates based on the proposed estimation procedure. For each case of threshold change, the mean of each
parameter is close to its true value,9 and the standard deviation becomes smaller as the sample size increases,
indicating that the estimation based on Fourier approximation works well in different patterns of threshold change.

7 See footnote 4.
8 In our unreported simulation results, we find that there is not much difference between the standard errors of the estimates based on the
Hansen’s (2000) estimation procedure and the estimation procedure proposed in Section 2 when the true DGP contains constant threshold.
9 In these simulations, the threshold coefficients are not reported as we cannot compare the estimates with their true values, simply because
the Fourier-form threshold is only an approximation of the actual threshold.
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FIGURE 2. Monte Carlo experiment generated sample distributions of 𝛽12 = 10 (left panel) and 𝛽22 = 20 (right panel) for
k= 1. DGP is the threshold model with a time-varying threshold given by (16) and (17), but parameters are estimated using

the Hansen’s (2000) approach

In the third experiment, we compare the performance of the proposed procedure with the method using dummy
variables investigated by Bessec (2003) who assumes a one-time break in threshold where the change point is not
estimated but given in advance. The true DGP is the SETAR model with a dummy variable in the threshold. In
these simulations, the values of the parameters are set at 𝛼1 = 0.5, 𝜌1 = −0.3, 𝛼2 = 1, and 𝜌2 = 0.3. Table III
reports the simulation results. As before we report the summary statistics (i.e. mean and standard deviation) for
the estimates based on the proposed estimation procedure and the dummy procedure. As can be seen in Table III,
when we employ the estimation procedure based on a Fourier approximation to estimate the SETAR model, the
mean of each parameter is close to its true value, and the accuracy of the estimates improves as the sample size
increases. Meanwhile, when we employ the dummy method assuming the break point being known, the mean
of each parameter becomes close to its true value particularly when the sample size is larger than 500. Overall,
the two methods give fairly similar performance. Comparing with the dummy method which assumes the change
point being exogenous, the proposed procedure has the advantage of operating conveniently, especially when the
change point is unknown.

3.2. Test Statistics

We conduct Monte Carlo experiments to examine the size and power properties of the test statistic for the exis-
tence of threshold, F1, and for threshold constancy, F2, proposed in Section 2.3. To examine the finite sample
performance of the statistic F1 (the linear model against the time-varying threshold model), we set 𝛽11 = 𝛽21 = 1,

wileyonlinelibrary.com/journal/jtsa © 2020 John Wiley & Sons Ltd J. Time Ser. Anal. (2020)
DOI: 10.1111/jtsa.12574
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FIGURE 3. Monte Carlo experiment generated sample distributions of 𝛽12 = 10 (left panel) and 𝛽22 = 20 (right panel) for
k= 1. DGP is the threshold model with a time-varying threshold given by (16) and (17), and parameters are estimated using

the estimation procedure proposed in Section 2.1

𝛽12 = 1, and set 𝛾t as in Case 1(a), Case 2(a)-2(d). Thus, the rejection frequencies under the DGP given by (16)
with 𝛽22 = 1 and 𝛽22 = {1.5, 2} are the size and power of the test statistic F1 respectively.

Similarly, to evaluate the performance of the test for threshold constancy, F2 (the constant threshold against the
time-varying threshold model), we set 𝛽11 = 𝛽21 = 1, 𝛽12 = 1, and 𝛽22 = {1.5, 2}. Then the rejection frequencies
under the DGP in (16) with {𝛾t ≡ 0} as in Case 1(b) and {𝛾t} as in Case 1(a), Case 2(a)-2(d) are the size and power
of the test statistic F2 respectively.10

Table IV reports size and power properties of the test statistics F1 and F2. The results show that the empirical
size is close to the 5% significance level in all cases, implying the test statistics F1 and F2 are correctly sized.
Meanwhile, the probability of rejection increases as the sample size gets larger, and the power performance is
generally satisfactory in most patterns of threshold change, especially when the sample size T is not less than 200.
Overall, the proposed tests work well when sample sizes are moderate.

4. EMPIRICAL APPLICATION

We apply our approach to investigate the Taylor rule that establishes interest rate rules in conducting monetary pol-
icy, which is considered as one of the most influential tools and has attracted much attention among academics and
policymakers in past decades. In this section, we revisit the Taylor rule by employing the proposed time-varying

10 Following Porter and Yu (2015), to save simulation time, the number of replications is set as 100, and B is set as 200 in the bootstrap method
of Section 2.2.
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TABLE I. Simulation results for selected sample sizes and frequencies

Time-varying threshold Coefficients

Case 1(a): 𝛾0 = 0.5 𝛾1 = 1 𝛾2 = 1 𝛽12 = 10 𝛽22 = 20

T k(k̂) Mean S.d Mean S.d Mean S.d Mean S.d Mean S.d

50 1 0.471 0.253 0.923 0.216 0.964 0.213 9.890 0.204 19.896 0.863
2 0.474 0.192 0.932 0.212 0.970 0.202 9.995 0.197 20.028 0.608
3 0.490 0.196 0.919 0.211 0.974 0.222 10.022 0.208 19.926 0.933
4 0.461 0.186 0.883 0.212 0.942 0.212 9.999 0.191 19.944 0.713
5 0.483 0.231 0.894 0.253 0.935 0.265 10.008 0.197 19.880 0.822

100 1 0.497 0.111 0.972 0.129 0.981 0.124 9.999 0.134 19.985 0.244
2 0.485 0.129 0.962 0.139 0.971 0.133 10.007 0.142 19.965 0.512
3 0.497 0.118 0.975 0.137 0.989 0.134 10.003 0.134 19.983 0.235
4 0.509 0.112 0.985 0.131 0.984 0.131 9.999 0.135 19.982 0.206
5 0.504 0.109 0.980 0.126 0.996 0.124 9.992 0.127 19.997 0.194

200 1 0.500 0.071 0.999 0.075 0.998 0.069 10.009 0.092 19.986 0.201
2 0.507 0.055 1.003 0.068 1.003 0.067 9.994 0.098 19.986 0.119
3 0.504 0.066 0.997 0.078 1.000 0.083 9.998 0.098 19.974 0.382
4 0.498 0.057 0.997 0.072 1.001 0.073 10.008 0.097 19.986 0.135
5 0.504 0.060 0.997 0.065 0.996 0.072 10.009 0.096 19.992 0.143

Constant threshold Coefficients

Case 1(b): 𝛾0 = 0.5 𝛾1 = 0 𝛾2 = 0 𝛽12 = 10 𝛽22 = 20

T k(k̂) Mean S.d Mean S.d Mean S.d Mean S.d Mean S.d

50 1 0.481 0.231 −0.021 0.215 −0.004 0.213 9.990 0.214 19.999 0.822
100 1 0.499 0.118 −0.012 0.121 −0.019 0.124 9.992 0.131 19.995 0.241
200 1 0.501 0.061 0.005 0.055 0.003 0.072 10.006 0.096 19.995 0.133

Notes: S.d. denotes standard deviation. The simulations were written in the GAUSS programming language.

