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Summary: This article extends the kink threshold regression model with a constant threshold
to a panel data framework with a covariate-dependent threshold, where the threshold is modeled
as a function of informative covariates. We suggest an estimator based on the within-group
transformation and propose test statistics for kink threshold effect and threshold constancy.
We establish the asymptotic joint normality of the slope and threshold estimators and derive
the limiting distributions of the test statistics. Our asymptotic results show that the inclusion
of a covariate-dependent threshold does not affect the asymptotic joint normality of the slope
and threshold estimates in the kink threshold regression model. Monte Carlo simulations show
that the finite-sample proprieties of the proposed estimator and test statistics are generally
satisfactory.
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1. INTRODUCTION

Since their introduction, threshold models have received much attention in econometrics, applied
economics, and other fields; see Tong (1990) and Hansen (2000), among others. The threshold
literature often assumes that the regression function has either a jump or a kink at a threshold
point. For instance, Chan (1993) and Hansen (2000) have focused on the threshold models with
a jump at the threshold point, whereas Chan and Tsay (1998), Hansen (2017), and Zhang et al.
(2017) have focused on kink threshold regression (KTR) models. The kink threshold model is a
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2 L. Yang et al.

subclass of threshold models subject to the requirement that the regression function is everywhere
continuous, but the slope has a kink at a threshold point.

It is worth noting that the KTR models differ from the classical regression kink design studied
by Nielsen et al. (2010) and Card et al. (2015). Regression kink design was popularised by
Card et al. (2015) as a modification of the widely applied regression discontinuity design. The
thresholds in the articles on regression discontinuity design and regression kink design are used to
determine the treatment variable, whereas the thresholds in the KTR models specify a nonlinear
effect, and hence KTR is not a quasi-experimental variation. In the classical regression kink
design, the parameter of interest is the change in the slopes at the policy threshold; however, the
parameter of interest is the slope coefficient itself in the KTR model investigated in the present
article.1

Hansen (2017) proposed a KTR model with an unknown threshold for time-series data. Zhang
et al. (2017) extended the KTR model with an unknown threshold to the panel data framework.
However, all these papers assume a constant threshold, which might be impractical in applications.
To illustrate this, consider the classical application of the KTR model in the nonlinear effect of
public debt on economic growth in Hansen (2017). As noted by the literature, including Reinhart
and Rogoff (2010), Cochrane (2011), and Krause and Moyen (2016), (high) inflation can erode
the real value of public debt burden, and thus, higher inflation might plausibly ease negative
growth effects of debt. On the contrary, other studies emphasise that the opposite might be true
(e.g., Akitoby et al., 2017, and Kriwoluzky et al., 2019)—that is, that inflation, as a form of
sovereign default, could increase the risk premium and affect the debt tolerance of investors (and
hence increase public debt costs), which might reinforce the negative growth effects of debt.
Overall, the two aforementioned effects can lead to the debt threshold depending on inflation;
nevertheless, given the two opposing forces of inflation, the net effect of inflation on the debt
threshold depends on which effect dominates and hence remains unclear. Thus, a covariate-
dependent threshold model appears to be more suitable and more useful than a constant one
in applications. However, in terms of a covariate-dependent threshold, only a few cases have
appeared in the empirical literature so far.2 Moreover, an asymptotic distribution theory for
estimation and testing in the covariate-dependent threshold models is still invalid.

In this article, we propose a panel KTR model with a covariate-dependent threshold (PKTR-
CDT), where the threshold is modeled as a function of informative covariates. The proposed
model is an extension of the KTR model with an unknown constant threshold described by
Hansen (2017) and Zhang et al. (2017). In estimation and model specification testing, we suggest
an estimator based on the within-group transformation (following Hansen, 1999) and propose
test statistics for kink effect and threshold constancy. Then, assuming a fixed threshold effect, we
derive the asymptotic properties of the proposed estimator and test statistics when the number of
individuals, N , tends to infinity under a fixed time period T . As in the KTR models with a constant
threshold described by Chan and Tsay (1998), Hansen (2017), and Zhang et al. (2017), we show
that the slope and threshold estimators are jointly asymptotically normal with

√
N convergence

rate and a non-zero asymptotic covariance—that is, that the inclusion of a covariate-dependent
threshold does not affect the asymptotic joint normality of the slope and threshold estimates in
the KTR model. We also establish the limiting distributions of the proposed test statistics, and

1 We highly appreciate a referee’s raising this point with us.
2 For example, Dueker et al. (2013) extended the classical smooth-transition autoregressive models by allowing for a

state-dependent threshold and applied their model to forecast US short-term interest rates; more recently, Yang and Su
(2018) introduced a flexible KTR model with a covariate-dependent threshold for time-series data and applied the model
to investigate the relationship between debt and growth.
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Panel kink threshold regression 3

we assess the finite-sample performances of the estimator and test statistics through Monte Carlo
simulations.

The remainder of this article is organised as follows. Section 2 introduces the PKTR-CDT,
describes least-squares estimation of the model parameters, and proposes test statistics for thresh-
old effect and threshold constancy. In Sections 3, the Monte Carlo simulation study is described,
and simulation results are reported. Section 4 concludes. We present a detailed and formal proof
of the asymptotic results of the proposed estimator and test statistics in the Appendix, and we
extend the PKTR-CDT to the dynamic panel context in the online Appendix.

2. PANEL KTR WITH A COVARIATE-DEPENDENT THRESHOLD

Consider the following panel KTR with a covariate-dependent threshold,

yit = β−
1 (xit − γit)− + β+

1 (xit − γit)+ + β ′
2 zit + αi + εit, (2.1)

for i = 1, 2, . . . , N and t = 1, 2, . . . , T , where yit, xit, and εit are scalars, and zit is an l-
dimensional vector of regressors that include the covariates qit (defined in the next equation).3

αi represents the unobserved individual heterogeneity, which can be correlated with xit and zit.
(xit − γit)− = min[xit − γit, 0] and (xit − γit)+ = max[xit − γit, 0] denote the negative part and
positive part of xit − γit, respectively. The slope with respect to xit equals β−

1 if xit ≤ γit and
equals β+

1 if xit > γit. Thus, the regression function has a kink at xit = γit. γit is a covariate-
dependent threshold, which is specified as a linear combination of informative covariates
qit = (q1,it , . . . , qk,it )′ explaining variation in thresholds over i and t ; that is,

γit = γ0 + γ ′
1qit, (2.2)

where γ0 represents an unknown threshold intercept, and γ1 = (γ11, . . . , γ1k)′ is a vector of
unknown slope parameters. Here, qit cannot include the variables in xit contemporaneously
because of the problem of perfect multicollinearity.

Note that the model defined in (2.1) is a panel version of Yang and Su’s (2018) KTR with a
covariate-dependent threshold. The model can also be treated as an extension of Zhang et al.’s
(2017) panel KTR with an unknown constant threshold, which is a special case of our model
when γ1 = 0k×1.

As in Chan and Tsay (1998) and Hansen (2017), we restrict our model to the context in
which the slope with respect to xit has a kink, but the regression function is continuous in the
regressors xit and zit. Considering the slope change has the advantage of capturing inverted
V-shaped relationships, which is important given that the economic literature often suggests
an inverted V-shaped relationship between economic variables. As in Zhang et al. (2017), we
restrict attention to the estimation and inference in the PKTR-CDT model when N → ∞ and
T is fixed. Furthermore, we also restrict the model to the case in which the regression segments
and threshold setting are linear rather than nonparametric (or nonlinear). This linear setting is
useful and reasonable in cases of moderate sample sizes, where nonparametric methods may
work poorly.4

3 It is important to include qit in zit for testing the kink effect against the linearity, which ensures that the linear model
is nested in the kink threshold model (2.1) under the null β−

1 = β+
1 . However, this does not affect the consistency of the

proposed estimator of PKTR-CDT given the presence of the kink threshold effect, because whether or not to include qit

in zit does not affect the conditions under which Theorem 2.1 holds.
4 It would be useful to extend our model to a nonparametric threshold specification. We thank an anonymous referee

for raising this point with us.

C© 2021 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article/doi/10.1093/ectj/utaa035/6027470 by N

ational C
hengchi U

niversity user on 07 February 2021



4 L. Yang et al.

2.1. The estimates and asymptotic properties

For convenience, we rewrite the model in a more compact form. Denote β = [β−
1 , β+

1 ,β ′
2]′,

γ = (γ0, γ
′
1)′, and xit(γ ) = [(xit − γit)−, (xit − γit)+, z′

it]
′. Then, model (2.1) can be rewritten as

yit = β ′xit(γ ) + αi + εit. (2.3)

To eliminate the individual effect αi , we take averages of (2.3) over the time

ȳi = β ′ x̄i(γ ) + αi + ε̄i , (2.4)

where ȳi = T −1 ∑T
t=1 yit, x̄i(γ ) = T −1 ∑T

t=1 xit(γ ), and ε̄i = T −1 ∑T
t=1 εit. Then, we remove

individual-specific means by taking the difference between (2.3) and (2.4),

ÿit = β ′ ẍit(γ ) + ε̈it, (2.5)

in which ÿit = yit − ȳi , ẍit(γ ) = xit(γ ) − x̄i(γ ), and ε̈it = εit − ε̄i .
Let ÿi = (ÿi1, . . . , ÿit)′, ẍi(γ ) = (ẍi1(γ ), . . . , ẍit(γ ))′, and ε̈i = (ε̈i1, . . . , ε̈it)′. Let Ÿ , Ẍ(γ ),

and ε̈ denote the data stacked over all individuals, i.e., Ÿ = (ÿ ′
1, . . . , ÿ

′
N )′, Ẍ(γ ) =

(ẍ′
1(γ ), . . . , ẍ′

N (γ ))′, and ε̈ = (ε̈′
1, . . . , ε̈

′
N )′. Thus, (2.5) can be rewritten as Ÿ = Ẍ(γ )β + ε̈.

For any given γ0 and γ ′
1, we can estimate the slope coefficient β as follows:

β̂(γ ) = [
Ẍ ′(γ )Ẍ(γ )

]−1
Ẍ ′(γ )Ÿ . (2.6)

The parameters of the covariate-dependent threshold can be estimated as

γ̂ = (γ̂0, γ̂
′
1)′ = arg min

γ∈�

S̃SRNT(γ ), (2.7)

where S̃SRNT(γ ) = 1
N

(Ÿ − Ẍ(γ )β̂(γ ))′(Ÿ − Ẍ(γ )β̂(γ )), � = �0 × �1, and �0 and �1 = �11 ×
�12 × · · · × �1k are the parameter spaces and are assumed to be compact. Once the estimates
γ̂ = (γ̂0, γ̂

′
1)′ are obtained, a natural estimate for β is given by β̂(γ̂ ). The least-squares estimator

has been widely used in the threshold literature; see, e.g., Hansen (1999), Hansen (2017), Zhang
et al. (2017), and Yu and Fan (2020), among others. Recently, Yu and Fan (2020) documented that
the threshold parameters may not be identified uniquely in the discontinuous threshold models
with a threshold boundary, leading to a difficulty in calculating the least-squares estimator of the
threshold parameters, but in the continuous PKTR-CDT model this difficulty disappears.5

In applications, one may specify �0 as [x(0.15N), x(0.85N)], with x(η) being the ηth-order
statistic of xit, and set �1j as [−rmax, rmax], in which rmax = max{|x(0.15N)|, |x(0.85N)|} for
j = 1, 2, . . . , k. Furthermore, to implement the minimisation in (2.7), we suggest a two-step
approach based on concentration and grid search. First, for any given γ0, we compute the sum
of squared errors S̃SRNT(γ ) = S̃SRNT(γ0, γ

′
1) for each γ1 ∈ �1. Second, we compute the mini-

mum S̃SRNT(γ0, γ̃
′
1(γ0)) = arg min

γ1

S̃SRNT(γ0, γ
′
1), and we estimate the threshold parameters by

(γ̂0, γ̂
′
1) ≡ (γ̂0, γ̃

′
1(γ̂0)) = arg min

γ0

S̃SRNT(γ0, γ̃
′
1(γ0)). As suggested by Hansen (1999), it might be

undesirable to select values for the threshold parameters (γ̂0, γ̂
′
1) that sort too few data into one

or the other regime. In application, we suggest that the aforementioned grid search be restricted
to values of (γ̂0, γ̂

′
1) such that a minimal percentage of the observations (say, 10% or 15%) lies

in both regimes; the robustness of the results may be verified by using different choices of the
percentage.

5 This is illustrated by Monte Carlo simulations in an unreported appendix. We thank an anonymous referee for raising
this point with us.
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Panel kink threshold regression 5

The estimation procedure described above works well in the case in which a few covariates are
used to model the covariate-dependent threshold. There may be a practical difficulty in the case
of large-dimensional qit, and the present article does not discuss how to select relevant covariates
qit among many potential covariates. For a discussion of large-dimensional qit and how to select
qit, please refer to Lee et al. (2018).

To derive the asymptotic distribution for the proposed estimator of θ = (β ′, γ ′)′, define the
true value

θ0 = (β ′
0, γ

′
0)′ = arg min

β∈B,γ∈�

L(β, γ ), (2.8)

where L(β, γ ) = ∑T
t=1 E[ÿit − β ′ ẍit(γ )]2 is the squared error loss. For any given γ ∈ �, the

concentrated squared loss is

Lc(γ ) =
T∑

t=1

E[ÿit − β ′(γ )ẍit(γ )]2, (2.9)

in which β(γ ) =
(∑T

t=1 E
[
ẍit(γ )ẍ′

it(γ )
])−1 ∑T

t=1 E [ẍit(γ )ÿit]. By concentration, γ0 is the min-

imiser of Lc(γ ) and β0 = β(γ0).
Let 1−

it (γ ) = 1(xit ≤ γit), and 1̈−
it (γ ) = 1−

it (γ ) − 1
T

∑T
t=1 1−

it (γ ). Similarly, we can define 1+
it (γ )

and 1̈+
it (γ ). Let q̈−

it (γ ) = qit1−
it (γ ) − 1

T

∑T
t=1 qit1−

it (γ ), q̈+
it (γ ) = qit1+

it (γ ) − 1
T

∑T
t=1 qit1+

it (γ ),

eit(θ ) = ÿit − β ′ ẍit(γ ), hit(θ ) = − ∂eit(θ)
∂θ

=
⎛⎝ ẍit(γ )

−β−
1 1̈−

it (γ ) − β+
1 1̈+

it (γ )
−β−

1 q̈−
it (γ ) − β+

1 q̈+
it (γ )

⎞⎠, and Dit(γ ) = − ∂hit(θ)
∂θ ′ =⎛⎜⎜⎜⎜⎝

0 0 01×l 1̈−
it (γ ) q̈−′

it (γ )
0 0 01×l 1̈+

it (γ ) q̈+′
it (γ )

0l×1 0l×1 0l×l 0l×1 0l×k

1̈−
it (γ ) 1̈+

it (γ ) 01×l 0 01×k

q̈−
it (γ ) q̈+

it (γ ) 0k×l 0k×1 0k×k

⎞⎟⎟⎟⎟⎠. Denote hit = hit(θ0), eit = eit(θ0), Dit = Dit(γ0), hi =

(hi1, hi2, . . . , hit)′, and ei = (ei1, ei2, . . . , eit)′.
To establish the asymptotic distribution of θ̂ , we need the following assumptions.

ASSUMPTION 1. (i) For each t , wit = (yit, xit, z′
it, q ′

it) are independently identically distributed
(i.i.d.) across i; (ii) for some r > 1, E|yit|4r < ∞, E|xit|4r < ∞, E|zit|4r < ∞, and E|qit|4r <

∞; (iii) E[εit|(xis, z′
is , q ′

is , αi : 1 ≤ s ≤ T )] = 0.

ASSUMPTION 2. (i) wit has a probability density function fw,t (w), where wit = (yit, xit, z′
it, q ′

it);
(ii) (wit,wis) has a joint probability density function fw,ts; (iii) xit has a conditional proba-
bility density function given qit = q, satisfying max1≤t≤T fq,t (x|q) ≤ f̄q < ∞; and Fq is the
corresponding conditional cumulative distribution function of xit conditional on qit.

ASSUMPTION 3. infγ∈� det Q(γ ) > 0, where Q(γ ) = ∑T
t=1 E[ẍit(γ )ẍ′

it(γ )] and � is
compact.

ASSUMPTION 4. β+
1 − β−

1 is a constant, and β ∈ B ⊂ Rl+2, where B is compact.

ASSUMPTION 5. γ0 = arg minγ∈� Lc(γ ) is unique. �

These assumptions are almost the same as those in Hansen (2017) and Zhang et al. (2017).
The difference is the inclusion of qit in Assumptions 1–2, in which we assume the 4r-th moment

C© 2021 Royal Economic Society.
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6 L. Yang et al.

condition to ensure that the central limit theorem and the weak law of large numbers hold, and we
impose strict exogeneity of the regressors and the covariates affecting the threshold. This rules
out dynamic panel data models, which will be discussed in the online Appendix. Assumptions
3–5 are identification conditions. Assumptions 3 and 4 ensure that the projection coefficient β(γ )
is well defined and the parameter spaces for γ and β are compact. Assumption 5 rules out the case
of multiple best-fitting threshold parameters γ . Hansen (2017) and Zhang et al. (2017) showed
that the slope and threshold estimators in KTR with an unknown constant threshold are jointly
asymptotically normal for time-series data and panel data, respectively. We extend the asymptotic
theory to panel KTR with a covariate-dependent threshold.

THEOREM 2.1. Under Assumptions 1–5, as N → ∞,

√
N (θ̂ − θ0)

d−→ N (0, V ), (2.10)

where V = G−1 SG−1, S = var(h′
iei), and G = E(h′

i hi) +∑T
t=1 E(Diteit).

Proof. See the Appendix. �

Theorem 2.1 indicates that the inclusion of the covariates qit in the covariate-dependent thresh-
old does not affect the asymptotic joint normality of the slope and threshold estimates in the
PKTR-CDT model. Following the proof in the Appendix, we can easily verify that such an
asymptotic joint normality also holds in Yang and Su’s (2018) KTR with a covariate-dependent
threshold for time-series data.

As discussed in Hansen (2017), statistical inference based on the asymptotic distribution may
perform poorly in small samples because the least-square criterion is nonquadratic with respect
to the threshold parameters γ , possibly leading to poor quadratic (e.g., normal) approximations
unless sample sizes are quite large. In applications, we can construct confidence intervals for
the threshold parameters by inverting the following test statistic for the null H0 : γ = γ0 against
H1 : γ �= γ0, given by

FN (γ ) = σ̂ 2
N (γ ) − σ̂ 2

N (γ̂ )

σ̂ 2
N (γ̂ )/N

,

where σ̂ 2
N (γ ) = S̃SRNT(γ ). The null hypothesis is rejected for large values of FN (γ0). Following

Hansen (2017) and Zhang et al. (2017), a bootstrapping procedure is proposed to compute the
confidence intervals for the parameters.

Algorithm A. Confidence intervals for parameters
Step 1. Use the original sample (yit, xit, z′

it, q ′
it)’s to estimate model (2.1), and obtain the

parameter estimates (β̂, γ̂ ) and the residual ε̂it = ûit − ¯̂ui , in which ûit = yit − β̂ ′xit(γ̂ ) and
¯̂ui = 1

T

∑T
t=1 ûit.

Step 2. Generate i.i.d. draws u∗
it from the N (0, 1) distribution for i = 1, . . . , N and t =

1, . . . , T , and set ε∗
it = ε̂itu

∗
it and y∗

it = β̂ ′xit(γ̂ ) + ¯̂ui + ε∗
it.