TABLE II. Simulations results for different patterns of threshold change

𝛽11 = 1 𝛽12 = 1 𝛽21 = 2 𝛽22 = 2

Mean S.d Mean S.d Mean S.d Mean S.d

(a) Threshold setting in Case 2(a)
T = 100 0.985 0.168 0.984 0.172 2.022 0.165 2.016 0.161
T = 200 1.008 0.112 1.001 0.116 2.001 0.103 2.001 0.107
T = 500 1.019 0.070 1.017 0.067 1.984 0.066 1.991 0.065

T = 1000 1.017 0.049 1.012 0.052 1.997 0.046 1.996 0.049
(b) Threshold setting in Case 2(b)
T = 100 0.978 0.179 0.998 0.175 2.026 0.167 2.012 0.163
T = 200 0.998 0.112 0.999 0.109 2.002 0.108 1.996 0.102
T = 500 1.011 0.050 1.013 0.065 1.993 0.067 1.997 0.066

T = 1000 1.021 0.046 1.021 0.045 1.991 0.046 1.988 0.047
(c) Threshold setting in Case 2(c)
T = 100 0.986 0.183 0.997 0.179 2.011 0.178 2.001 0.173
T = 200 1.033 0.119 1.023 0.121 1.961 0.117 1.971 0.121
T = 500 1.028 0.062 1.033 0.071 1.975 0.071 1.977 0.069

T = 1000 1.063 0.051 1.058 0.053 1.961 0.052 1.972 0.046
(d) Threshold setting in Case 2(d)
T = 100 0.944 0.339 0.986 0.424 2.018 0.138 1.996 0.132
T = 200 1.026 0.122 1.011 0.115 1.973 0.109 1.991 0.101
T = 500 1.062 0.072 1.054 0.075 1.943 0.093 1.946 0.097

T = 1000 1.068 0.042 1.067 0.044 1.988 0.065 1.987 0.065
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TABLE III. Comparison of the proposed procedure and the method using dummy variables

𝛼1 = 0.5 𝜌1 = −0.3 𝛼2 = 1 𝜌2 = 0.3

Mean S.d Mean S.d Mean S.d Mean S.d

(a) The proposed estimation procedure
T = 100 0.505 0.568 −0.365 0.543 1.058 0.687 0.271 0.308
T = 200 0.478 0.278 −0.361 0.303 1.033 0.461 0.283 0.198
T = 500 0.493 0.075 −0.312 0.104 1.014 0.203 0.293 0.095
T = 1000 0.500 0.045 −0.301 0.065 1.003 0.132 0.296 0.063
(b) The dummy method
T = 100 0.558 0.802 −0.291 0.713 0.846 0.531 0.349 0.239
T = 200 0.485 0.197 −0.326 0.232 0.903 0.365 0.334 0.166
T = 500 0.493 0.067 −0.315 0.099 0.963 0.196 0.312 0.093
T = 1000 0.498 0.045 −0.306 0.067 0.968 0.132 0.311 0.062

threshold model and using U.S. quarterly data from 1955Q1 to 2019Q4. The data are available from the website
of Federal Reserve Bank of St. Louis (http://www.stlouisfed.org/) and the Congressional Budget Office (https://
www.cbo.gov/).

As a benchmark, we follow the literature (e.g. Taylor and Davradakis, 2006; Zhu et al., 2019) to consider the
linear Taylor rule:

it = 𝜌it−1 + (1 − 𝜌)[r∗ + 𝜋t−1 + 𝛿1(𝜋t−1 − 𝜋∗) + 𝛿2xt−1] + et, (24)

in which it is the short-term nominal interest rate at time t, r* is the long-run real interest rate, 𝜋t is the inflation
rate, 𝜋∗ is the target inflation rate, xt is the output gap in period t, et is the error term, and 𝜌 controls the smoothness
of the interest rate, 𝛿1 and 𝛿2 measure the sensitivities of the policy interest rate to inflation deviation and output
gap respectively.

Since we can observe the variables it, 𝜋t and yt, we re-parameter the above model as

it = 𝜃0 + 𝜃1𝜋t−1 + 𝜃2xt−1 + 𝜃3it−1 + et, (25)

in which 𝜃0 = (1−𝜌)(r∗ −𝛿1𝜋
∗), 𝜃1 = (1−𝜌)(1+𝛿1), 𝜃2 = (1−𝜌)𝛿2 and 𝜃3 = 𝜌. Clearly, we have 𝛿1 =

𝜃1

1−𝜃3
−1 and

𝛿2 = 𝜃2

1−𝜃3
; hence, after obtaining the estimates of (25), we can rewrite (25) to a form in which inflation deviation

and output gap as explanatory variables as in (24).
Following Taylor and Davradakis (2006) and Zhu et al. (2019), we use the following threshold model with

a constant threshold to capture asymmetries and nonlinearities in Taylor rule, in which the interest rate would
experience two regimes depending on the magnitude of the threshold variable:

it =

{
𝛼0 + 𝛼1𝜋t−1 + 𝛼2xt−1 + 𝛼3it−1 + et, qt ≤ 𝛾

𝛽0 + 𝛽1𝜋t−1 + 𝛽2xt−1 + 𝛽3it−1 + et, qt > 𝛾
, (26)

where qt is the threshold variable. In this article, the unemployment rate is chosen as the threshold variable, because
it provides an intuitive measure of real economic activity, as illustrated in Zhu et al. (2019).