Step 3. Use the observations (y∗
it, xit, z′

it, q ′
it)’s to estimate the KTR model with a covariate-

dependent threshold, yielding the parameter estimates (β̂∗, γ̂ ∗) and σ̂ ∗2
N (γ̂ ∗) = 1

N
(Ÿ ∗ −

Ẍ(γ̂ ∗)β̂∗(γ̂ ∗))′(Ÿ ∗ − Ẍ(γ̂ ∗)β̂∗(γ̂ ∗)), in which Ÿ ∗ denotes the data of y∗
it stacked over all in-

dividuals.
Step 4. Compute the F-type statistic F ∗

N (γ̂ ) = σ̂ ∗2
N (γ̂ )−σ̂ ∗2

N (γ̂ ∗)
σ̂ ∗2

N (γ̂ ∗)/N
, in which σ̂ ∗2

N (γ̂ ) = 1
N

(Ÿ ∗ −
Ẍ(γ̂ )β̂∗(γ̂ ))′(Ÿ ∗ − Ẍ(γ̂ )β̂∗(γ̂ )).

C© 2021 Royal Economic Society.
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Panel kink threshold regression 7

Step 5. Repeat Steps 1–4 B times, and obtain a sample of simulated coefficient estimates and
the test statistic {β̂∗(b), γ̂ ∗(b), F ∗

N,b(γ̂ )}Bb=1.
Step 6. Create 1 − α bootstrap confidence intervals for the slope parameters β = [β−

1 , β+
1 ,β ′

2]′

by the symmetric percentile method: the estimates plus and minus the (1 − α) quantile of the
absolute centered bootstrap estimates. For example, for β−

1 , the confidence interval is β̂−
1 ± q∗

1−α ,
where q∗

1−α is the 1 − α quantile of |β̂−∗
1 − β̂−

1 |.
Step 7. If necessary, compute the bootstrap standard errors for the parameters β and γ by using

the sample of simulated coefficient estimates. For example, for β−
1 , the bootstrap standard error

is ŝe∗
β−

1
=
√

1
B

∑B
b=1(β̂−∗

1 (b) − ¯̂β−∗
1 )2, where ¯̂β−∗

1 = 1
B

∑B
b=1 β̂−∗

1 (b).

Step 8. Calculate the 1 − α quantile c∗
1−α of the simulated F statistics {F ∗

N,b(γ̂ )}Bb=1. Then, one
can create a 1 − α bootstrap confidence interval for γ as C∗

γ = {γ : FN (γ ) ≤ c∗
1−α}.

Following Hansen (2017), we next consider inference on the KTR function in the proposed
PKTR-CDT model:

g(θ |w) = β ′x(γ ) + α, (2.11)

where w = (x, z′, q ′, α)′, x(γ ) = [(x − γ (γ ))−, (x − γ (γ ))+, z′]′, and γ (γ ) = γ0 + γ ′
1q, and α

denotes the unobserved individual heterogeneity stacked over all individuals. For clarity, the
KTR function is conditional on w, which is slightly different from Hansen (2017); however, as
in Hansen (2017), our theory will also take w as fixed.

In the PKTR-CDT model, the KTR function is not differentiable at x = γ0 + γ ′
1q; i.e., the

regression function is continuous but not differentiable. As discussed in the literature (e.g.,
Hirano and Porter, 2012; Woutersen and Ham, 2013; Fang and Santos, 2014; Fang, 2014; Hong
and Li, 2015), the nondifferentiability implies that, even though Theorem 2.1 shows that θ̂

is asymptotically normal, g(θ̂ |w) will not be asymptotically normal at x = γ00 + γ ′
01q, where

γ0 = (γ00, γ
′
01)′ is the true value, and asymptotic normality is likely to be a poor approximation

for γ0 close to x = γ0 + γ ′
1q. As can be seen, when q = 0, this problem degenerates to the case

in Section 6 of Hansen (2017).
We then extend the analysis in Hansen (2017, p. 235) to the PKTR-CDT model. As in Hansen

(2017), although the KTR function is not differentiable at x = γ0 + γ ′
1q, it is directionally

differentiable at all points, implying that both the left and right derivatives are well defined. The
directional derivative of a function φ(θ ) : Rl+k+3 → R in the direction h ∈ Rl+k+3 is

φθ (h) = lim
ε→0+

φ(θ + hε) − φ(θ )

ε
. (2.12)

Thus, we can calculate the directional derivative of g(θ |w) in the direction h = (h′
β, h′

γ )′ in
which hγ = (hγ0 , h′

γ1
)′ and hγ1 = (hγ11, . . . , hγ1k

)′ :

gθ (h|w) = x(γ )′hβ + gγ (hγ |w), (2.13)

where

gγ (hγ |w)

=

⎧⎪⎨⎪⎩
−β−

1

(
hγ0 + q ′hγ1

)
, if x < γ0 + γ ′

1q

−β−
1

(
h+

γ0
+∑k

i=1 qih
+
γ1i

)
− β+

1

(
h−

γ0
+∑k

i=1 qih
−
γ1i

)
, if x = γ0 + γ ′

1q

−β+
1

(
hγ0 + q ′hγ1

)
, if x > γ0 + γ ′

1q

,

in which h−
γi

= hγi
1(hγi

≤ 0) and h+
γi

= hγi
1(hγi

> 0) for i = 0, 11, . . . , 1k.
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8 L. Yang et al.

Because (2.13) is continuous in h, on the basis of Theorem 2.1, we can immediately obtain the
following asymptotic result following Hansen (2017) and Fang and Santos (2014, Theorem 2.1).

COROLLARY 2.1.
√

N
(
g(θ̂ |w) − g(θ0|w)

)
d−→ gθ0 (Z|w), (2.14)

where Z ∼ N (0, V ), and gθ (h|w) is defined in (2.13). �

Note that Corollary 2.1, which is based on Theorem 2.1 and Fang and Santos (2014, The-
orem 2.1), is a generalised version of Hansen (2017), and when q = 0, our result degenerates
to Hansen (2017). For x �= γ00 + γ ′

01q, we have a normal asymptotic distribution, as shown in
Corollary 2.1; however, at x = γ00 + γ ′

01q, the asymptotic distribution is a nonlinear transforma-
tion of a normal random vector and will be biased, with a bias depending on the covariate q and
the relative magnitudes of β−

1 and β+
1 . For example, if β−

1 = 1, β−
1 = −1, and q = (1, . . . , 1)′,

then gγ (hγ |w) = −|hγ0 | −∑k
i=1 |hγ1i

|, leading to the asymptotic distribution in Corollary 2.1
having a negative mean.

In our PKTR-CDT model, as in Hansen (2017), we face the same problem in constructing the
confidence intervals of the KTR function because of the non-normality in Corollary 2.1. According
to Corollary 3.1 of Fang and Santos (2014), Corollary 2.1 implies that the conventional bootstrap
is inconsistent, as illustrated by Hansen (2017). Therefore, Fang and Santos (2014) suggested
that one can approximate the distribution of

√
N (g(θ̂ |w) − g(θ0|w)) by that of ĝθ (

√
N (θ̂∗ −

θ̂ )|w), where θ̂∗ is the bootstrap distribution of θ̂ and ĝθ (h|w) is an estimate of gθ (h|w). When
g(θ |w) is Lipschitz continuous, Hong and Li (2015) suggested that gθ (h|w) can be estimated
as

ĝθ (h|w) = x(γ̂ )′hβ + g(β̂, γ̂ + hγ εN |w) − g(β̂, γ̂ |w)√
NεN

, (2.15)

in which we assume that, for some sequence εN > 0, we have εN → 0 and
√

NεN → ∞. The
above method is known as “the numerical delta method.”

2.2. Testing for the kink threshold effect and threshold constancy

One of the reasonable and important questions is to test whether the panel KTR model is sig-
nificantly different from the linear panel model yit = β1xit + β ′

2 zit + αi + εit, which is nested
in (2.1) when zit includes qit. Thus, we consider the null hypothesis of a no-kink threshold
effect H 1

0 : β−
1 = β+

1 against the alternative hypothesis H 1
1 : β−

1 �= β+
1 . Denote the usual fixed-

effect estimator of the linear model as (β̃1, β̃
′
2), and obtain the residual ε̃it = ũit − ¯̃ui , in which

ũit = yit − β̃1xit − β̃ ′
2 zit and ¯̃ui = 1

T

∑T
t=1 ũit. Then, the error variance estimate in the linear

model is σ̃ 2
N = 1

N

∑N
i=1

∑T
t=1 ε̃2

it. On the other hand, denote the error variance estimate of the
proposed covariate-dependent threshold model as σ̂ 2

N (γ̂ ) = 1
N

(Ÿ − Ẍ(γ̂ )β̂(γ̂ ))′(Ÿ − Ẍ(γ̂ )β̂(γ̂ )).
Likewise, we denote the error variance estimate of Zhang et al.’s (2017) constant thresh-
old model as σ̂ 2

C(γ̂0).6 Then, a standard test for the null hypothesis of linearity can be given

6 In the panel KTR model with a constant threshold, to test the null hypothesis of no kink effect, one can directly extend

Hansen’s (2017) test statistic to the panel framework by constructing the following test statistic: WC
1 = σ̃ 2

N
−σ̂ 2

N
(γ̂0)

σ̂ 2
N

(γ̂0)/N
.
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by

W1 = σ̃ 2
N − σ̂ 2

N (γ̂ )

σ̂ 2
N (γ̂ )/N

= sup
γ∈�

σ̃ 2
N − σ̂ 2

N (γ )

σ̂ 2
N (γ )/N

. (2.16)

Another important problem is to determine whether the threshold is constant. To this end,
consider the following null hypothesis: H 2

0 : γ1 = 0. Then, a natural test for the null hypothesis
of the constant threshold against the covariate-dependent threshold model (2.1) can be given
by

W2 = σ̂ 2
C(γ̂0) − σ̂ 2

N (γ̂ )

σ̂ 2
N (γ̂ )/N

. (2.17)

THEOREM 2.2. Suppose Assumptions 1–5 hold. As N → ∞, under H 1
0 we have

W1
d−→ sup

γ∈�

G′(γ ) Q−1(γ )R1
[
R′

1 Q−1(γ )R1
]−1

R′
1 Q−1(γ )G(γ )

σ 2
T

, (2.18)

and under H 2
0 , we have

W2
d−→ Z′G−1 R′

2[R2G−1 R′
2]−1 R2G−1 Z

σ 2
T

, (2.19)

where Q−1(γ ) = (
∑T

t=1 E[ẍit(γ )ẍ′
it(γ )])−1, σ 2

T = ∑T
t=1 E(ε̈2

it), R1 = [1,−1, 01×l]′, Z ∼
N (0, S), S = var(h′

iei), G = E(h′
i hi) +∑T

t=1 E(Diteit), and R2 = [0k×(l+2), Ik], and G(γ ) is a
zero-mean Gaussian process with covariance kernel

K (γ(1), γ(2)) = E
(
G(γ(1))G′(γ(2))

) =
T∑

t=1

E
(
ẍit(γ(1))ẍ′

it(γ(2))ε̈
2
it

)
.

Proof. See the Appendix. �
As discussed in Hansen (1996, 2017) and Zhang et al. (2017), the limiting distribution of the

test statistic W1 is the supremum of a quadratic form of the Gaussian process, and hence it is
generally not straightforward to tabulate the critical values. In practice, we can follow Hansen
(2017) and Zhang et al. (2017) to use a parametric bootstrap procedure to calculate the p values
or critical values.

Algorithm B. Testing for kink effect and threshold constancy
Step 1. Use the original sample (yit, xit, z′

it, q ′
it)’s to estimate the linear model yit = β1xit +

β ′
2 zit + αi + εl

it and the constant threshold model yit = β−
1 (xit − γ )− + β+

1 (xit − γ )+ + β ′
2 zit +

αi + εc
it, and obtain the residual ε̂l

it = ûl
it − ¯̂ul

i and ε̂c
it = ûc

it − ¯̂uc
i , in which ûl

it = yit − β̂1xit −
β̂ ′

2 zit, ¯̂ul
i = 1

T

∑T
t=1 ûl

it, and ûc
it = yit − β̂−

1 (xit − γ )− − β̂+
1 (xit − γ )+ − β̂ ′

2 zit, ¯̂uc
i = 1

T

∑T
t=1 ûc

it.
Step 2. Generate i.i.d. draws u∗

it from the N (0, 1) distribution for i = 1, . . . , N and t =
1, . . . , T , and set εl∗

it = ε̂l
itu

∗
it and yl∗

it = β̂1xit + β̂ ′
2 zit + ¯̂ul

i + εl∗
it . Set εc∗

it = ε̂c
itu

∗
it and yc∗

it =
β̂−

1 (xit − γ )− + β̂+
1 (xit − γ )+ + β̂ ′

2 zit + ¯̂uc
i + εc∗

it .
Step 3. Use the observations (yl∗

it , xit, z′
it, q ′

it)’s and (yc∗
it , xit, z′

it, q ′
it)’s to estimate the linear

model and the covariate-dependent threshold model (2.1), and compute the F-type statistics W1

and W2.
Step 4. Repeat Steps 1–3 B times so as to obtain two samples W ∗

1 (1),W ∗
1 (2), . . . ,W ∗

1 (B) and
W ∗

2 (1),W ∗
2 (2), . . . ,W ∗

2 (B) of simulated W1 and W2 statistics.

C© 2021 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article/doi/10.1093/ectj/utaa035/6027470 by N

ational C
hengchi U

niversity user on 07 February 2021



10 L. Yang et al.

Step 5. The empirical p values can be obtained by calculating the percentage of the simulated
statistics that exceed actual value when the number of B is sufficiently large.

3. MONTE CARLO SIMULATIONS

In this section, we conduct Monte Carlo simulations to examine the finite-sample performances of
the proposed estimation procedure and the test statistics for kink effect and threshold constancy.
We adopt the following three data-generating processes (DGPs):

DGP 1 : yit = 0.4(xit − γit)− + 0.8(xit − γit)+ + 2zit + αi + uit

DGP 2 : yit = 0.4(xit − γ )− + 0.8(xit − γ )+ + 2zit + αi + uit

DGP 3 : yit = 0.4xit + 2zit + αi + uit,

where xit = 0.25αi + uq,it + ux,it , zit = 0.5αi + uq,it + uz,it , and γit = 0 + 0.5qit, in which qit =
zit, uq,it ∼ i.i.dN (0.5, 1), and αi ∼ i.i.dN (0, 1). The constant threshold γ is set as zero. The
innovation processes uit, ux,it , and uz,it are independent of each other. uit follows i.i.d.N (0, 0.52).
ux,it and uz,it follow i.i.d.N (0, 1). The number of replications is 1,000.

We first evaluate the finite-sample properties of the proposed estimator, comparing with the
constant threshold model proposed by Zhang et al. (2017). To this end, we focus on DGP 1 and
DGP 2. Note that DGP 1 is accompanied by a covariate-dependent threshold, and hence using the
constant threshold model is inappropriate and might lead to biased estimators; however, DGP 2
contains a constant threshold, and thus using the proposed covariate-dependent threshold model
is not necessary but should be harmless.

Table 1 presents the summary statistics (i.e., mean and standard deviation) for the estimates
based on the constant threshold model. From Table 1, it can be seen that the constant threshold
model proposed by Zhang et al. (2017) works reasonably well when DGP 2 is used (i.e., the
DGP does not contain a covariate-dependent threshold). However, the results show that if the
covariate-dependent feature in the threshold is ignored, the estimates might be seriously biased and
have large standard errors, caused by the misclassification of observations because of threshold
misspecification.

From the summary statistics reported in Table 2, it can be seen that the proposed estimator
seems to be unbiased, and the accuracy of the model improves as either N or T increases. When
N changes from 50 to 200, the standard deviation decreases by almost half, which is consistent
with the

√
N convergence rate implied by Theorem 2.1. In sum, the proposed estimator has good

properties in finite samples, even if the true DGP is without such covariate-dependent features in
the threshold.

Table 3 reports the empirical sizes and powers of the test statistics. The empirical sizes of W1

and W2 are close to the nominal size 5%. When the sample size is small (i.e., N × T = 500),
the power of the test W1 is low. However, the powers of the test W1 are reasonably high when
N × T ≥ 1000. Moreover, the empirical powers of W2 are very high for all cases considered. In
sum, the proposed tests perform well in finite samples.

C© 2021 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article/doi/10.1093/ectj/utaa035/6027470 by N

ational C
hengchi U

niversity user on 07 February 2021



Panel kink threshold regression 11

Table 1. Estimates of the parameters on the basis of Zhang et al. (2017)’s constant threshold model.

DGP 1 γ0 = 0 β−
1 = 0.4 β+

1 = 0.8 β2 = 2

T N Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

10 50 0.288 0.648 0.482 0.067 0.750 0.055 1.683 0.021
100 0.209 0.496 0.484 0.052 0.739 0.038 1.684 0.014
200 0.220 0.358 0.491 0.035 0.735 0.025 1.684 0.010

20 50 0.233 0.469 0.487 0.048 0.740 0.035 1.684 0.014
100 0.229 0.357 0.492 0.035 0.736 0.025 1.684 0.010
200 0.235 0.238 0.496 0.023 0.734 0.017 1.684 0.007

50 50 0.231 0.306 0.494 0.030 0.735 0.022 1.684 0.009
100 0.230 0.229 0.495 0.021 0.734 0.016 1.684 0.006
200 0.239 0.160 0.497 0.015 0.733 0.011 1.684 0.004

DGP 2 γ0 = 0 β−
1 = 0.4 β+

1 = 0.8 β2 = 2
T N Mean Standard

deviation
Mean Standard

deviation
Mean Standard

deviation
Mean Standard

deviation
10 50 0.009 0.266 0.393 0.057 0.805 0.037 2.000 0.019

100 −0.007 0.172 0.394 0.039 0.802 0.024 2.000 0.013
200 −0.001 0.117 0.398 0.027 0.801 0.017 2.000 0.010

20 50 0.000 0.168 0.396 0.038 0.802 0.024 2.000 0.013
100 −0.001 0.112 0.398 0.026 0.801 0.017 2.000 0.010
200 0.004 0.077 0.400 0.019 0.801 0.011 2.000 0.007

50 50 0.001 0.097 0.400 0.023 0.801 0.014 2.000 0.008
100 0.004 0.073 0.400 0.016 0.801 0.010 2.000 0.006
200 0.003 0.052 0.400 0.012 0.800 0.007 2.000 0.004

4. CONCLUSION

This article proposes a panel KTR model with a covariate-dependent threshold (PKTR-
CDT). We suggest an estimator based on the within-group transformation, following Hansen
(1999), and we construct test statistics for kink effect and threshold constancy. The asymp-
totic joint normality of the slope and threshold estimators is established, and the limiting
distributions of the test statistics are derived. An interesting finding is that the inclusion of
the covariates qit in the covariate-dependent threshold does not affect the asymptotic joint
normality of the slope and threshold estimates in the KTR models. Monte Carlo simula-
tions show that the finite-sample proprieties of the estimator and test statistics are generally
satisfactory.
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12 L. Yang et al.

Table 2. Estimates of the parameters obtained by using the estimator proposed in Section 2.

DGP1 γ0 = 0 γ1 = 0.5 β−
1 = 0.4 β+

1 = 0.8 β2 = 2

T N Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

Mean Standard
deviation

10 50 −0.004 0.294 0.489 0.148 0.384 0.073 0.807 0.050 1.993 0.098
100 0.000 0.189 0.494 0.101 0.396 0.048 0.803 0.034 1.996 0.067
200 0.003 0.130 0.497 0.067 0.399 0.035 0.802 0.024 1.997 0.046

20 50 0.004 0.172 0.489 0.099 0.396 0.046 0.803 0.034 1.993 0.065
100 0.004 0.126 0.498 0.068 0.400 0.034 0.802 0.023 1.998 0.046
200 0.000 0.084 0.499 0.047 0.399 0.022 0.800 0.017 1.999 0.031

50 50 0.000 0.111 0.496 0.062 0.398 0.029 0.800 0.020 1.997 0.041
100 0.003 0.074 0.497 0.044 0.399 0.019 0.801 0.014 1.998 0.030
200 0.002 0.053 0.498 0.024 0.400 0.015 0.800 0.010 1.999 0.017

DGP2 γ0 = 0 γ1 = 0 β−
1 = 0.4 β+

1 = 0.8 β2 = 2
T N Mean Standard

deviation
Mean Standard

deviation
Mean Standard

deviation
Mean Standard

deviation
Mean Standard

deviation
10 50 −0.005 0.272 −0.016 0.191 0.388 0.066 0.803 0.039 1.990 0.129

100 −0.003 0.185 −0.015 0.130 0.397 0.046 0.802 0.028 1.989 0.088
200 −0.001 0.125 −0.008 0.092 0.399 0.032 0.801 0.020 1.994 0.063

20 50 0.005 0.176 −0.013 0.126 0.397 0.043 0.802 0.028 1.991 0.087
100 −0.001 0.129 −0.008 0.087 0.400 0.032 0.801 0.020 1.994 0.059
200 0.001 0.088 0.000 0.061 0.399 0.022 0.800 0.014 2.000 0.042

50 50 0.000 0.103 −0.004 0.080 0.399 0.027 0.800 0.016 1.997 0.055
100 0.003 0.072 −0.003 0.057 0.400 0.017 0.801 0.012 1.998 0.039
200 −0.001 0.054 −0.002 0.036 0.400 0.014 0.800 0.008 1.998 0.025

Table 3. Empirical sizes and powers of the test statistics.