To capture the time-varying threshold effect in the Taylor rule, we extend the constant threshold model to the
proposed model with a time-varying threshold, given by

it =

{
𝛼0 + 𝛼1𝜋t−1 + 𝛼2xt−1 + 𝛼3it−1 + et, qt ≤ 𝛾t

𝛽0 + 𝛽1𝜋t−1 + 𝛽2xt−1 + 𝛽3it−1 + et, qt > 𝛾t

, (27)

J. Time Ser. Anal. (2020) © 2020 John Wiley & Sons Ltd wileyonlinelibrary.com/journal/jtsa
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TABLE IV. Size and power of test statistics in (13) and (15)

Test for threshold effect Test for threshold constancy

Threshold effect Sample size Size Power Size Power

Case 1(a) 𝛽22 = 1.5 T = 100 0.040 0.680 0.060 0.530
T = 200 0.060 0.920 0.060 0.910
T = 500 0.030 1.000 0.060 1.000

𝛽22 = 2 T = 100 0.040 1.000 0.020 0.990
T = 200 0.060 1.000 0.030 1.000
T = 500 0.030 1.000 0.030 1.000

Case 2(a) 𝛽22 = 1.5 T = 100 0.030 0.800 0.070 0.260
T = 200 0.060 1.000 0.060 0.410
T = 500 0.050 1.000 0.060 0.760

𝛽22 = 2 T = 100 0.030 1.000 0.060 0.270
T = 200 0.060 1.000 0.060 0.590
T = 500 0.050 1.000 0.050 0.830

Case 2(b) 𝛽22 = 1.5 T = 100 0.030 0.810 0.040 0.210
T = 200 0.050 1.000 0.060 0.320
T = 500 0.050 1.000 0.050 0.570

𝛽22 = 2 T = 100 0.030 1.000 0.030 0.270
T = 200 0.050 1.000 0.060 0.440
T = 500 0.050 1.000 0.050 0.720

Case 2(c) 𝛽22 = 1.5 T = 100 0.040 0.900 0.060 0.380
T = 200 0.060 1.000 0.070 0.680
T = 500 0.050 1.000 0.060 1.000

𝛽22 = 2 T = 100 0.040 1.000 0.040 0.410
T = 200 0.050 1.000 0.080 0.900
T = 500 0.060 1.000 0.050 1.000

Case 2(d) 𝛽22 = 1.5 T = 100 0.060 0.660 0.040 0.250
T = 200 0.050 1.000 0.030 0.860
T = 500 0.060 1.000 0.050 1.000

𝛽22 = 2 T = 100 0.060 0.990 0.030 0.390
T = 200 0.050 1.000 0.020 0.990
T = 500 0.060 1.000 0.060 1.000

in which 𝛾t = 𝛾0 + 𝛾1 sin(2𝜋kt∕T) + 𝛾2 cos(2𝜋kt∕T). Here, a time-varying threshold may be reasonable, because
policymakers may respond differently to the unemployment rate in different economic environments that shape
their attitude and tolerance for unemployment, leading to the reference (threshold) for assessing the unemployment
rate being time-varying. Accordingly, the same level of unemployment rate may be regarded as high under a
certain period but only moderate under other periods. As shown in this article, suppose that the threshold is indeed
time-varying but being treated as a constant, we would end up with biased estimates, while there is little efficiency
loss by considering a time-varying threshold even when there is no time-varying feature in the threshold.

The empirical results are reported in Table V, in which confidence intervals and p-values are calculated with
B= 2000 bootstrap replications.11 It can be seen that there is great difference between the estimates of linear
model and that of threshold models. Thus, we select the optimal model by employing three test statistics F1, F2

11 In practice, we follow Hansen (1996, 2017) to propose the use of wild bootstrap confidence intervals. The bootstrap procedure goes as

follows: (i) For t= 1, 2, … , T , generate two-point wild bootstrap residual e∗t = êt(1−
√

5)∕2 with probability (1+
√

5)∕2
√

5, and e∗t = êi(1+√
5)∕2 with probability (

√
5−1)∕2

√
5, where êt are the residuals of the proposed time-varying threshold model. (ii) Set y∗t = �̂�

′
(�̂�)xt(𝛾t(�̂�))+e∗t ,

where (�̂�
′
, �̂�′) are the LS estimates of the proposed model (1) using the original sample {yt, xt, qt}T

t=1. (iii) Using the observations {y∗t , xt, qt}T
t=1,

estimate the proposed threshold regression model with a time-varying threshold, yielding the parameter estimates (�̂�
∗′
, �̂�∗′). (iv) Repeat Steps

(i)–(iii) B times, and obtain a sample of simulated coefficient estimates (�̂�
∗′
, �̂�∗′). Create 1− a bootstrap confidence intervals for the estimates
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DOI: 10.1111/jtsa.12574



TIME-VARYING THRESHOLD MODEL 15

TABLE V. Empirical results and 90% confidence intervals

Linear model constant threshold time-varying threshold

regime 1(qt ≤ �̂�) regime 2(qt > �̂�) regime 1(qt ≤ �̂� t) regime 2(qt > �̂� t)
Intercept 0.124 0.005 −0.149 −0.188 0.623

[−0.032,0.280] [−0.203,0.211] [−5.811,5.512] [−0.378,0.002] [−0.233,1.482]
𝜋t−1 0.066 0.107 −0.048 0.170 −0.021

[−0.012,0.144] [0.041,0.173] [−0.399,0.301] [0.089,0.249] [−0.136,0.093]
xt− 1 0.056 0.045 −0.079 0.021 −0.093

[0.023,0.089] [0.003,0.087] [−1.052,0.893] [−0.014,0.056] [−0.244,0.057]
it− 1 0.936 0.938 0.935 0.945 0.811

[0.895,0.976] [0.896,0.977] [0.541,1.331] [0.918,0.974] [0.644,0.978]
Inflation deviation 0.022 0.730 −1.739 2.139 −1.112

[−0.385,1.136] [−1.662,3.122] [−9.846,6.368] [0.281,3.999] [−2.001,− 0.223]
Output gap 0.873 0.732 −1.223 0.383 −0.493

[−0.062, 1.665] [−0.333, 1.798] [−6.652, 4.206] [−0.376, 1.141] [−1.544, 0.558]
Testing FC F1 F2

Statistics 21.931 88.932 61.789
p-value 0.661 0.075 0.069

4
6

8
1

0
1

2

1960q1 1980q1 2000q1 2020q1

unemployment rate

constant threshold

single frequency

cumulative frequency

FIGURE 4. The estimated constant threshold and time-varying threshold

and FC. The former two statistics are described in Section 2, while the test statistic FC for the null hypothesis of the
linear model against the constant threshold model is proposed by Hansen (1999). According to the FC test statistic,
the linear model cannot be rejected (p-value=0.661), while both F1 and F2 are with the p-value less than 10%,
supporting the existence of a time-varying threshold. These testing results are reasonable, because ignoring the
existed time-varying features in threshold can result in biased estimates, which may lead to further consequences
including distorted testing results. Overall, these testing results indicate that the proposed time-varying threshold
model is suitable in this application. As discussed by Dueker et al. (2010) and Zhu et al. (2019), the estimated
time-varying threshold could be interpreted as the natural rate of unemployment, which is the foundation of a
number of theoretical or empirical relationships such as Okun’s Law. However, it is often difficult to directly
estimate the natural rate of unemployment. In this case, the proposed time-varying threshold model may serve as
a potential candidate for the natural rate. To obtain a more precise time-varying threshold level, we estimate the
model with a cumulative frequency, in which the number of cumulative frequencies (n) is chosen by minimizing
the residual sum of squares, leading to the estimate n̂ = 2.12 The estimated time-varying threshold levels are
given by Figure 4.