Test for kink effect (W1) Test for constancy (W2)

Size (DGP 3) Power (DGP 1)
Size (DGP

2) Power (DGP 1)

T N β+
1 = 0.4 β+

1 = 0.6 β+
1 = 0.8 γ1 = 0.0 γ1 = 0.3 γ1 = 0.5

10 50 0.053 0.759 1.000 0.051 0.770 0.978
100 0.057 0.967 1.000 0.059 0.954 1.000
200 0.065 1.000 1.000 0.048 1.000 1.000

20 50 0.053 0.980 1.000 0.056 0.970 1.000
100 0.054 1.000 1.000 0.049 0.999 1.000
200 0.050 1.000 1.000 0.056 1.000 1.000

50 50 0.056 1.000 1.000 0.048 1.000 1.000
100 0.057 1.000 1.000 0.059 1.000 1.000
200 0.042 1.000 1.000 0.057 1.000 1.000
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APPENDIX: PROOFS OF THE MAIN RESULTS

This appendix provides the proofs of Theorems 2.1 and 2.2 in the paper. To this end, we first prove the
following Lemma, which is used to prove Theorem 2.1.

LEMMA A.1. Under Assumptions 1–2, we have

E
[
1
(
γ1,it ≤ xit ≤ γ2,it

)] ≤ f̄q |γ02 − γ01| + Cf̄q ‖γ12 − γ11‖ , (A.1)

where γj,it = γ0j + γ ′
1j qit for j = 1, 2.

Proof of Lemma A.1. First, we consider the expectation conditional on qit ,

E
[

1
(
γ1,it ≤ xit ≤ γ2,it

)∣∣ qit

] = Fq(γ2,it ) − Fq(γ1,it ), (A.2)

where Fq is the conditional cumulative distribution function of xit conditional on qit.
By the mean value theorem and Assumption 2, we have

Fq(γ2,it ) − Fq(γ1,it ) ≤ f̄q

∣∣γ2,it − γ1,it

∣∣
= f̄q

∣∣γ02 + γ ′
12qit − (

γ01 + γ ′
11qit

)∣∣
≤ f̄q |γ02 − γ01| + f̄q

∣∣(γ ′
12 − γ ′

11

)
qit

∣∣
≤ f̄q |γ02 − γ01| + f̄q ‖γ12 − γ11‖ ‖qit‖ . (A.3)

Taking the expectation over both sides of the inequality, we have

E[E
[

1
(
γ1,it ≤ xit ≤ γ2,it

)∣∣ qit

]
] ≤ f̄q |γ02 − γ01| + f̄q ‖γ12 − γ11‖E ‖qit‖ . (A.4)

By the law of iterated expectation and Assumption 1 (E‖qit‖ ≤ C < ∞), we therefore have

E
[
1
(
γ1,it ≤ xit ≤ γ2,it

)] ≤ f̄q |γ02 − γ01| + Cf̄q ‖γ12 − γ11‖ . (A.5)�
Proof of Theorem 2.1. Define eit(θ ) = ÿit − β ′ ẍit(γ ) = ε̈it + (β ′

0 − β ′)ẍit(γ ) + β ′
0[ẍit(γ0) − ẍit(γ )]. Then,

we can write S̃SRNT(θ ) = 1
N

∑N

i=1

∑T

t=1 e2
it(θ ).

The estimator θ̂ = (β̂ ′, γ̂ ′)′ = arg minθ∈B×� S̃SRNT(θ ) solves the first-order condition—that is,
1
N

∑N

i=1

∑T

t=1 hit(θ̂ )eit(θ̂ ) = 0. The true value θ0 = (β ′
0, γ

′
0)′ minimises L(β, γ ) = ∑T

t=1 E[ÿit − β ′ ẍit(γ )]2,

and hence we have
∑T

t=1 E[hit(θ0)eit(θ0)] = 0. �
Following Hansen (2017) and Zhang et al. (2017), we complete the proof of Theorem 2.1 by verifying

the following conditions:
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Panel kink threshold regression 15

Condition 1. θ̂ →p θ0.
Condition 2. 1√

N

∑N

i=1

∑T

t=1 hiteit→dN (0, S).

Condition 3. Q(θ ) = ∑T

t=1 E[hit(θ )h′
it(θ )] +∑T

t=1 E[(− ∂

∂θ ′ hit(θ ))eit(θ )] is continuous in θ , and Q(θ0) =
Q.

Condition 4. ν(θ ) = 1√
N

∑N

i=1

∑T

t=1 [hit(θ )eit(θ ) − E[hit(θ )eit(θ )]] is stochastic equicontinuous.
We first verify Condition 1. For any given xit, xit(γ ) is continuous in γ , and hence ẍit(γ ) = xit(γ ) −

1
T

∑T

t=1 xit(γ ) is also continuous in γ . Furthermore, eit(θ ) and e2
it(θ ) are continuous in θ . By the triangle

inequality, we have the following bound:

‖ẍit(γ )‖2 ≤ ‖xit(γ )‖2 + 1
T

∑T

s=1 ‖xis(γ )‖2

≤ ‖zit‖2 + x2
it + C̄2

�0
+ ‖qit‖2C̄2

�1
+ 1

T

∑T

s=1 {‖zis‖2 + x2
is + C̄2

�0
+ ‖qis‖2C̄2

�1
},

in which C̄�0 = sup{|γ0| : γ0 ∈ �0} and C̄�1 = sup{||γ1|| : γ1 ∈ �1}. Furthermore, we have e2
it(θ ) = (ÿit −

β ′ ẍit(γ ))2 ≤ 2ÿ2
it + 2β̄2‖ẍit(γ )‖2, where β̄ = sup{||β|| : β ∈ B}. Thus, under Assumption 1, we have

E[e2
it(θ )] < ∞. Then, by Lemma 2.4 of Newey and McFadden (1994), E[e2

it(θ )] is continuous in θ and

sup
θ∈B×�

∣∣∣∣∣ 1

N

N∑
i=1

{
T∑

t=1

e2
it(θ ) −

T∑
t=1

E[e2
it(θ )]}

}∣∣∣∣∣ = op(1).

Given the compactness of B × � and the uniqueness of the minimum true value θ0 by assumption, Theo-
rem 2.1 of Newey and MaFadden (1994) established Condition 1: θ̂ →p θ0.

Condition 2 follows by the standard central limit theorem (Assumption 1).
We next establish Condition 3. From the expression of Q(θ ) = ∑T

t=1 E[hit(θ )h′
it(θ )] +∑T

t=1 E[(− ∂

∂θ ′ hit(θ ))eit(θ )], we note that the elements of the matrix E[hit(θ )h′
it(θ )] are quadratic

functions of β, and eit(θ ) is continuous in θ = (β, γ ). Thus, Q(θ ) is continuous in β.
Next, we observe that γ enters Q(θ ) through one of the following forms (or its transpose):
E[xit(γ )xis(γ )], E[xit(γ )zis], E[1it(γ )1is(γ )], E[wit1is(γ )], and E[q ′

itwit1is(γ )]. By Assumption 1, there
is a C satisfying (E||wit||2r )1/r ≤ C < ∞. Thus, by Lemma A.1 and Holder’s inequality, we obtain

E
∥∥wit1(γ1,it ≤ xit ≤ γ2,it )

∥∥2 ≤ (E||wit||2r )1/r (E|1(γ1,it ≤ xit ≤ γ2,it )|τ )1/τ

≤ C(f̄q |γ02 − γ01| + Cf̄q ‖γ12 − γ11‖)1/τ ,

where τ = r

r−1 . Therefore, E[wit1is(γ )] is continuous in γ . Similarly, we can show that
E[xit(γ )xis(γ )], E[xit(γ )zis], E[1it(γ )1is(γ )], and E[q ′

itwit1is(γ )] are also continuous in γ . We therefore
conclude that Q(θ ) is continuous in θ . Evaluated at θ0, we find Q(θ0) = Q. Thus we obtain Condition 3.

We next establish Condition 4. We write mit(θ ) = (m1
it(θ )′, m2

it(θ )′, m3
it(θ )′)′, in which

mit(θ ) = hit(θ )eit(θ ), m1
it(θ )′ = ẍit(γ )[ÿit − β ′ ẍit(γ )], m2

it(θ )′ = −[β−
1 1̈−

it (γ ) + β+
1 1̈+

it (γ )][ÿit − β ′ ẍit(γ )],
and m3

it(θ )′ = −[β−
1 q̈−

it (γ ) + β+
1 q̈+

it (γ )][ÿit − β ′ ẍit(γ )].
Noting that the first part is linear in β, and the second and third terms are quadratic in β, it suffices

to show the stochastic equicontinuity with regard to γ = (γ0, γ1
′). We thus simplify notation by writ-

ing mit(θ ) = m∗
it(γ ). Note that γ enters all the terms in mit(θ ) through one of the following forms (or

its transpose): E[yitxis(γ )], E[xit(γ )xis(γ )], E[xit(γ )zis], E[wit1is(γ )], E[q ′
itwit1is(γ )] for t, s = 1, . . . , T .

Under Assumption 1, m∗
it(γ ) has a bounded 2r-th moment, and the envelop condition holds. For any

δ set N (δ) = δ−2τ and set γ·,k = [γ0,k, γ
′
1,k]′, k = 1, . . . , Nδ , to be an equally spaced grid on �. No-

tice that the distance between the grid points is O( 1
Nδ

). Define m∗
itk = min[m∗

it(γ·,k−1), m∗
it(γ·,k)] and

m∗∗
itk = max[m∗

it(γ·,k−1), m∗
it(γ·,k)]. Then, for each γ = [γ0, γ

′
1]′, there exists γ·,k = [γ0,k, γ

′
1,k]′ such that

m∗
itk ≤ m∗

it(γ ) ≤ m∗∗
itk . Thus, [m∗

itk, m∗∗
itk] brackets m∗

it(γ ). Using the bound of E
∥∥wit1(γit,k−1 ≤ xit ≤ γit,k)

∥∥2
,

we can obtain

E
∥∥m∗∗

itk − m∗
itk

∥∥2 = E
∥∥m∗

it(γ·,k) − m∗
it(γ·,k−1)

∥∥2

≤ Cf̄ 1/τ
q {|γ0,k − γ0,k−1| + C‖γ1,k − γ1,k−1‖}1/τ ≤ O(N

− 1
τ

δ ) = O(δ2).
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16 L. Yang et al.

It follows that N (δ) = δ−2τ are the L2 bracketing numbers and H2(δ) = ln N (δ) = O(| ln δ|) is the metric
entropy with bracketing for the class {m∗

it(γ ) : γ ∈ �}. Hence, Condition 4 holds by (2.17) of Doukhan et al.
(1995). �

Proof of Theorem 2.2. For convenience, let R1 = (1, −1, 01×l)′, zit = (q ′
it, z′

2it )
′, and β2 = (β ′

21, β
′
22)′,

and the true value θ0 = (β−
01, β

+
01, β

′
021,β

′
022, γ00, γ

′
01)′. Therefore, under β−

01 = β+
01 ≡ β01 and for any fixed

γ ∈ �, (2.1) can be rewritten as

yit = (xit − γit(γ0))− β01 + (xit − γit(γ0))+ β01 + q ′
itβ021 + z′

2itβ022 + αi + εit

= (xit − γit(γ0)) β01 + q ′
itβ021 + z′

2itβ022 + αi + εit

= (xit − γit(γ )) β01 + (γ0 − γ00)β01 + q ′
it (β021 + (γ1 − γ01)β01) + z′

2itβ022 + αi + εit

= (xit − γit(γ ))− β01 + (xit − γit(γ ))+ β01 + (γ0 − γ00)β01

+q ′
it (β021 + (γ1 − γ01)β01) + z′

2itβ022 + αi + εit

= x ′
it(γ )β0(γ ) + (γ0 − γ00)β01 + αi + εit, (A.6)

where β0(γ ) = (β01, β01,β
′
021 + (γ1 − γ01)′β01, β

′
022)′.

Thus, for any fixed γ ∈ �, by Theorem 1 in Hansen (1996), we have

√
N R′

1

[
β̂(γ ) − β0(γ )

]
=

√
N
(
β̂−

1 (γ ) − β̂+
1 (γ )

)
= R′

1

[
1

N

N∑
i=1

ẍ ′
i(γ )ẍi(γ )

]−1 [
1√
N

N∑
i=1

ẍ ′
i(γ )ε̈i

]
d−→ R′

1 Q−1(γ )G(γ ), (A.7)

and for any fixed γ(1), γ(2) ∈ �, as N → ∞, we have

Q̂(γ(1), γ(2)) = 1

N

N∑
i=1

ẍ ′
i(γ(1))ẍi(γ(2))

a.s.−→ Q(γ(1), γ(2)) =
∑T

t=1
E(ẍit(γ(1))ẍ ′

it(γ(2))), (A.8)
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Panel kink threshold regression 17

noting that

σ̂ 2(γ ) = 1

N

N∑
i=1

T∑
t=1

e2
it(γ )

= 1

N

N∑
i=1

T∑
t=1

ε̈2
it − 2

[
β̂(γ ) − β0(γ )

]′ 1

N

N∑
i=1

T∑
t=1

ẍit(γ )ε̈it

+
[
β̂(γ ) − β0(γ )

]′ 1

N

N∑
i=1

T∑
t=1

ẍit(γ )ẍ ′
it(γ )

[
β̂(γ ) − β0(γ )

]

= 1

N

N∑
i=1

T∑
t=1

ε̈2
it − 2√

N

√
N
[
β̂(γ ) − β0(γ )

]′ 1

N

N∑
i=1

T∑
t=1

ẍit(γ )ε̈it

+ 1

N

√
N
[
β̂(γ ) − β0(γ )

]′ 1

N

N∑
i=1

T∑
t=1

ẍit(γ )ẍ ′
it(γ )

√
N
[
β̂(γ ) − β0(γ )

]

= 1

N

N∑
i=1

T∑
t=1

ε̈2
it + Op(N−1/2) + Op(N−1)

p−→
T∑

t=1

E(ε̈2
it) � σ 2

T . (A.9)

Then, under H 1
0 : β−

01 − β+
01 = R′

1β0(γ ) = 0, we have

W1 = sup
γ∈�

N (σ̃ 2 − σ̂ 2(γ ))

σ̂ 2(γ )

= sup
γ∈�

N [R′
1β̂(γ ) − 0]′[R′

1(Ẍ ′(γ )Ẍ(γ ))−1 R1]−1[R′
1β̂(γ ) − 0]

σ̂ 2(γ )

= sup
γ∈�

√
N [β̂(γ ) − β0(γ )]′ R1[R′

1 Q̂−1(γ )R1]−1 R′
1[β̂(γ ) − β0(γ )]

√
N

σ̂ 2(γ )

d−→ sup
γ∈�

G′(γ ) Q−1(γ )R1

[
R′

1 Q−1(γ )R1

]−1
R′

1 Q−1(γ )G(γ )

σ 2
T

. (A.10)

�

We turn next to the test statistic W2. Denote θ̂ = arg minθ∈B×� S̃SRNT(θ ) and θ̂C = arg minθ∈� S̃SRNT(θ )
subject to R2θ = 0k×1, where R2 = [0k×(l+2), Ik]. The first- and second-order conditions for θ̂ yield

∂ S̃SRNT(θ )

∂θ
= ∂

∂θ

1

N

N∑
i=1

T∑
t=1

e2
it(θ ) = 1

N

N∑
i=1

∂

∂θ
e′
i(θ )ei(θ )

= 1

N

N∑
i=1

2

−1

[
−∂e′

i(θ )

∂θ

]
ei(θ ) = −2

N

N∑
i=1

h′
i(θ )ei(θ )

≡ −2√
N

ZN (θ ), (A.11)
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18 L. Yang et al.

∂2S̃SRNT(θ )

∂θ ′∂θ
= −2

N

N∑
i=1

T∑
t=1

∂

∂θ ′ hit(θ )eit(θ )

= 2

N

N∑
i=1

T∑
t=1

{
−hit

∂

∂θ ′ eit(θ ) +
[
−∂hit(θ )

∂θ ′

]
eit(θ )

}

= 2

N

N∑
i=1

T∑
t=1

[
hit(θ )h′

it(θ ) + Dit(θ )eit(θ )
]

≡ 2GN (θ ), (A.12)

where ZN (θ ) = N−1/2
∑N

i=1

∑T

t=1 hit(θ )eit(θ ) and GN (θ ) = N−1
∑N

i=1

∑T

t=1[hit(θ )h′
it(θ ) + Dit(θ )eit(θ )].

The first-order condition for the solution of θ̂ is

∂ S̃SRNT(θ )

∂θ

∣∣∣∣
θ=θ̂

= −2√
N

ZN (θ̂ ) = 0(l+k+2)×1. (A.13)

Taking Taylor’s expansion of the unconstrained first-order conditions at θ0 gives

−2√
N

ZN (θ̂ ) = 0 = −2√
N

ZN (θ0) + 2GN (θ †)
(
θ̂ − θ0

)
, (A.14)

where θ † is a value between θ̂ and θ0. Therefore, from conditions of the proof of Theorem 2.1, as N → ∞,
we have

(1) θ̂ →p θ0;
(2) θ † →p θ0 as θ̂ →p θ0;
(3) ZN (θ0) →d Z ∼ N (0, S);
(4) GN (θ0) →p G = E(h′

i hi) +∑T

t=1 E(Diteit).

The equation (A.14) can be rewritten as

√
N
(
θ̂ − θ0

)
= G−1

N (θ0)ZN (θ0) + op(1). (A.15)

Thus, by Theorem 2.1 we obtain

√
N
(
θ̂ − θ0

)
d−→ G−1 Z ∼ N (0, G−1 SG−1). (A.16)

Next, under H 2
0 : R2θ = 0k×1 = R2θ0, using a similar argument in Condition 1 of the proof of Theo-

rem 2.1, we have θ̂C →p θ0. Hence, a Taylor’s expansion of ∂ S̃SRNT(θ )/∂θ |θ=θ̂C
at θ0 gives

−2√
N

ZN (θ̂C) = −2√
N

ZN (θ0) + 2GN (θ ‡)
(
θ̂C − θ0

)
= −2√

N
ZN (θ0) + 2GN (θ0)

(
θ̂C − θ0

)
+ op(1), (A.17)

where θ ‡ is a value between θ̂C and θ0. Substituting (A.17) in the first-order condition for θ̂C yields[
ZN (θ0)
0k×1

]
−
[

GN (θ0) R′
2

R2 0k×k

] [√
N (θ̂C − θ0)√

N λ̂C

]
+
[
op(1)
0k×1

]

=
[

0(l+k+2)×1

0k×1

]
, (A.18)

C© 2021 Royal Economic Society.