(�̂�
∗′
, �̂�∗′) by the symmetric percentile method: the estimates plus and minus the (1− a) quantile of the absolute centered bootstrap estimates.

For example, the confidence interval of 𝛽1 is 𝛽1±q∗
1−a, where q∗

1−a is the 1− a quantile of |𝛽∗
1 − 𝛽1|.

12 In an unreported appendix, we show that the slope estimates based on the cumulative frequencies are similar to that based on the single
frequency. Therefore, we do not report the empirical results based on the cumulative frequencies to save space.
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According to the estimates based on the time-varying threshold model, the U.S. central band respond asymmet-
rically to inflation deviation and the output gap during periods of relatively good state (qt ≤ �̂� t) and during periods
of relatively bad state (qt > �̂� t). The central bank responds positively (negatively) to inflation deviation and out-
put gap during the good periods (bad periods); moreover, the response to inflation is clearly stronger during good
periods than during bad periods, while the response to output gap is relatively weaker during good periods than
during bad periods. The coefficients on inflation deviation in both regimes are both significant at the 5% level,
while the coefficients on output gap are insignificant. Furthermore, the coefficients on it− 1 are 0.945 and 0.811,
indicating that the short-term interest rates change more smoothly during good periods than bad periods. These
empirical results cannot be obtained if the time-varying feature in threshold is overlooked.

5. CONCLUSION

Threshold models have been widely applied in economics. However it is restrictive to assume that the threshold
values are stable or time-invariant. This article proposes a threshold model with a time-varying threshold, where
the time-varying threshold is approximated by a Fourier function. A least-square based procedure is proposed
to estimate the model parameters, and two statistics are constructed to test for the threshold effect and thresh-
old constancy. The convergence rate and asymptotic distribution of the time-varying threshold estimator are also
established, and Monte Carlo experiments are conducted to examine the finite properties of the estimation pro-
cedure and test statistics. We also provide the evidence supporting that the estimated slopes in sub-samples are
biased when the threshold is time-varying but being treated as a constant. The model is illustrated with an empirical
application to a nonlinear Taylor rule for the United States.
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APPENDIX : MATHEMATICAL PROOFS

This appendix provides the proofs of Theorems 1–2 in the article. To save space, we skip the details for some
intermediary results and a more detailed version is available from the authors on request. For notational simplicity,
we first clarify the following denotations.

1. The indicator function 1(qt≤𝛾t(𝜸)) = {qt ≤ 𝛾t(𝜸)}, where 𝜸 = [𝛾0, 𝛾1, 𝛾2, k]′,
2. sgn(x)= 1(x> 0) − 1(x≤ 0) (i.e. the sign function), hence |x|=x1(x> 0) − x1(x≤ 0) = x(1(x> 0) − 1(x≤ 0))= xsgn(x),
3. 𝛾t(𝛾 ′0) = 𝛾t(𝛾 ′0, 𝛾1, 𝛾2, k), 𝛾t(𝛾 ′1) = 𝛾t(𝛾0, 𝛾

′
1, 𝛾2, k) and 𝛾t(𝛾 ′2) = 𝛾t(𝛾0, 𝛾1, 𝛾

′
2, k),

4. 𝛾0
t (𝛾0) = 𝛾0

t (𝛾0, 𝛾
0
1 , 𝛾

0
2 , k

0), 𝛾0
t (𝛾1) = 𝛾0

t (𝛾
0
0 , 𝛾1, 𝛾

0
2 , k

0) and 𝛾0
t (𝛾2) = 𝛾0

t (𝛾
0
0 , 𝛾

0
1 , 𝛾2, k

0),
5. dt(𝛾0

t (𝛾i)) = {qt ≤ 𝛾0
t (𝛾i)}, for i= 0, 1, 2,

6. Δ0
t (𝛾i1, 𝛾i2) = dt(𝛾0

t (𝛾i2)) − dt(𝛾0
t (𝛾i1)),

7. aT = T1−2𝛼 , 𝛾i = 𝛾0
i + 𝜔i∕aT , Δ𝛾0

i = 𝛾i − 𝛾0
i , Δ𝛾0

t (𝛾i) = 𝛾0
t (𝛾i) − 𝛾0

t (𝛾
0
i ), ΔM(𝛾0

t (𝛾i)) = M(𝛾0
t (𝛾i)) − M(𝛾0

t (𝛾
0
i )),

8. JT (𝛾0
t (𝛾i)) = T−1∕2 ∑T

t=1 c′xtetdt(𝛾0
t (𝛾i)),
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9. GT (𝛾0
t (𝜔i)) = aTT−1 ∑T

t=1 c′xtx
′
tc|dt(𝛾0

t (𝛾
0
i + 𝜔i∕aT )) − dt(𝛾0

t (𝛾
0
i ))|,

10. Gm
T (𝛾

0
t (𝜔i)) = aTT−1 ∑T

t=1 c′xtx
′
tc|dt(min{𝛾0

t (𝛾
0
i + 𝜔i∕aT ), 𝛾0

t (𝛾
0
i )}) − dt(𝛾0

t (𝛾
0
i ))|,

11. uTt(𝛾0
t (𝜔i)) = c′xtetΔ0

t (𝛾
0
i , 𝛾

0
i + 𝜔i∕aT ),

12. RT (𝛾0
t (𝜔i)) =

√
aTT−1∕2 ∑T

t=1 uTt(𝛾0
t (𝜔i)).

Before proving Theorem 1, we first prove the following Lemma, which is used to prove Theorem 1.

Lemma A1. If qt is strictly stationary and ergodic, E|𝜙(qt)|2 < ∞, qt has a continuous density function f (q) such
that supx∈Rf (x) = f < ∞, 𝛾t(𝛾i) is a differentiable function, 𝛾 ′t (𝛾i) = d𝛾t(𝛾i)∕d𝛾i does not depend on 𝛾i, Γi is a
compact set for i= 0, 1, 2, and Γk is a countably finite set (i.e. Γk = {1, 2, … ,K} for some K <∞ and K ∈ N), then

sup
𝜸∈Γ×Γk

|||||| 1
T

T∑
t=1

𝜙(qt){qt ≤ 𝛾t(𝜸)} − E(𝜙(qt){qt ≤ 𝛾t(𝜸)})
||||||

a.s.
−−−→ 0 (A1)

Proof of Lemma 1. This proof is similar to Lemma 1 in Hansen (1996). The proof is skipped here and is available
from the authors on request. ◾

Proof of Theorem 1. Define the moment M(𝛾t) = E(xtx
′
t{qt ≤ 𝛾t}) = ∫ 𝛾t

−∞ E(xtx
′
t|qt)f (qt)dqt. By Lemma 1, we

have

T−1
T∑

t=1

xtx
′
t{qt ≤ 𝛾t} − T−1

T∑
t=1

M(𝛾t)
a.s.
−−−→ 0, (A2)

uniformly over 𝜸 ∈ 𝚪 × Γk.
Denote 𝜸 = [𝛾0, 𝛾1, 𝛾2, k]′, 𝛾𝜏 = 𝛾0 + 𝛾1 sin(2𝜋k𝜏) + 𝛾2 cos(2𝜋k𝜏),

M(𝜸) = lim
T→∞

T−1
T∑

t=1

M(𝛾t) = ∫
1

0
M(𝛾𝜏)d𝜏, (A3)

and

M(𝜸, 𝜸0) = lim
T→∞

T−1
T∑

t=1

xtx
′
t{qt ≤ 𝛾t}{qt ≤ 𝛾0

t }

= lim
T→∞

T−1
T∑

t=1

xtx
′
t{qt ≤ 𝛾t ∧ 𝛾0

t }

= ∫
1

0
M(𝛾𝜏 ∧ 𝛾0

𝜏
)d𝜏 (A4)

in which 𝛾t ∧ 𝛾0
t = min(𝛾t, 𝛾

0
t ). We can show that

T2𝛼−1{SSRT (𝛾t) − SSRT (𝛾0
t )} = T−1c′X′

0(IT − P𝜸)X0c + Op(T
𝛼− 1

2 )
= c′(T−1X′

0X0 − T−1X′
0P𝜸X0)c + op(1), (A5)

in which X0[t] = x′
t{qt ≤ 𝛾0

t }, P𝜸 = X∗
𝜸
(X∗

𝜸
′X∗

𝜸
)−1X∗

𝜸
′, X∗

𝜸
= [X,X𝜸], X[t] = x′

t and X𝜸 [t] = x′
t{qt ≤ 𝛾t} for

t= 1, 2, … , T .
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For the first term of (A5), we have

T−1X′
0X0 = T−1

T∑
t=1

xtx
′
t{qt ≤ 𝛾0

t }
a.s.
−−−→M(𝜸0). (A6)

The asymptotic distribution of the second term of (A5) is given by

T−1X′
0P𝜸X0 =

[
1

T
X′

0X 1

T
X′

0X𝜸

][ 1

T
X′X 1

T
X′X𝜸

1

T
X′

𝜸
X 1

T
X′

𝜸
X𝜸

]−1 [ 1

T
X′

0X
1

T
X′

0X𝜸

]
a.s.
−−−→

[
M(𝜸0) M(𝜸, 𝜸0)

][ M M(𝜸)
M(𝜸) M(𝜸)

]−1 [
M(𝜸0)

M(𝜸, 𝜸0)

]
.

Furthermore, we have[
M(𝜸0) M(𝜸, 𝜸0)

][ M M(𝜸)
M(𝜸) M(𝜸)

]−1 [
M(𝜸0)

M(𝜸, 𝜸0)

]

=
[

M(𝜸0) M(𝜸, 𝜸0)
][ 0m×m Im

Im −Im

][
0m×m Im

Im −Im

]−1

×

[
M M(𝜸)

M(𝜸) M(𝜸)

]−1

×

[
0m×m Im

Im −Im

]−1 [
0m×m Im

Im −Im

][
M(𝜸0)

M(𝜸, 𝜸0)

]

=
[

M(𝜸, 𝜸0) M(𝜸0) − M(𝜸, 𝜸0)
][ M(𝜸)−1 0m×m

0m×m (M − M(𝜸))−1

]

×

[
M(𝜸, 𝜸0)

M(𝜸0) − M(𝜸, 𝜸0)

]
= M(𝜸, 𝜸0)M(𝜸)−1M(𝜸, 𝜸0) + [M(𝜸0) − M(𝜸, 𝜸0)][M − M(𝜸)]−1

× [M(𝜸0) − M(𝜸, 𝜸0)]
≡ b2(𝜸, 𝜸0). (A7)

From (A7), we obtain that b2(𝜸0, 𝜸0) = M(𝜸0) when 𝜸 = 𝜸0. Hence, we have

T−1c′X′
0(IT − P𝜸)X0c

a.s.
−−−→ c′(M(𝜸0) − b2(𝜸, 𝜸0))c ≡ b(𝜸, 𝜸0) (A8)

It is easily seen that b(𝜸0, 𝜸0) = 0 when 𝜸 = 𝜸0. On the other hand, since (IT − P𝜸)(IT − P𝜸) = (IT − P𝜸), we
therefore obtain

T−1c′X′
0(IT − P𝜸)X0c = T−1c′X′

0(IT − P𝜸)(IT − P𝜸)X0c

= T−1w′w

= T−1
T∑

t=1

w2
t ≥ 0. (A9)
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Thus, we have

T2𝛼−1{SSRT (𝛾t) − SSRT (𝛾0
t )} = T−1c′X′

0(IT − P𝜸)X0c + Op(T
𝛼− 1

2 )
p
−−→ b(𝜸, 𝜸0) ≥ 0, (A10)

where the equality holds if and only if 𝜸 = 𝜸0. Since 𝜸 minimizes SSRT (𝛾t) − SSRT (𝛾0
t ), using Theorem 2.1 of

Newey and McFadden (1994) we have �̂�→p𝜸
0. This completes the proof of Theorem 1. ◾

To prove Theorem 2, the following lemmas are needed.

Lemma A2. For any two random variables X and Y defined in the same probability space (Ω, ,P):

(i). if X(𝜔) ≤ Y(𝜔), ∀𝜔 ∈ Ω, then E(X) ≤ E(Y).
(ii). if X(𝜔) ≤ Y(𝜔′), ∀𝜔,𝜔′ ∈ Ω, then E(X) ≤ E(Y).13

Lemma A3. Given that f n(x) and f (x) are functions of x, if f n(x) and f (x) are monotonic on a compact set X, f (x)
is continuous function and f n(x) converges pointwise to f (x) in probability, then f n(x) converges uniformly to f (x)
in probability.

Lemma A4. There is a C1 <∞ such that for 𝛾i1, 𝛾i2 ∈ Γi, i= 0, 1, 2, and r ≤ 4,

E{||xt||r|dt(𝛾t(𝛾i2)) − dt(𝛾t(𝛾i1))|} ≤ C1|𝛾i2 − 𝛾i1|, (A11)

E{||xtet||r|dt(𝛾t(𝛾i2)) − dt(𝛾t(𝛾i1))|} ≤ C1|𝛾i2 − 𝛾i1|. (A12)

Lemma A5. There is a K1 <∞ such that for 𝛾i1, 𝛾i2 ∈ Γi, i= 0, 1, 2,

E
|||||| 1√

T

T∑
t=1

[[c′xt]2|Δt(𝛾i1, 𝛾i2)| − E([c′xt]2|Δt(𝛾i1, 𝛾i2)|)]||||||
2

≤ K1|𝛾i2 − 𝛾i1|, (A13)

and

E
|||||| 1√

T

T∑
t=1

[[c′xtet]2|Δt(𝛾i1, 𝛾i2)| − E([c′xtet]2|Δt(𝛾i1, 𝛾i2)|)]||||||
2

≤ K1|𝛾i2 − 𝛾i1|. (A14)

Lemma A6. There are finite constants K1 and K2 such that for all 𝛾i1, 𝜀> 0, 𝜂 > 0, and 𝛿 ≥ T−1, if
√

T ≥ K2∕𝜂,
then

P( sup
𝛾i1≤𝛾i≤𝛾i1+𝛿

|JT (𝛾0
t (𝛾i)) − JT (𝛾0

t (𝛾i1))| > 𝜂) ≤ K1𝛿
2

𝜂4
. (A15)

Lemma A7. Under Assumption 1, we have

T𝛼(�̂�2 − 𝜷2) = op(1), T𝛼(�̂� − 𝜹T ) = op(1) or T𝛼�̂�p→c. (A16)

Lemma A8. Under Assumption 1, on a compact set Ψi, we have the following uniform convergence results

GT (𝛾0
t (𝜔i))

p
−−→ |𝜔i|𝜇i, for i = 0, 1, 2, (A17)

13 For example, let Y =X + 1, which is Case (i) in Lemma 1; let X ∼  (0, 1) and Y ∼  (1, 2), which is Case (ii), where  (a, b) is the
continuous uniform distribution.
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Gm
T (𝛾

0
t (𝜔i))p→ − 𝜔i𝜇i1(𝜔i≤0) − 𝜔i𝜇

m
i , for i = 0, 1, 2, (A18)

VT (𝛾0
t (𝜔i))p→|𝜔i|𝜆i, for i = 0, 1, 2, (A19)

where

𝜇0 = c′
(
∫

1

0
D𝜏 f𝜏d𝜏

)
c , 𝜆0 = c′

(
∫

1

0
V𝜏 f𝜏d𝜏

)
c,

𝜇1 = c′
(
∫

1

0
| sin(2𝜋k0𝜏)|D𝜏 f𝜏d𝜏

)
c, 𝜆1 = c′

(
∫

1

0
| sin(2𝜋k0𝜏)|V𝜏 f𝜏d𝜏

)
c,

𝜇2 = c′
(
∫

1

0
| cos(2𝜋k0𝜏)|D𝜏 f𝜏d𝜏

)
c, 𝜆2 = c′

(
∫

1

0
| cos(2𝜋k0𝜏)|V𝜏 f𝜏d𝜏

)
c,

𝜇m
0 = 0,

𝜇m
1 = c′

(
∫

1

0
min{sin(2𝜋k0𝜏), 0}D𝜏 f𝜏d𝜏

)
c,

𝜇m
1 = c′

(
∫

1

0
min{cos(2𝜋k0𝜏), 0}D𝜏 f𝜏d𝜏

)
c,

in which D𝜏 = D(𝛾0
𝜏
), V𝜏 = V(𝛾0

𝜏
), f𝜏 = f (𝛾0

𝜏
) and 𝛾0

𝜏
= 𝛾0

0 + 𝛾0
1 sin(2𝜋k0𝜏) + 𝛾0

2 cos(2𝜋k0𝜏).

Lemma A9. Under Assumption 1, on any given compact set Ψi, we have

RT (𝛾0
t (𝜔i)) ⇒

√
𝜆iW(𝜔i), for i = 0, 1, 2, (A20)

where W(𝜔i) is a two-sided Brownian motion.

Proof of Lemmas 2–9. The proofs of Lemmas 2–9 are skipped here and are available from the authors on
request. ◾

Proof of Theorem 2. We first derive the convergence rate of the threshold estimators aT (�̂� i − 𝛾0
i ) = Op(1) for

i= 0, 1, 2. To prove this, we need to prove that, for some 𝜐i > 0 we have

lim
T→∞

P

(|�̂� i − 𝛾0
i | ≤ 𝜐i

aT

)
= 1, for i = 0, 1, 2. (A21)

For any B> 0, define VB = {(k, 𝛾0, 𝛾1, 𝛾2) ∶ |𝛾j − 𝛾0
j | ≤ B, j = 0, 1, 2, |k− k0| ≤ B}. Then when the sample size T is

large enough, we have 𝜐i∕aT < B. By Theorem 1, we have �̂�→p𝜸
0, and hence limT→∞P(�̂� ∈ VB) = 1. Therefore,

we only need to examine the limiting behavior in VB.
Define a subset of VB : ViB(𝜐i) = {(k, 𝛾0, 𝛾1, 𝛾2) ∶ |𝛾j − 𝛾0

j | ≤ B, j = 0, 1, 2, |k − k0| ≤ B, 𝜐i∕aT < |𝛾i − 𝛾0
i |}. To

prove limT→∞P(|�̂� i − 𝛾0
i | < 𝜐i∕aT ) = 1, for i = 0, 1, 2, we just need to prove limT→∞P(�̂� ∈ ViB(𝜐)) = 0.

Let �̂�2, �̂� be the estimation of yt = 𝜷 ′
2xt +𝜹′Txt1(𝛾t)+ et. Denote S∗

T (𝛾t) = ST (�̂�2, �̂�, 𝛾t) and S∗
T (𝛾

0
t ) = ST (�̂�2, �̂�, 𝛾

0
t ).

From the estimation procedure of �̂�, we have S∗
T (�̂� t) ≤ S∗

T (𝛾
0
t ). Thus it suffices to prove that for any 𝜸 ∈ ViB(𝜐i),

lim
T→∞

P(S∗
T (𝛾t) − S∗

T (𝛾
0
t ) > 0) = 1. (A22)
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We consider the case of 𝛾i ≷ 𝛾0
i . In this case, the equation (A22) is equivalent to prove

lim
T→∞

P

(
S∗

T (𝛾t) − S∗
T (𝛾

0
t )

aT (𝛾i − 𝛾0
i )

≷ 0

)
= 1, for i = 0, 1, 2. (A23)

Since the true model can be rewritten as Y = X𝜷2 + X0𝜹T + e, thus we have

Y − X�̂�2 − X𝜸�̂� = X𝜷2 + X0𝜹T + e − X�̂�2 − X𝜸�̂�

= e − X(�̂�2 − 𝜷2) − X0(�̂� − 𝜹T ) − ΔX𝜸�̂�,

where ΔX𝜸 = X𝜸 − X0. Therefore,

S∗
T (𝛾t) − S∗

T (𝛾
0
t )

= [Y − X�̂�2 − X𝜸�̂�]′[Y − X�̂�2 − X𝜸�̂�] − [Y − X�̂�2 − X0�̂�]′[Y − X�̂�2 − X0�̂�]

= �̂�
′
ΔX′

𝜸
ΔX𝜸�̂� − 2�̂�

′
ΔX′

𝜸
e + 2�̂�

′
ΔX′

𝜸
X(�̂�2 − 𝜷2) + 2�̂�

′
ΔX′

𝜸
X0(�̂� − 𝜹T )

= S1 − S2 − S3 + S4 + S5 + S6, (A24)

where

S1 = 𝜹′TΔX′
𝜸
ΔX𝜸𝜹T ,

S2 = 2𝜹′TΔX′
𝜸
e,

S3 = 2(�̂� − 𝜹T )′ΔX′
𝜸
e,

S4 = 2�̂�
′
ΔX′

𝜸
X(�̂�2 − 𝜷2),

S5 = 2�̂�
′
ΔX′

𝜸
X0(�̂� − 𝜹T ),

S6 = (𝜹T + �̂�)′ΔX′
𝜸
ΔX𝜸(�̂� − 𝜹T ).

Using a first-order Taylor series expansion and by Assumption 6 (𝜹T = cT−𝛼) and Lemma 7, we have ĉ = �̂�T𝛼 ,
�̂� = ĉT−𝛼 . Thus, we can show

S1

aT (𝛾i − 𝛾0
i )

=
𝜹′TΔX′

𝜸
ΔX𝜸𝜹T

aT (𝛾i − 𝛾0
i )

= c′
1
T

T∑
t=1

|||||xtx
′
t({qt ≤ 𝛾t} − {qt ≤ 𝛾0

t })
𝛾i − 𝛾0

i

||||| csgn(𝛾i − 𝛾0
i )

= Op(1) ≷ 0, if 𝛾i ≷ 𝛾0
i , (A25)

S2

aT (𝛾i − 𝛾0
i )

=
2𝜹′TΔX′

𝜸
e

aT (𝛾i − 𝛾0
i )

=
√

aT

𝛾i − 𝛾0
i

sgn(𝛾i − 𝛾0
i )√

T(𝛾i − 𝛾0
i )

c′ΔX′
𝜸
e

= Op(𝜐
−1∕2
i )Op(1), (A26)

S3

aT (𝛾i − 𝛾0
i )

=
2(�̂� − 𝜹T )′ΔX′

𝜸
e

aT (𝛾i − 𝛾0
i )

= T𝛼(�̂� − 𝜹T )′
√

aT

𝛾i − 𝛾0
i

sgn(𝛾i − 𝛾0
i )√

T(𝛾i − 𝛾0
i )
ΔX′

𝜸
e
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= op(1)Op(𝜐
−1∕2
i )Op(1) = op(1), (A27)

S4

aT (𝛾i − 𝛾0
i )

=
2�̂�

′
ΔX′

𝜸
X(�̂�2 − 𝜷2)

aT (𝛾i − 𝛾0
i )

= �̂�
′
T𝛼 2

T(𝛾i − 𝛾0
i )
ΔX′

𝜸
XT𝛼(�̂�2 − 𝜷2)

= Op(1)Op(1)op(1) = op(1), (A28)

S5

aT (𝛾i − 𝛾0
i )

=
2�̂�

′
ΔX′

𝜸
X0(�̂� − 𝜹T )

aT (𝛾i − 𝛾0
i )

= �̂�
′
T𝛼 2

T(𝛾i − 𝛾0
i )
ΔX′

𝜸
X0T𝛼(�̂� − 𝜹T )

= Op(1)Op(1)op(1) = op(1), (A29)

S6

aT (𝛾i − 𝛾0
i )

=
(𝜹T + �̂�)′ΔX′

𝜸
ΔX𝜸(�̂� − 𝜹T )

aT (𝛾i − 𝛾0
i )

= [c + �̂�T𝛼]′ 1
T(𝛾i − 𝛾0

i )
ΔX′

𝜸
X𝜸T𝛼(�̂� − 𝜹T )

= Op(1)Op(1)op(1) = op(1). (A30)

Hence, it is possible to find a 𝜐i < ∞ and when T →∞ such that

||||| S1

aT (𝛾i − 𝛾0
i )

||||| >
||||||

6∑
k=2

Sk

aT (𝛾i − 𝛾0
i )

|||||| (A31)

holds with probability one. By (A31) we can obtain (A23). Thus we obtain the convergence rate.
We next establish the asymptotic distribution:

aT (�̂� i − 𝛾0
i )d→arg max

r∈R

Qi(r), for i = 0, 1, 2. (A32)

Since the threshold parameters are consistent with convergence rate aT = T1−2𝛼 . Thus we can study their
asymptotic behavior in the neighborhood of the true thresholds, �̂� i = 𝛾0

i + �̂�i∕aT , for i= 0, 1, 2.
By the definition of the threshold estimator, we have

aT (�̂� i − 𝛾0
i ) ≡ �̂�i = arg min

𝜔i∈Ψi

S∗0
T

(
𝛾0

i +
𝜔i

aT

)
− S∗0

T (𝛾0
i )

= arg max
𝜔i∈Ψi

−
{

S∗0
T

(
𝛾0

i +
𝜔i

aT

)
− S∗0

T (𝛾0
i )
}

≡ arg max
𝜔i∈Ψi

Q0
T (𝜔i), for i = 0, 1, 2,

where S∗0
T (𝛾0) = S∗

T (𝛾0, 𝛾
0
1 , 𝛾

0
2 , k

0), S∗0
T (𝛾1) = S∗

T (𝛾
0
0 , 𝛾1, 𝛾

0
2 , k

0), S∗0
T (𝛾2) = S∗

T (𝛾
0
0 , 𝛾

0
1 , 𝛾2, k

0) and Ψi = [aT (𝛾 i
−

𝛾0
i ), aT (𝛾 i − 𝛾0

i )].
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As above, we have S∗0
T (𝛾0

i +𝜔i∕aT ) − S∗0
T (𝛾0

i ) = S1 − S2 − S3 + S4 + S5 + S6. We next derive the limiting behavior
of each Si respectively.

S1 = 𝜹′TΔX′
𝛾i
ΔX𝛾i

𝜹T = 1
T2𝛼

c′ΔX′
𝛾i
ΔX𝛾i

c

=
aT

T

T∑
t=1

c′xtx
′
tc|Δ0

t (𝛾
0
i , 𝛾i)| = GT (𝛾0

t (𝜔i)), (A33)

where ΔX𝛾i[t] = [X𝛾i
− X0][t] = xtdt(𝛾0

t (𝛾i)) − xtdt(𝛾0
t (𝛾

0
i )) = xt[dt(𝛾0

t (𝛾i)) − dt(𝛾0
t (𝛾

0
i ))].

S2 = 2𝜹′TΔX′
𝛾i

e = 2
1

T𝛼
c′ΔX′

𝛾i
e

= 2

√
aT

T

T∑
t=1

c′xtetΔ0
t (𝛾

0
i , 𝛾i) = 2RT (𝛾0

t (𝜔i)). (A34)

Note that

||||aT

T
c′ΔX′

𝛾i
X0c

|||| =
||||||
aT

T

T∑
t=1

c′xtx
′
tc[dt(min{𝛾0

t (𝛾i), 𝛾0
t (𝛾

0
i )}) − dt(𝛾0

t (𝛾
0
i ))]

||||||||||aT

T
c′ΔX′

𝛾i
X0c

|||| ≤ aT

T

T∑
t=1

c′xtx
′
tc|dt(min{𝛾0

t (𝛾i), 𝛾0
t (𝛾

0
i )}) − dt(𝛾0

t (𝛾
0
i ))|

= Gm
T (𝛾

0
t (𝜔i)) = Op(1), (A35)

||||aT

T
c′ΔX′

𝛾i
Xc

|||| =
||||||
aT

T

T∑
t=1

c′xtx
′
tc[dt(𝛾0

t (𝛾i)) − dt(𝛾0
t (𝛾

0
i ))]

||||||
≤ aT

T

T∑
t=1

c′xtx
′
tc|dt(𝛾0

t (𝛾i)) − dt(𝛾0
t (𝛾

0
i ))|

= GT (𝛾0
t (𝜔i)) = Op(1),

1
T𝛼

c′ΔX′
𝛾i

e = RT (𝛾0
t (𝜔i)) = Op(1),

aT

T
c′ΔX′

𝛾i
ΔX𝛾i

c = GT (𝛾0
t (𝜔i)) = Op(1), (A36)

where X[t] = xt and X0[t] = xtdt(𝛾0
t (𝛾

0
i )), and we have c=O(1) by Assumption 1, hence

aT

T
ΔX′

𝛾i
X0 = Op(1),

aT

T
ΔX′

𝛾i
X = Op(1),

1
T𝛼

ΔX′
𝛾i

e = Op(1),
aT

T
ΔX′

𝛾i
ΔX𝛾i

= Op(1). (A37)

Next, we show that |− S3 + S4 + S5 + S6|=op(1).

| − S3 + S4 + S5 + S6|
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≤ |S3| + |S4| + |S5| + |S6|,
= 2|(�̂� − 𝜹T )′ΔX′

𝛾i
e| + 2|�̂�′ΔX′

𝛾i
X(�̂�2 − 𝜷2)|

+ 2|�̂�′ΔX′
𝛾i

X0(�̂� − 𝜹)| + |(𝜹T + �̂�)′ΔX′
𝛾i
ΔX𝛾i

(�̂� − 𝜹T )|,
= 2

||||T𝛼(�̂� − 𝜹T )′
1

T𝛼
ΔX′

𝛾i
e
|||| + 2

||||T𝛼�̂�
′ aT

T
ΔX′

𝛾i
XT𝛼(�̂�2 − 𝜷2)

||||
+ 2

||||T𝛼�̂�
′ aT

T
ΔX′

𝛾i
X0T𝛼(�̂� − 𝜹)

|||| + ||||(c + T𝛼�̂�)′
aT

T
ΔX′

𝛾i
ΔX𝛾i

T𝛼(�̂� − 𝜹T )
|||| ,

= 2op(1)Op(1) + 2Op(1)Op(1)op(1) + 2Op(1)Op(1)op(1)
+ Op(1)Op(1)op(1),

= op(1). (A38)

Thus, by Lemmas 8 and 9, we have

Q0
T (𝜔i) ⇒ −|𝜔i|𝜇i + 2

√
𝜆iW(𝜔i), for i = 0, 1, 2, (A39)

Making the change of variable 𝜔i = r𝜆i∕𝜇2
i and setting 𝜛i = 2𝜆i∕𝜇i, we can show that

aT (�̂� i − 𝛾0
i )d→arg max

−∞<𝜔i<∞
[2
√
𝜆iW(𝜔i) − |𝜔i|𝜇i]

=
𝜆i

𝜇2
i

arg max
−∞<r<∞

[
2
𝜆i

𝜇i

W(r) −
𝜆i

𝜇i

|r|]
= 𝜛iarg max

−∞<r<∞

[
W(r) − 1

2
|r|] . (A40)

This completes the proof of Theorem 2. ◾
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