D
ow

nloaded from
 https://academ

ic.oup.com
/ectj/advance-article/doi/10.1093/ectj/utaa035/6027470 by N

ational C
hengchi U

niversity user on 07 February 2021
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where λ̂C is the solution of the first-order conditions of Lagrangian multipliers. From (A.15) and (A.18), we
obtain

√
N
(
θ̂C − θ0

)
= G−1

N (θ0)ZN (θ0) + G−1
N (θ0)R′

2

[
R2 G−1

N (θ0)R′
2

]−1

×R2 G−1
N (θ0)ZN (θ0) + op(1)

=
√

N
(
θ̂ − θ0

)
+ G−1

N (θ0)R′
2

[
R2 G−1

N (θ0)R′
2

]−1

×R2

√
N
(
θ̂ − θ0

)
+ op(1), (A.19)

noting that (A.19) can be rewritten as

√
N
(
θ̂C − θ̂

)
= G−1

N (θ0)R′
2

[
R2 G−1

N (θ0)R′
2

]−1
R2

√
N
(
θ̂ − θ0

)
+ op(1). (A.20)

Finally, a Taylor’s expansion of S̃SRNT(θ̂C) at θ̂ gives

S̃SRNT(θ̂C) = S̃SRNT(θ̂) + −2√
N

ZN (θ̂ )
[
θ̂C − θ̂

]
+1

2

[
θ̂C − θ̂

]′
2GN (θ§)

[
θ̂C − θ̂

]
= S̃SRNT(θ̂) +

[
θ̂C − θ̂

]′
GN (θ0)

[
θ̂C − θ̂

]
+ op(1). (A.21)

Combining (A.20) and (A.21), we have

S̃SRNT(θ̂C) − S̃SRNT(θ̂ )

=
[
θ̂ − θ0

]′
R′

2

[
R2 G−1

N (θ0)R′
2

]−1
R2

[
θ̂ − θ0

]
+ op(1), (A.22)

and a Taylor’s expansion of S̃SRNT(θ̂ ) at θ0 gives

S̃SRNT(θ̂ ) = S̃SRNT(θ0) + −2√
N

ZN (θ0)
[
θ̂ − θ0

]
+1

2

[
θ̂ − θ0

]′
2GN (θ∗)

[
θ̂ − θ0

]
= S̃SRNT(θ0) + op(1)

p−→
T∑

t=1

E(ε̈2
it) ≡ σ 2

T , (A.23)

where θ∗ is a value between θ̂ and θ0.
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Thus, we have

W2 = σ̂ 2
C(γ̂0) − σ̂ 2

N (γ̂ )

σ̂ 2
N (γ̂ )/N

= N [S̃SRNT(θ̂C) − S̃SRNT(θ̂ )]

S̃SRNT(θ̂ )

=
√

N
[
θ̂ − θ0

]′
R′

2

[
R2 G−1

N (θ0)R′
2

]−1
R2

√
N
[
θ̂ − θ0

]
S̃SRNT(θ̂ )

+ op(1)

= Z′
N (θ0)G−1

N (θ0)R′
2

[
R2 G−1

N (θ0)R′
2

]−1
R2 G−1

N (θ0)ZN (θ0)

S̃SRNT(θ̂)
+ op(1)

d−→ Z′G−1 R′
2[R2 G−1 R′

2]−1 R2 G−1 Z

σ 2
T

. (A.24)

�
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Online Appendix for “Panel Kink Threshold
Regression Model with a Covariate-Dependent

Threshold”

APPENDIX: EXTENTION TO DYNAMIC PANEL CONTEXT

This appendix extends the panel kink threshold regression model with a covariate-
dependent threshold (PKTR-CDT) to the dynamic panel context. In the dynamic panel
data models, since lagged dependent variables enters as independent variables, it is well-
known that the usual fixed effects estimator may be inconsistent. In this case, we can
use instrument variable to establish a consistent estimator. In this appendix, we briefly
discuss the dynamic panel kink threshold regression model with a covariate-dependent
threshold. Despite the necessary technical modifcations, all the issues discussed in this
paper can be extended to the dynamic panel data context.

B.1. Dynamic panel kink threshold regression model with a covariate-dependent
threshold

Following Arellano and Bond (1991) and Seo and Shin (2016), we consider the AR(1)
panel data model

yit = β−
1 (xit − γit)− + β+

1 (xit − γit)+ + β′
2qit + β3yi,t−1 + αi + εit, (B.1)

for i = 1, 2, . . . , N and t = 2, 3, . . . , T , where εit is assumed to be a martingale difference
sequence. The regressors xit and covariates qit are predetermined or strictly exogenous
variables. Here, to eliminate the individual effect αi, we take the first-difference trans-
formation of (B.1)

∆yit = β−
1 ∆(xit − γit)− + β+

1 ∆(xit − γit)+ + β′
2∆qit + β3∆yi,t−1 +∆εit, (B.2)

where ∆ is the first difference operator, i.e., ∆(xit−γit)− = (xit−γit)−−(xi,t−1−γi,t−1)−
and ∆(xit−γit)+ = (xit−γit)+− (xi,t−1−γi,t−1)+. It is easily seen that ∆yit is function
of εit and εi,t−1 and ∆yi,t−1 is function of εi,t−1 and εi,t−2, hence ∆yi,t−1 is correlated
with ∆εi,t−1. To fix this problem, we follow Arellano and Bond (1991) to estimate the
parameter θ = (β−

1 , β+
1 ,β′

2, β3,γ
′)′ by the generalized method of moments (GMM). By

construction, we have the following moment conditions

E(yi,t−j∆εit) = 0, for j = 2, . . . , t− 1 and t = 3, . . . , T, (B.3)

and if (xit, qit) are predetermined, we have

E(xis∆εit) = E(q′
is∆εit) = 0, for s ≤ t− 1 and t = 3, . . . , T, (B.4)

or if (xit, qit) are strictly exogenous, we have

E(xis∆εit) = E(q′
is∆εit) = 0, for s = 1, . . . , T and t = 3, . . . , T. (B.5)

Let wit = (yi1, . . . , yt−2, xi1, . . . , xi,t−1, q
′
i1, . . . , q

′
i,t−1)

′ for (xit, qit) are predetermined
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or wit = (yi1, . . . , yt−2, xi1, . . . , xiT , q
′
i1, . . . , q

′
iT )

′ for (xit, qit) are strictly exogenous,
wi = diag(wi3, . . . , wiT )

′ (i.e. wi is a block diagonal matrix), and ∆εi = (∆εi3, . . . ,∆εiT )
′.

Thus, the moment equations in (B.3), (B.4) and (B.5) can be written as

E(w′
i∆εi) = 0. (B.6)

B.2. The estimates and asymptotic properties

Let xit(γ) = ((xit − γit)−, (xit − γit)+, q
′
it, yi,t−1)

′, β = (β−
1 , β+

1 ,β′
2, β3)

′ , ∆xit(γ) =
xit(γ) − xi,t−1(γ), ∆yi = (∆yi3, . . . ,∆yiT )

′, and ∆xi(γ) = (∆xi3(γ), . . . ,∆xiT (γ))
′.

Let ∆Y , ∆X(γ), ∆ε and W denote the data stacked over all individuals, i.e., ∆Y =
(∆y′1, . . . ,∆y′N )′, ∆X(γ) = (∆x′

1(γ), . . . ,∆x′
N (γ))′, ∆ε = (∆ε′1, . . . ,∆ε′N )′ and W =

(w′
1, . . . , w

′
N )′. Thus, (B.2) can be rewritten as ∆Y = ∆X(γ)β +∆ε.

Thus, for any given γ, the GMM estimator of β is given by

β̂(γ) =
[
∆X ′(γ)WANW ′∆X(γ)

]−1
∆X ′(γ)WANW ′∆Y , (B.7)

where AN is the optimal weighting matrix such that AN →p [E(W ′∆ε∆ε′W )]−1 =
Ω−1, in which AN and Ω are assumed to be positive definite.

Therefore, we obtain the GMM estimator of β and γ by

γ̂ = argmin
γ∈Γ

∆ε̂′(γ)WANW ′∆ε̂(γ), and β̂ = β̂(γ̂), (B.8)

where ∆ε̂(γ) = ∆Y −∆X(γ)β̂(γ).
Following Seo and Shin (2016), the two-step optimal GMM estimator can be obtained

as follows:
Step 1. Estimate the parameter θ by setting AN = I or AN = (N−1

∑N
i=1 w

′
iHwi)

−1,
where H is a (T − 2) square matrix which has twos in the main diagonal, minus ones in

the first subdiagonals and zeroes otherwise,1 and collect residuals, ∆̂εit.
Step 2. Estimate the parameter θ by setting

AN =

[
1

N

N∑
i=1

w′
i∆̂εi∆̂ε

′
iwi −

(
1

N

N∑
i=1

w′
i∆̂εi

)(
1

N

N∑
i=1

∆̂ε
′
iwi

)]−1

, (B.9)

where ∆̂εi = (∆̂εi3, . . . , ∆̂εiT )
′.

The true value of θ is denoted by θ0. Define K(θ) = (Kβ(γ),Kγ(θ)), where

Kβ(γ) = −E (w′
i∆xi(γ)) , Kγ(θ) =

[
E(β−

1 ∆1−i
′
(γ)wi − β+

1 ∆1+i
′
(γ)wi)

E(β−
1 ∆q−

i

′
(γ)wi − β+

1 ∆q+
i

′
(γ)wi)

]′
,

in which ∆1−it(γ) = 1−it(γ)− 1−i,t−1(γ), ∆q−
it(γ) = q−

it(γ)− q−
i,t−1(γ), q

−
it(γ) = qit1

−
it(γ),

∆1−i (γ) = (∆1−i3(γ), . . . ,∆1−i3(γ))
′ and ∆q−

i (γ) = (∆q−
i3(γ), . . . ,∆q−

i3(γ))
′. Similarly,

we can define ∆1+it(γ), ∆q+
it(γ), q

+
it(γ), ∆1+i (γ) and ∆q+

i (γ).
To obtain the asymptotic properties of the GMM estimator, we make the following

assumption.

1For T = 6, H =

 2 −1 0 0
−1 2 −1 0
0 −1 2 −1
0 0 −1 2

.
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Assumption B1. (i) For each t, wit = (yit, xit, q
′
it) are independently identically dis-

tributed (i.i.d.) across i; (ii) For some r > 1, E|yit|4r < ∞, E|xit|4r < ∞, E|qit|4r < ∞,
and E|εit|4r < ∞; (iii) εit is a martingale difference sequence.

Assumption B2. (i) wit has a probability density function (PDF) fw,t(w), where wit =
(yit, xit, q

′
it); (ii) (wit,wis) has a joint PDF fw,ts; (iii) xit has a conditional probability

density function given qit = q, satisfying max1≤t≤T fq,t(x|q) ≤ f̄q < ∞; and Fq is the
corresponding conditional cumulative distribution function of xit conditional on qit.

Assumption B3. The true value of θ is fixed at θ0. θ0 are interior points of Θ, where
Θ is compact. Ω is finite and positive definite.

Assumption B4. Let K = K(θ0), then K is of full collumn rank.

Assumptions B1 and B2 are the same as in section 2, except that εit is a martin-
gale difference sequence in the dynamic panel data model. Assumptions B3 and B4 are
standard in the GMM framework for identification.

Theorem B.1. Under Assumption B1-B4, as N → ∞
√
N
(
θ̂ − θ0

)
d−→ N

(
0,
(
K ′Ω−1K

)−1
)
. (B.10)

In the GMM estimator, the slope and threshold estimators are also jointly asymptoti-
cally normal with the same convergence rate in Theorem 2.1.

B.3. Testing for kink threshold effect and threshold constancy

In this section, we propose test statistics for kink threshold effect and threshold con-
stancy in the dynamic panel kink threshold regression model with a covariate-dependent
threshold. Under the linear nulll hypothesis H1

0 : β−
1 = β+

1 , for any given γ ∈ Γ, we
consider the sup-Wald statistic for testing kink effect given by

W3 = sup
γ∈Γ

N [β̂−
1 (γ)− β̂+

1 (γ)]2

v̂ar(
√
N(β̂−

1 (γ)− β̂+
1 (γ)))

, (B.11)

where v̂ar(
√
N(β̂−

1 (γ) − β̂+
1 (γ))) = R′

3[K̂
′
β(γ)Ω̂

−1
(θ̂(γ))K̂β(γ)]

−1R3, in which R3 =

(1,−1,01×(k+1))
′, θ̂(γ) = (β̂

′
(γ),γ′)′, K̂(θ̂(γ)) = (K̂β(γ), K̂γ(θ̂(γ))),

K̂β(γ) = − 1

N

N∑
i=1

w′
i∆xi(γ),

K̂γ(θ̂(γ)) =

 N−1
∑N

i=1

(
β̂−
1 (γ)∆1−i

′
(γ)wi − β̂+

1 (γ)∆1+i
′
(γ)wi

)
N−1

∑N
i=1

(
β̂−
1 (γ)∆q−

i

′
(γ)wi − β̂+

1 (γ)∆q+
i

′
(γ)wi

) ′

,

and

Ω̂(θ̂(γ)) =
1

N

N∑
i=1

w′
i∆ε̂i(γ)∆ε̂i(γ)

′wi −

(
1

N

N∑
i=1

w′
i∆ε̂i(γ)

)(
1

N

N∑
i=1

∆ε̂i(γ)
′wi

)
,

where ∆ε̂i(γ) = ∆yi −∆xi(γ)β̂(γ).
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Under the null H2
0 : γ1 = 0, a test statistic for threshold constancy can be given by

W4 = N θ̂
′
R4

(
R′

4K̂
′
Ω̂

−1
K̂R4

)−1

R′
4θ̂, (B.12)

where R4 = (0k×(k+3), Ik), K̂ = K̂(θ̂(γ̂)) and Ω̂ = Ω̂(θ̂(γ̂)).
The limiting distributions of the statistics in W3 and W4 are given as follows.

Theorem B.2. Let V (γ) = K ′
β(γ)Ω

−1Kβ(γ). Suppsose that infγ∈Γ det(V (γ)) > 0
and Assumptions B1-B4 hold. As N → ∞, under H1

0 we have

W3
d−→ sup

γ∈Γ
Z ′

1Kβ(γ)V
−1(γ)R3

[
R′

3V
−1(γ)R3

]−1
R′

3V
−1(γ)K ′

β(γ)Z1, (B.13)

and under H2
0 , we have

W4
d−→ χ2

k, (B.14)

where Z1 ∼ N(0,Ω−1).

The limiting distribution of W3 is not straightforward to pivotalize the statistic and
tabulate the critical values. Thus, the p-values can be simulated following the similar
bootstrap procedure in Section 2.2.

Proof of Theorem B.1: Let ∆εi(θ) = ∆yi − ∆xi(γ)β, gi(θ) = w′
i∆εi(θ), ξi(γ) =

w′
i∆xi(γ), gi = gi(θ0) = w′

i∆εi and ξi = ξi(γ0). Then, we can rewrite the moment
indicator gi(θ) as

gi(θ) = gi + ξiβ0 − ξi(γ)β (B.15)

= gi − ξi(γ) [β − β0]− [ξi(γ)− ξi]β0. (B.16)

We follow the proof of Seo and Shin (2016) to verify that asymptotically normal al-
so hold for our model. To this end, we first establish consistency and then derive the
asymptotic normality.

As shown in Seo and Shin (2016), the rank condition in Assumption B4 is sufficient to
show that E(gi(θ0)) = 0 if and only if θ = θ0 for consistency.

By the linearity in the slope parameters for a fixed γ, we have

β̂(γ)− β0 =
[
ξ̄′N (γ)AN ξ̄N (γ)

]−1
ξ̄′N (γ)AN

[
ḡN +

1

N

N∑
i=1

(ξi − ξi(γ))β0

]
, (B.17)

where ξ̄N (γ) = N−1
∑N

i=1 ξi(γ) and ḡN = N−1
∑N

i=1 gi. We can show that AN →p Ω−1,
ḡN →p E(gi) = 0 and ξ̄N (γ) →p ξ(γ) = E(ξi(γ)) uniformly by the standard weak law
of large number (WLLN), and thus we have

β̂(γ)− β0
p−→
[
ξ′(γ)Ω−1ξ(γ)

]−1
ξ′(γ)Ω−1 [ξ − ξ(γ)]β0, (B.18)

where ξ = E(ξi). Since ḡN (θ) is continuous in β for any given γ, using the continuous
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mapping theorem , (B.16) and (B.18) yields that

ḡN (β̂(γ),γ) = ḡN − ξ̄N (γ)
[
β̂(γ)− β0

]
+
[
ξ̄N − ξ̄N (γ)

]
β0

p−→
(
I − ξ(γ)

[
ξ′(γ)Ω−1ξ(γ)

]−1
ξ′(γ)Ω−1

)
[ξ − ξ(γ)]β0. (B.19)

The term in the first brackets in the right hand side is positive definite and ξ(γ) = ξ

if and only if γ = γ0. Therefore, plimN→∞ḡ′N (β̂(γ),γ)AN ḡN (β̂(γ),γ) is continuous
and uniquely minimized at γ = γ0 and the convergence is uniform, which implies the
consistency of the estimator.

We next establish the asymptotic distribution. Let J̄N (θ) = ḡ′N (θ)AN ḡN (θ), JN (θ) =
E(g′i(θ))ANE(gi(θ)) and DN = 2K ′AN ḡN . We first show that for any hN → 0

sup
∥θ−θ0∥≤hN

√
NRN (θ)

1 +
√
N∥θ − θ0∥

= op(1), (B.20)

where RN (θ) = J̄N (θ)− J̄N (θ0)− JN (θ)−D′
N (θ− θ0). To show this, we need to prove

that

sup
∥θ−θ0∥≤hN

∥εN (θ)∥ = op(1), (B.21)

where εN (θ) =
√
N(ḡN (θ) − E(gi(θ))− ḡN ) is a centered empirical process. Note that,

if the empirical process
√
N(ḡN (θ)−E(gi(θ))) is stochastic equicontinuous, then (B.21)

holds. However, gi(θ) is a sum of three terms in (B.15), of which the first and second
terms are free of θ. For the last term, note that β is bounded and the same argument
in condition 4 of proof of Theorem 2.1 is sufficient to show that

√
N(ξ̄N (γ)− E(ξi(γ)))

is stochastic equicontinuous. Thus, we obtain (B.20). Therefore, as in Seo and Shin

(2016), using Theroem 7.1 of Newey and McFadden (1994) we have
√
N(θ̂ − θ0) →d

N(0, (K ′Ω−1K)−1).

�

Proof of Theorem B.2: Under H1
0 : β−

01 = β+
01 = β01, (B.17) can be rewritten as

√
N
(
β̂(γ)− β0(γ)

)
=
[
ξ̄′N (γ)AN ξ̄N (γ)

]−1
ξ̄′N (γ)AN

√
NḡN , (B.22)

where β0(γ) = [β01, β01,β
′
02 + (γ1 − γ01)

′β01, β03]
′. Thus, we have

√
NR3

(
β̂(γ)− β0(γ)

)
=

√
N
(
β̂−
1 (γ)− β̂+

1 (γ)
)

= R3

[
ξ̄′N (γ)AN ξ̄N (γ)

]−1
ξ̄′N (γ)AN

√
NḡN

d−→R3

[
ξ′(γ)Ω−1ξ(γ)

]−1
ξ′(γ)Z1

= R3V
−1(γ)K ′

β(γ)Z1, (B.23)

where V (γ) = K ′
β(γ)Ω

−1Kβ(γ) and Z1 ∼ N(0,Ω−1). Applying the standard WLLN
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and the continuous mapping theorem, we obtain

W3 = sup
γ∈Γ

√
N β̂

′
(γ)R3

(
R′

3

[
K̂

′
β(γ)Ω̂

−1
(θ̂(γ))K̂β(γ)

]−1

R3

)−1

R′
3β̂(γ)

√
N

d−→ sup
γ∈Γ

Z ′
1Kβ(γ)V

−1(γ)R3

[
R′

3V
−1(γ)R3

]−1
R′

3V
−1(γ)K ′

β(γ)Z1. (B.24)

Next, given the presence of kink threshold effect, the asymptotic distribution of W4 is
χ2
k by the normality proved in Theorem B.1. The proof is standard and we omit it to

save space.
�




