
Ch. 4 Asymptotic Theory

From the discussion of last Chapter it is obvious that determining the distri-

bution of h(X1, X2, ..., XT ) is by no means a trivial exercise.1 It turns out that

more often than not we cannot determine the distribution exactly. Because of the

importance of the problem, however, we are forced to develop approximations;

the subject of this Chapter.

This Chapter will cover the limit theorem. The terms ’limit theorems’ refers

to several theorems in probability theory under the generic names, ’laws of large

numbers’ (LLN) and ’central limit theorem’ (CLT). These limit theorem consti-

tute one of the most important and elegant chapters of probability theory and

play a crucial role in statistical inferences.

1 Consistency

In this section we introduce the concepts needed to analyzed the behaviors of a

random variable indexed by the size of a sample, say θ̂T , as T →∞.

1.1 Limits (Non-Stochastic)

Definition:

Let {bT}T
1 , or just {bT} be a sequence of real numbers. If there exists a real

number b and if for every δ > 0 there exist an integer N(δ) such that for all

T ≥ N(δ),2 |bT − b| < δ, then b is the limit of the sequence {bT}.

In this definition the constant δ can take on any real value, but it is the very

small values of δ that provide the definition with its impact. By choosing a very

small δ, we ensure that bT gets arbitrarily close to its limit b for all T that are suf-

ficiently large. When a limit exists, we say that the sequence {bT} converges to b

1Here, h(X1, X2, ..., XT ) may be an estimator or a test statistic. For an estimator, we
always are interested in his convergence in probability, while in the case of a test statistics, we
are interested in his convergence in distribution.

2Here, N must have opposite direction with δ to capture the idea that as N getting larger
(so does T ), bT and b get closer.
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Ch. 4 1 CONSISTENCY

as T tends to infinity, written as bT → b as T →∞. We also write b = limT→∞ bT .

When no ambiguity is possible, we simply write bT → b or b = lim bT .

Example:

Let

aT =
2T − (−1)T

2T
.

Here 1 = limT→∞ aT , for

|aT − 1| =
∣∣∣∣
2T − (−1)T

2T
− 1

∣∣∣∣ =
1

2T
.

Since by binomial theorem we have

2T = (1 + 1)T = 1 + T +
T (T + 1)

2
· · ·+1 > T.

Hence, if we choose N = 1/δ or large, we have, for T > N ,

|aT − 1| = 1

2T
<

1

T
<

1

N
≤ δ.

This complete the solution.

The concept of a limit extends directly to sequences of real vectors. Let bT be

a k × 1 vector with real elements bTi, i = 1, ..., k. If bTi → bi, ∀i = 1, ..., k, then

bT → b, where b has elements bi, i = 1, ..., k. An analogous extensions applies

to matrices.

Definition (Continuous):

Given g : Rk → Rl (k, l ∈ N) and b ∈ Rk,

(a). the function g is continuous at b if for any sequence {bT} such that bT → b,

g(bT ) → g(b); or equivalently

(b). the function g is continuous at b if for every ε > 0 there exists δ(ε) > 0 such

that if a ∈ Rk and |ai−bi| < δ(ε), i = 1, ..., k, then |gj(a)−gj(b)| < ε, j = 1, ..., l.

Example:

From this it follows that if aT → a and bT → b, then aT + bT → a + b and

aTb′T → ab′.
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The following definition compares the behavior of a sequence {bT} with the

behavior of a power of T , say T λ, where λ is chosen so that {bT} and {T λ} behave

similarly.

Definition:

(a). The sequence {bT} is at most of order T λ, denoted bT = O(T λ), if for some

finite real number 4 > 0, there exists a finite integer N such that for all T ≥ N ,

|T−λbT | < 4.

(b). The sequence {bT} is of order smaller than T λ, denoted bT = o(T λ), if

for every real number δ > 0, there exists a finite integer N(δ) such that for all

T ≥ N(δ), |T−λbT | < δ, i.e., T−λbT → 0.

As we have defined these notations, bT = O(T λ), if {T−λbT} is eventually

bounded, whereas bT = o(T λ) if T−λbT → 0. Obviously, if bT = o(T λ), then

bT = O(T λ). Further, if bT = O(T λ), then for every ξ > 0, bT = o(T λ+ξ). When

bT = O(T 0), it is simply (eventually) bounded and may or may not have a limit.

We often write O(1) in place of O(T 0). Similarly, bT = o(1) means bT → 0.

If each element of a vector or matrix is O(T λ) or o(T λ), then that vector or

matrix is O(T λ) or o(T λ).

Proposition:

Let aT and bT be scalar.

(a). If aT = O(T λ) and bT = O(T µ), then aT bT = O(T λ+µ) and aT + bT = O(T κ),

where κ = max[λ, µ].

(b). If aT = o(T λ) and bT = o(T µ), then aT bT = o(T λ+µ) and aT + bT = o(T κ),

where κ = max[λ, µ].

(c). If aT = O(T λ) and bT = o(T µ), then aT bT = o(T λ+µ) and aT + bT = O(T κ),

where κ = max[λ, µ].

1.2 Almost Sure Convergence

The stochastic convergence concept most closely related to the limit notations

previously discussed is that of almost sure convergence. Recall our discussing a

real-valued random variables bT , we are in fact talking a mapping bT : S → R1.
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we let s be a typical element of sample space S, and call the real number bT (s) a

realization of the random variables.

Interest will often center on average such as

bT (·) = T−1

T∑
t=1

Zt(·).

Definition:

Let {bT (·)} be a sequence of real-valued random variables. We say that bT (·)
converges almost surely to b, written bT (·) a.s.−→ b if there exists a real number b

such that Pr{s : bT (s) → b} = 1. When no ambiguity is possible, we may simply

write bT
a.s.−→ b.

A sequence bT converges almost surely if the probability of obtaining a realiza-

tion of the sequence {Zt} for which convergence to b occurs is unity. Equivalently,

the probability of observing a realization of {Zt} for which convergence to b does

not occur is zero. Failure to converge is possible but will almost never happen

under this definition.

As with nonstochastic limits, the almost sure convergence concept extends im-

mediately to vectors and matrices of finite dimension. Almost sure convergence

element by element suffices for almost sure convergence of vectors and matrices.

Proposition:

Given g : Rk → Rl (k, l ∈ N) and any sequence of random k × 1 vector bT such

that bT
a.s.−→ b, where b is k × 1, if g is continuous at b, then g(bT )

a.s.−→ g(b).

This results is one of the most important in this Chapter, because consistency

results for many of our estimators follows by simply applying this Proposition.

1.3 Convergence in Probability

A weaker stochastic convergence concept is that of convergence in probability.

Definition:

Let {bT} be a sequence of real-valued random variables. If there exists a real num-
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ber b such that for every δ > 0, such that Pr(s : |bT (s)−b| < δ) → 1, as T →∞,

then bT converge in probability to b, written as bT
p−→ b or plim bT = b.

Example:

Let Z̄T ≡ T−1
∑T

t=1 Zt, where {Zt} is a sequence of random variables such that

E(Zt) = µ, V ar(Zt) = σ2 < ∞ for all t and Cov(Zt, Zτ ) = 0 fort 6= τ . Then

Z̄T
p−→ µ by the Chebyshev weak law of large numbers. See the plot of Hamilton

p.184.

When the plim of a sequence of estimator (such as {Z̄T}∞T=1) is equal to the

true population parameter (in this case, µ), the estimator is said to be consistent.

Convergence in probability is also referred as weak consistency, and since this

has been the most familiar stochastic convergence concept in econometrics, the

word ”weak” is often simply dropped.

Theorem:

Let {bT} be a sequence of real-valued random variables. If bT
a.s.−→ b, then bT

p−→ b.

Vectors and matrices are said to converge in probability provided each element

converges in probability.

Proposition:

Given g : Rk → Rl (k, l ∈ N) and any sequence of random k × 1 vector bT such

that bT
p−→ b, where b is k × 1, if g is continuous at b, then g(bT )

p−→ g(b).

Example:

If X1T
p−→ c1 and X2T

p−→ c2, then (X1T +X2T )
p−→ (c1+c2). This follows imme-

diately, since g(X1T , X2T ) ≡ (X1T + X2T ) is a continuous function of (X1T , X2T ).

Example:

Consider an alternative estimator of the mean given by Ȳ ∗
T = [1/(T −1)]

∑T
t=1 Yt.

This can be written as c1T ȲT , where c1T ≡ [T/(T − 1)] and ȲT ≡ (1/T )
∑T

t=1 Yt.

Under general condition, the sample mean is a consistent estimator of the popu-

lation mean, implying that ȲT
p−→ µ. It is also easy to verify that c1T → 1. Since
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c1T ȲT is a continuous function of c1T and ȲT , it follows that c1T ȲT
p−→ 1 · µ = µ.

Thus Ȳ ∗
T is also a consistent estimator of µ.

Definition:

(a). The sequence {bT} is at most of order T λ in probability, denoted bT =

Op(T
λ), if for every ε > 0 there exist a finite 4ε > 0, and Nε ∈ N such that for

all T ≥ Nε, Pr{s : |T−λbT (s)| > 4ε} < ε.

(b). The sequence {bT} is of order smaller than T λ in probability, denoted

bT = op(T
λ), if T−λbT

p−→ 0.

Lemma (Product rule):

Let AT be l × k and let bT be k × 1. If AT = op(1) and bT = Op(1), then

AT bT = op(1).

Proof:

Each element of AT bT is the sums of the product of Op(T
0)op(T

0) = op(T
0+0) =

op(1) and therefore is op(1).
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1.4 Convergence in rth mean

The convergence notations of limits, almost sure limits, and probability limits

are those most frequently encountered in econometrics, and most of the results

in the literature are state in these terms. Another convergence concept often en-

countered in the context of time series data is that of convergence in the rth mean.

Definition:

Let {bT} be a sequence of real-valued random variables such that for some r > 0,

E|bT |r < ∞. If there exists a real number b such that E(|bT−b|r) → 0 as T →∞,

then bT converge in the rth mean to b, written as bT
r.m.−→ b.

The most commonly encountered situation is that of in which r = 2, in which

case convergence is said to occur in quadratic mean, denoted bT
q.m.−→ b, or con-

vergence in mean square, denoted bT
m.s−→ b.

Example:

Let X1, X2, ..., XT be i.i.d. random variables with mean µ and variance σ2. Then

X̄T (=
PT

t=1 Xt

T
)

m.s−→ µ since E|X̄T − µ|2 = E(X̄T − µ)2 = σ2/T → 0.

Proposition (Generalized Chebyshev inequality):

Let Z be a random variable such that E|Z|r < ∞, r > 0. Then for every ε > 0,

Pr(|Z| > ε) ≤ E|Z|r
εr

.

When r = 1 we have Markov’s inequality and when r = 2 we have the familiar

Chebyshev inequality.

Theorem:

If bT
r.m.−→ b for some r > 0, then bT

p−→ b.

Proof:

Since E(|bT − b|r) → 0 as T → ∞, E(|bT − b|r) < ∞ for all T sufficiently large.

It follows from the Generalized Chebyshev inequality that, for every ε > 0,

Pr(s : |bT (s)− b| > ε) ≤ E|bT − b|r
εr

.
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Hence Pr(s : |bT (s) − b| < ε) ≥ 1 − E|bT−b|r
εr → 1 as T → ∞, since bT

r.m.−→ b. It

follows that bT
p−→ b.

Without further conditions, no necessary relationship holds between conver-

gence in the rth mean and almost sure convergence.
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2 Convergence in Distribution

The most fundamental concept is that of convergence in distribution.

Definition:

Let {bT} be a sequence of scalar random variables with cumulative distribution

function {FT}. If limT→∞ FT (z) = F (z) for every continuity point z, where F is

the (cumulative) distribution of a random variable Z, then bT converge in distri-

bution to the random variable Z, written as bT
d−→ Z.

When bT
d−→ Z, we also say that bT converges in law to Z, written as

bT
L−→ Z, or that bT is asymptotically distributed as F , denoted as bT

A∼ F .

Then F is called the limiting distribution of bT .

Example:

Let {Zt} be i.i.d. random variables with mean µ and finite variance σ2 > 0.

Define

bT ≡ Z̄T − E(Z̄T )

(V ar(Z̄T ))1/2
=

T−1/2
∑T

t=1(Zt − µ)

σ
=

√
T (Z̄t − µ)

σ
.

Then by the Lindeberg-Levy central limit theorem, bT
A∼ N(0, 1). See the plot of

Hamilton p.185.

The above definition are unchanged if the scalar bT is replaced with an (k×1)

vector bT . However it is noted that bT
L−→ z implies biT

L−→ zi, i = 1, 2, ..., k,

but the reverse is not true, that is pointwise convergence in distribution is neces-

sary but not sufficient for joint convergence in distribution. One can not simply

prove that biT
L−→ zi for all i = 1, 2, ..., k and say that bT

L−→ z. However, a

simple way to verify convergence in distribution of a vector from random scalars

is the following.

Proposition (Cramér-Wold device):

Let {bT} be a sequence of random k × 1 vector and suppose that for every real

k × 1 vector λ (such that λ′λ = 1 ?), the scalar λ′bT
A∼ λ′z where z is a k × 1

vector with joint (cumulative) distribution function F . Then the limiting distri-

bution function of bT exists and equals to F .
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Lemma:

If bT
L−→ Z, then bT = Op(1).

Lemma (Product rule):

Recall that if AT = op(1) and bT = Op(1), then AT bT = op(1). Hence, if AT
p−→ 0

and bT
d−→ Z, then AT bT

p−→ 0.

Lemma (Asymptotic equivalence):

Let {aT} and {bT} be two sequence of random vectors. If aT − bT
p−→ 0 and

bT
d−→ Z, then aT

d−→ Z.

The results is helpful in situation in which we wish to find the asymptotic dis-

tribution of aT but cannot do so directly. Often, however, it is easy to find a bT

that has a known asymptotic distribution and that satisfies aT − bT
p−→ 0. This

Lemma then ensures that aT has the same limiting distribution as bT and we say

that aT is ”asymptotically equivalent” to bT .

Lemma:

Given g : Rk → Rl (k, l ∈ N) and any sequence of random k × 1 vector bT such

that bT
L−→ z, where z is k × 1, if g is continuous (not dependent on T ) at z,

then g(bT )
L−→ g(z).

Example:

Suppose that XT
L−→ N(0, 1) Then the square of XT asymptotically behaves as

the square of a N(0, 1) variables: X2
T

L−→ χ2
(1).

Lemma:

Let {xT} be a sequence of random (n × 1) vector with xT
p−→ c , and let {yT}

be a sequence of random (n × 1) vector with yT
L−→ y. Then the sequence

constructed from the sum {xT + yT} converges in distribution to c + y and the

sequence constructed from the product {x′TyT} converges in distribution to c′y.

Example:

Let {XT} be a sequence of random (m × n) matrix with XT
p−→ C , and

let {yT} be a sequence of random (n × 1) vector with yT
L−→ y ∼ N(µ,Ω).
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Then the limiting distribution of XTyT is the same as that of Cy; that is

XTyT
L−→ N(Cµ,CΩC′).

Lemma (Cramer δ ):

Let {xT} be a sequence of random (n× 1) vector such that

T b(xT − a)
L−→ x

for some b > 0. If g(x) is a real-valued function with gradient g′(a)(= ∂g
∂x′

∣∣
x=a

),

then

T b(g(xT)− g(a))
L−→ g′(a)x.

Example:

Let {Y1, Y2, ..., YT} be an i.i.d. sample of size T drawn from a distribution with

mean µ 6= 0 and variance σ2. Consider the distribution of the reciprocal of the

sample mean, ST = 1/ȲT , where ȲT = (1/T )
∑T

t=1 Yt. We know from the CLT

that
√

T (ȲT − µ)
L−→ Y , where Y ∼ N(0, σ2). Also, g(y) = 1/y is continuous at

y = µ. Let g′(u)(= ∂g/∂y|y = µ) = (−1/µ2). Then
√

T [ST − (1/µ)]
L−→ g′(µ)Y ;

in other word,
√

T [ST − (1/µ)]
L−→ N(0, σ2/µ4).
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3 Martingales

The concept of conditional expectation provides us with an ideal link between

the theory of random variables and that of stochastic processes. This is because

the notion of conditional expectation enables us to formalize the temporal depen-

dence in a stochastic process {Xt, t ∈ T } in terms of the conditional expectation

of the process at time t, Xt (the present) given Xt−1, Xt−2.... (the past).3 One

important application of conditional expectation in such a context is in connec-

tion with a stochastic process with forms a martingales. Some very useful limit

theorems pertain to martingale sequence.

Definition:

Let {Xt, t ∈ T } be a stochastic process defined on (S,F , P (·)) and let {Ft} be

a sequence of σ − fields Ft ⊂ F for all t (i.e.{Ft} is an increasing sequence of

σ − fields) satisfying the following conditions:

(a). Xt is a random variable relatives to {Ft} for all t ∈ T .

(b). E(|Xt|) < ∞ for all t ∈ T .

(c). E(Xt|Ft−1) = Xt−1, for all t ∈ T .

Then {Xt, t ∈ T } is said to be a martingale with respect to {Ft, t ∈ T }.

Example (increasing sequence of σ − fields):

Define the function X—”the number of heads”, then X({HH}) = 2, X({TH}) =

1, X({HT}) = 1, and X({TT}) = 0. Further we see that X−1(2) = {(HH)},
X−1(1) = {(TH), (HT )} and X−1(0) = {(TT )}. In fact, it can be shown that

the σ − field related to the random variables, X, so defined is

F = {S,∅, {(HH)}, {(TT )}, {(TH), (HT )}, {(HH), (TT )},
{(HT ), (TH), (HH)}, {(HT ), (TH), (TT )}}.

We further define the function X1—”at least one head”, then X1({HH}) =

X1({TH}) = X1({HT}) = 1, and X1({TT}) = 0. Further we see that X−1
1 (1) =

{(HH), (TH), (HT )} ∈ F and X−1(0) = {(TT )} ∈ F . In fact, it can be shown

that the σ − field related to the random variables, X1, so defined is

F1 = {S,∅, {(HH), (TH), (HT )}, {(TT )}}.
3One of the more powerful economic theories is the theory of rational expectations.
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Finally we define the function X2—”two heads”, then X2({HH}) = 1, X2({TH}) =

X2({HT}) = X2({TT}) = 0. Further we see that X−1
2 (1) = {(HH)} ∈ F ,

X−1(0) = {(TH), (HT ), (TT )} ∈ F . In fact, it can be shown that the σ − field

related to the random variables, X2, so defined is

F2 = {S,∅, {(HH)}, {(HT ), (TH), (TT )}}.

We see that X = X1 + X2 and find that F1 ⊂ F .

The above example is a special case of general result where X1, X2, ..., Xn are

random variables on the same probability space (S,F , P (·)) and we define the

new random variables

Y1 = X1, Y2 = X1 + X2, Y3 = X1 + X2 + X3, ..., Yn = X1 + X2 + ... + Xn.

If F1,F2, ...,Fn denote the minimal σ − field generated by Y1, Y2, ..., Yn respec-

tively, we can show that

F1 ⊂ F2 ⊂ ... ⊂ Fn ⊆ F ,

i.e. F1,F2, ...,Fn form an increasing sequence of σ − field in F .

Several aspects of this definition need commenting on.

(a). A martingale is a relative concept; a stochastic process relative to an increas-

ing sequence of σ − field. That is, σ − field such that F1 ⊂ F2 ⊂ ... ⊂ Ft ⊂ ...

and each Xt is a random variables relative to Ft, t ∈ T . A natural choice for such

σ − field will be Ft = σ(Xt, Xt−1, ..., X1), t ∈ T .

(b). This stochastic process has constant mean because E(Xt) = E[E(Xt|Ft−1)] =

E(Xt−1).

(c). It implies that E(Xt+τ |Ft−1) = Xt−1 for all t ∈ T and τ ≥ 0. That is the

best predictor of Xt+τ given the information Ft−1 is Xt−1 for any τ ≥ 0.

The importance of martingales stem from the fact that they are general enough

to include most forms of stochastic process of interest in economic modeling as

special case, and restrictive enough so as to allow various limit theorem needed

for their statistical analysis to go through, thus making probability models based

on martingale largely operational.
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Example:

Let {Zt, t ∈ T } be a sequence of independent random variables such that E(Zt) =

0 for all t ∈ T . If we define Xt by4

Xt =
t∑

k=1

Zk,

then {Xt, t ∈ T } is a martingale with Ft = σ(Zt, Zt−1, ..., Z1) = σ(Xt, Xt−1, ..., X1).

This is because condition (a) and (b) are automatically satisfied and we can verify

that

E(Xt|Ft−1) = E[(Xt−1 + Zt)|Ft−1] = Xt−1, t ∈ T .

Example:

Let {Zt, t ∈ T } be an arbitrary stochastic process whose only restriction is

E(|Zt|) < ∞ for all t ∈ T . If we define Xt by

Xt =
t∑

k=1

[Zk − E(Zk|Fk−1)],

where Fk = σ(Zk, Zk−1, ..., Z1) = σ(Xk, Xk−1, ..., X1), then {Zt, t ∈ T } is a mar-

tingale. Condition (c) can verify by

E(Xt|Ft−1) = E[(Xt−1 + Zt − E(Zt|Ft−1))|Ft−1] = Xt−1 + E(Zt|Ft−1)− E(Zt|Ft−1)

= Xt−1, t ∈ T .

The above two examples illustrate the flexibility of martingales very well. As

we can see, the main difference between then is that in the first example, Xt

is a linear function of independent r.v.’s and in the second example as a linear

function of dependent r.v’s centred at their conditional means. A special case of

example is that

Yt = Xt − E(Xt|Ft−1), t ∈ T .

It can be easily verified that {Yt, t ∈ T } defines what is known as a martingale difference

process relative to Ft because

E(Yt|Ft−1) = 0 t ∈ T .

4Therefore, here Xt is a pure random walk process, I(1).
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We can further deduce that for t > k

E(YtYk) = E[E(YtYk|Ft−1)] (since for t > k, E(Yk|Ft−1) = Yk) (1)

= E[YkE(Yt|Ft−1)] (2)

= E[Yk · 0] = 0. (3)

That is, a martingale difference {Yt, t ∈ T } as an orthogonal sequence. ( A

special case of uncorrelateness, for their means are all zero).

Definition:

A stochastic process {Yt, t ∈ T } is said to be a martingale difference process

relative to the increasing sequence of σ − fields, F1 ⊂ F2 ⊂ ... ⊂ Ft ⊂ ... if

(a). Yt is a random variable relatives to {Ft} for all t ∈ T .

(b). E(|Yt|) < ∞ for all t ∈ T .

(c). E(Yt|Ft−1) = 0, for all t ∈ T .

Note that condition (c) is stronger than the conditions that Yt is serially un-

correlated as we can see that if Yt is a martingale difference then it is uncorrelated

from (3). From the point of forecasting, a serially uncorrelated sequence cannot

be forecast on the basis of a linear function of its past value since the forecast

error and the forecast are all linear functions .No function of past values, linear

or nonlinear, can forecast a martingale difference sequence. While stronger than

absence of serial correlation, the martingale difference condition is weaker than

independence, since it doesn’t rule out the possibility that higher moments such

as E(Y 2
t |Yt−1, Yt−2, ..., Y1) might depend on past Y ’s.

Example:

If εt ∼ i.i.d.N(0, σ2), then Yt = εtεt−1 is a martingale difference but not serially

independent since

E(Yt|Ft−1) = E(εtεt−1|εt−1, εt−2, ..., ε1) = εt−1E(εt) = 0, (martingale difference)

and

E(Y 2
t |Ft−1) = E(ε2

t ε
2
t−1|εt−1, εt−2, ..., ε1) = ε2

t−1E(ε2
t ) = ε2

t−1σ
2 (a function of past

value, so it is not independent)
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Proposition:

Let X and Y be independent random variables and let U = g(X) and V = h(Y ).

Then U and V are also independent random variables.

3.1 Martingale Difference in a Regression Context

The martingale difference assumption often arises in regression context in the

following way. Suppose we have observations on a scalar Yt that we are interested

in explaining or forecasting on the basis variables zt as well as on the basis of

the past value of Yt. Let Ft−1 be the σ-field containing the information used to

explain or forecast Yt, i.e., Ft−1 = σ(..., (z′t−1, Yt−2)
′, (z′t, Yt−1)

′). Then

E(Yt|Ft−1) = g(..., (z′t−1, Yt−2)
′, (z′t, Yt−1)

′),

where g is some function of current and past value of zt and past values of Yt.

Let xt contain a finite number of current and lagged value of (z′t, Yt−1), e.g.,

xt = ((z′t−τ , Yt−τ−1)
′, ..., (z′t, Yt−1)

′) for some τ < ∞. Economic theory is then

often used in an attempt to justify the assumption that for some β0 < ∞,

g(..., (z′t−1, Yt−2)
′, (z′t, Yt−1)

′) = x′tβ0. (Linear Function)

If this is true, we then have

E(Yt|Ft−1) = x′tβ0.

We find that {Yt − E(Yt|Ft−1),Ft} is a martingale difference sequence since

E[Yt − E(Yt|Ft−1)|Ft−1] = E(Yt|Ft−1)− E(Yt|Ft−1) = 0.

If we let

εt = Yt − x′tβ0

and it is true that E(Yt|Ft−1) = x′tβ0, then εt = Yt − E(Yt|Ft−1), so {εt,Ft}
is a martingale difference sequence. Of direct importance for least squares es-

timation is that each sequence of cross products between regressors and error

{Xtiεt,Ft}, i = 1, ..., k is also a martingale difference sequence,

E[Xtiεt|Ft−1] = XtiE(εt|Ft−1) = 0.
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4 Laws of Larger Numbers

In this section we study a familiar consistent estimator from the concept of strong

consistency (which automatically imply weakly consistency, or convergence in

probability).

The result that the sample mean is a consistent estimator of the population

mean is known as the law of large number. The law of large number we consider

are all of the following form.

Proposition:

Given restriction on the dependence, heterogeneity, and moments of a sequence

of random variables (you may think this sequence as a sample of size T) {Zt},

Z̄T − µ̄T
a.s.−→ 0,

where

Z̄T ≡ 1

T

T∑
t=1

Zt and µ̄T ≡ E(Z̄T ).

As we shall see, there are sometimes trade-off among theses restrictions; for

example, relaxing dependence or heterogeneity restrictions may require strength-

ening moment restriction.

4.1 Independent Identically distributed Observations

The simplest case is that of independent identically distributed (i.i.d.) random

variables.

Theorem (Kolmogorov):

Let {Zt} be a sequence of i.i.d. random variables. Then

Z̄T
a.s.−→ µ

which implies

Z̄T
p−→ µ

if and only if E|Zt| < ∞ and E(Zt) = µ.
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Example:

We may make a stronger assumption that V ar(Zt) = σ2, then

E(Z̄T − µ)2 = (1/T 2)V ar(
T∑

t=1

Zt) = (1/T 2)
T∑

t=1

V ar(Yt) = σ2/T.

Since σ2/T → 0 as T →∞, the is mean that Z̄T
q.m.−→ µ, implying also Z̄T

p−→ µ.

4.2 Independent Heterogeneously distributed Observations

For cross-sectional data, it is often appropriate to assume that the observation

are independent but not identically distributed. A law of large number useful in

these situation is the following.

Theorem (Revised Markov):

Let {Zt} be a sequence of independent random variables such that E|Zt|1+δ <

4 < ∞ for some δ > 0 and all t. Then

Z̄T
a.s.−→ µ̄T .

The above theorem impose slightly more in the way of moment restriction but

allows the observations to be rather heterogeneous.

4.3 Dependent Identically Distributed Observations (such
as a strongly stationary process)

The assumption of independence is inappropriate for economic time series, which

typically exhibit considerable dependence. To cover this case, we need laws of

large number that allow the random variables to be dependent. To be state be-

low, we need an additional ’memory restriction’ as we relax the independence

assumption.

Definition:

Let (S,F , P (·)) be a probability space and T an index set of real numbers and

define the function X(·, ·) by X(·, ·) : S×T → R. The order sequence of random
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variables {X(·, t), t ∈ T } is called a stochastic process.

Definition:

A stochastic process {X(·, t), t ∈ T } is said to be (strongly) stationary if any

subset (t1, t2, ..., tT ) of T and any τ , F (X(t1), ..., X(tT )) = F (X(t1+τ), ..., X(tT +

τ)).

In terms of the marginal distributions F (X(t)), t ∈ T , stationary implies that

F (X(t)) = F (X(t+τ)), and hence F (X(t1)) = F (X(t2)) = ... = F (X(tT )). That

is stationarity implies that X(t1), ..., X(tT ) are individual identically distributed.

Definition:

Let (S,F , P (·)) be a probability space. Let {Zt} be a strongly stationary sequence

and let K be the measure-preserving transformation function. Then {Zt} is

ergodic if

lim
T→∞

T−1

T∑
t=1

Pr(F ∩KtG) = Pr(F )Pr(G),

for all events F,G ∈ F , where K is defined on (S,F , P (·)) such that Z1(s) =

Z1(s), Z2(s) = Z1(Ks), Z3(s) = Z1(K
2s), ..., ZT (s) = Z1(K

T−1s) for all s ∈ S.

We can think of KtG as being the event G shifted t periods into the future,

and since Pr(KtG) = Pr(G) when K is measure preserving, this definition say

that an ergodic process is one such that for any events F and G, F and KtG are

independent on average in the limit. Thus ergodicity can be thought of as a form

of ”average asymptotic independence”.

Theorem (Ergodic Theorem):

Let {Zt} be a strongly stationary ergodic scalar random sequence with E|Zt| <

∞. Then

Z̄T
a.s.−→ µ ≡ E(Zt).

Lemma:

A stationary linear process is ergodic.

Example:

Let Xt =
∑∞

j=0 ϕjεt−j, t = 1, 2, ...; εt−j, j = 0, 1, ... are i.i.d. random variables
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with E(εt−j) = 0 and {ϕj, j ≥ 0} is a sequence of square summable real number.

Then Xt is ergodic. (see Wang et al. 2003 p.151)

In this example we see that by relaxing the assumption of Xt to be weakly

stationary (or εt is a white noise sequence), we need the stronger conditions that

{ϕj, j ≥ 0} is a sequence of absolute summable real number to make Xt be er-

godic (See Hamilton, p.52).

4.4 Dependent Heterogeneously Distributed Observations

By replacing the ergodicity assumption with somewhat stronger conditions, we

can apply the consistency results to dependent heterogeneously distributed ob-

servations.

Let Bt
1 denote the σ − field generated X1, , ..., Xt where {Xt, t ∈ T } is a

stochastic process. A measure of the dependence among the elements of the

stochastic process can be defined in terms of the events B ∈ Bt
−∞ and A ∈ B∞t+τ

by

α(τ) = sup
τ
|P (A ∩B)− P (A)P (B)|.

Definition:

A stochastic process {Xt, t ∈ T } is said to be strongly (or α) mixing if α(τ) → 0

as τ →∞.

A stronger form of mixing, called uniformly mixing, can be defined in terms

of the following measure of dependence:

φ(τ) = sup
τ
|P (A|B)− P (A)|, P (B) > 0.

Definition:

A stochastic process {Xt, t ∈ T } is said to be uniformly (or φ) mixing if φ(τ) → 0

as τ →∞.

The notation of mixing is a stronger memory requirement than that of ergod-

icity for stationary sequences, since given stationarity, mixing implies ergodicity.
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Proposition:

Let {Zt} be a stationary sequence. If α(τ) → 0 as τ → 0, then {Zt} is ergodic.

Definition:

Let a ∈ R.

(i). If α(τ) = O(τ−a−ε) for some ε > 0, then α is of size −a.

(ii). If φ(τ) = O(τ−a−ε) for some ε > 0, then φ is of size −a.

This definition allows precise statements about memory of a random sequence

that we shall relate to moment condition expressed in terms of a. As a get smaller,

the sequence exhibits more and more dependence.5

Theorem (Revised McLeish):

Let {Zt} be a random sequence with

(i) E|Zt|r+δ < 4 < ∞ for some δ > 0 and all t, and

(ii) {Zt} is α-mixing with α of size −r/(r− 1), r > 1, or is a φ-mixing with φ of

size −r/(2r − 1), r ≥ 1. Then

Z̄T
a.s.−→ µ̄T .

For sequences with longer memories, r is greater (r/(r−1) = 1+1/(r−1) = a),

and the moment restrictions increase accordingly. Hence we have a clear trade-off

between the amount of allowable dependence and the sufficient moment restric-

tions.

4.5 Asymptotic Uncorrelated Observations (such as a weakly
stationary ARMA process)

Although mixing is an appealing dependence concept, it shares with ergodicity

the properties that it can be somewhat difficult to verify theoretically and is im-

possible to verify empirically. An alternative dependence concept that is easier

to verify theoretically is a form of asymptotic non-correlation.

Theorem :

Let {Zt} is an asymptotically uncorrelated scalar sequence with means µt ≡ E(Zt)

5Think of T 1 · 1
T and T 2 · 1

T 2 .
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and σ2
t ≡ var(Zt) < ∞. Then

Z̄T
a.s.−→ µ̄T .

Compared with last Theorem, we have relaxed the dependence restriction

from asymptotic independence (mixing) to asymptotic uncorrelation, but we

have altered the moment requirements from restrictions on moments of order

r + δ (r ≥ 1, δ > 0) to second moments.

Example (Law of large numbers for a covariance-stationary process):

Let (Y1, Y2, ..., YT ) represent a sample of size T from a covariance-stationary

process with

E(Yt) = µ, for all t

E(Yt − µ)(Yt−j − µ) = γj, for all t
∞∑

j=0

|γj| < ∞.

Then

ȲT
q.m−→ µ.

Proof:
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To see this, it suffices to show that E(ȲT − µ)2 −→ 0. Since

E(ȲT − µ)2

= E

[
(1/T )

T∑
t=1

(Yt − µ)

]2

= (1/T 2)E{(Y1 − µ)[(Y1 − µ) + (Y2 − µ) + ... + (YT − µ)]

+(Y2 − µ)[(Y1 − µ) + (Y2 − µ) + ... + (YT − µ)]

+(Y3 − µ)[(Y1 − µ) + (Y2 − µ) + ... + (YT − µ)]

+... + (YT − µ)[(Y1 − µ) + (Y2 − µ) + ... + (YT − µ)]}
= (1/T 2){[γ0 + γ1 + γ2 + γ3 + ... + γT−1]

+[γ1 + γ0 + γ1 + γ2 + ... + γT−2]

+[γ2 + γ1 + γ0 + γ1 + ... + γT−3]

+... + [γT−1 + γT−2 + γT−3 + ... + γ0]}
= (1/T 2){Tγ0 + 2(T − 1)γ1 + 2(T − 2)γ2 + ... + 2γT−1}
= (1/T ){γ0 + [(T − 1)/T ](2γ1) + [(T − 2)/T ](2γ2) + ... + [1/T ](2γT−1)}
= (1/T )|γ0 + [(T − 1)/T ](2γ1) + [(T − 2)/T ](2γ2) + ... + [1/T ](2γT−1)|,

then

T · E(ȲT − µ)2 = |γ0 + [(T − 1)/T ](2γ1) + [(T − 2)/T ](2γ2) + ... + [1/T ](2γT−1)| (4)

≤ {|γ0|+ [(T − 1)/T ] · 2|γ1|+ [(T − 2)/T ] · 2|γ2|+ ... + [1/T ] · 2|γT−1|}
≤ {|γ0|+ 2|γ1|+ 2|γ2|+ ...}
< ∞.

So, E(ȲT − µ)2 −→ 0.

4.6 Martingale Difference Sequences

A law of large numbers for martingale difference sequence is the following theorem.

Theorem (Revised Chow):

Let {Zt,Ft} be a martingale difference sequence such that E|Zt|2r < 4 < ∞ for

some r ≥ 1 and all t. Then

Z̄T
a.s.−→ 0.
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5 Central Limit Theory

In this section we study various form of central limit theorem (CLT) from the

concept of convergence in distribution.

The central limit theorem we consider are all of the following form:

Proposition:

Given restriction on the dependence, heterogeneity, and moments of a sequence

of random variables (you may think this sequence as a sample of size T) {Zt},
(Z̄T − µ̄T )

(σ̄T /
√

T )
=

√
T (Z̄T − µ̄T )

σ̄T

L−→ N(0, 1),

where6

Z̄T ≡ 1

T

T∑
t=1

Zt, µ̄T ≡ E(Z̄T ), and σ̄2
T /T ≡ var(Z̄T ) (that is σ̄2

T =
var(

∑T
t=1 Zt)

T
).

As with the law of large numbers, there are natural trade-off among theses re-

strictions. Typically, greater dependence or heterogeneity restrictions is allowed

at the expanse of requiring strengthening moment restriction.

5.1 Independent Identically distributed Observations

As with laws of large numbers, the case of i.i.d. observations is the simplest.

Theorem (Linderberg-Lévy).

Let {Zt} be a sequence of i.i.d. random scalars, with µ ≡ E(Zt) and σ2 ≡
var(Zt) < ∞. If σ2 6= 0, then

√
T (Z̄T − µ̄T )

σ̄T

=

√
T (Z̄T − µ)

σ

=
T−1/2

∑T
t=1(Zt − µ)

σ

L−→ N(0, 1).

Compared with the law of large number for i.i.d. observations, we impose a

single additional requirement, i.e., that σ2 ≡ var(Zt) < ∞. Note that this implies

6To see why this notation, notice that V ar(Z̄T ) = V ar(
P

Zt)
T 2 = V ar(

P
Zt)/T )

T = σ̄2
T

T , that is,
we assume V ar(

∑
Zt) is O(T 1).
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that E|Zt| < ∞.

Proposition:

If the kth moment of a random variable exists, all moments of order less than k

exist.

Proof:

Let fX(x) be the pdf of X. E(Xk) exists if and only if
∫ ∞

−∞
|x|k · fX(x)dx < ∞.

Let 1 ≤ j < k, to prove the theorem we must show that
∫ ∞

−∞
|x|j · fX(x)dx < ∞.

But
∫ ∞

−∞
|x|j · fX(x)dx =

∫ |x|≤1

−∞
|x|j · fX(x)dx +

∫ ∞

|x|>1

|x|j · fX(x)dx

≤
∫ |x|≤1

−∞
fX(x)dx +

∫ ∞

|x|>1

|x|j · fX(x)dx

≤ 1 +

∫ ∞

|x|>1

|x|j · fX(x)dx

≤ 1 +

∫ ∞

|x|>1

|x|k · fX(x)dx < ∞.

5.2 Independent Heterogeneously Distributed Observa-
tions

Several different central limit theorems are available for the case in which our

observations are not identically distributed.

Theorem (Liapounov, revised Lindeberg-Feller)

Let {Zt} be a sequence of independent random variables such that µt ≡ E(Zt), σ2
t ≡

var(Zt) and E|Zt − µt|2+δ < 4 < ∞ for some δ > 0 and all t. If σ̄2
T > δ′ > 0 for

all T sufficiently large, then
√

T (Z̄T − µ̄T )

σ̄T

L−→ N(0, 1).
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Note that E|Zt|2+δ < 4 also implies that E|Zt − µt|2+δ is uniformly bounded.

Note also the analogy with previous results there we obtained a law of large num-

bers for independent random variables by imposing a uniform bound on E|Zt|1+δ

Now we can obtain a central limit theorem imposing a uniform bound on E|Zt|2+δ.

5.3 Dependent Identically Distributed Observations

In the last two section we saw that obtaining central limit theorems for indepen-

dent process typically required strengthening the moments restrictions beyond

what was sufficient for obtaining laws of large numbers. In the class of stationary

ergodic process, not only will we strengthen the moment requirements, but we

will also impose stronger conditions on the memory of the process.

Theorem (Scott):

Let {Zt,Ft} be a stationary ergodic adapted mixingale with γm of size −1.

Then σ̄2
T ≡ var(T−1/2

∑T
t=1 Zt) → σ̄2 < ∞ as T → ∞ and if σ̄2 > 0, then

T−1/2Z̄T /σ̄
L−→ N(0, 1).

5.4 Dependent Heterogeneously distributed Observations

Theorem (Wooldridge-White):

Let {Zt} be a scalar random sequence with µt ≡ E(Zt) and σ2
t ≡ var(Zt) such

that E|Zt|r < 4 < ∞ for some r ≥ 2 for all t and having mixing coefficients φ of

size−r/2(r−1) or α of size−r/(r−2), r > 2. If σ̄2
T ≡ var(T−1/2

∑T
t=1 Zt) > δ > 0

for all T sufficiently large, then
√

T (Z̄T − µ̄T )/σ̄T
L−→ N(0, 1).

5.5 Asymptotic Uncorrelated Observations (such as a sta-
tionary ARMA process)

We now present a central limit theorem for a serial correlated sequence.

Theorem:
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Let

Yt = µ +
∞∑

j=0

ϕjεt−j,

where {εt} is a sequence of i.i.d. random variables with E(ε2
t ) < ∞ and

∑∞
j=0 |ϕj| <

∞. Then

√
T (ȲT − µ)

L−→ N(0,
∞∑

j=−∞
γj).

Proof:

Given this theorem, it suffices to shows that σ̄2
T (= T ·var(ȲT ) = [var(

∑T
t=1 Yt)]/T ) =∑∞

j=−∞ γj) from the general form of CLT.

Note that the assumption
∑∞

j=0 |ϕj| < ∞ implies that
∑∞

j=0 |γj| < ∞ and

means that for any ε > 0 there exist a q such that

2|γq+1|+ 2|γq+2|+ 2|γq+3|+ ..... < ε/2.

From (4) we have
∣∣∣∣∣

∞∑
j=−∞

γj − T · var(ȲT )

∣∣∣∣∣
= |{γ0 + 2γ1 + 2γ2 + 2γ3 + ...}

− {γ0 + [(T − 1)/T ]2γ1 + [(T − 2)/T ]2γ2 + ... + [1/T ]2γT−1}|
≤ (1/T ) · 2|γ1|+ (2/T ) · 2|γ2|+ (3/T ) · 2|γ3|+ ...

+(q/T ) · 2|γq|+ 2|γq+1|+ 2|γq+2|+ 2|γq+3|+ ...

≤ (1/T ) · 2|γ1|+ (2/T ) · 2|γ2|+ (3/T ) · 2|γ3|+ ...

+(q/T ) · 2|γq|+ ε/2.

Moreover, for this given q, we can find an N such that

(1/T ) · 2|γ1|+ (2/T ) · 2|γ2|+ (3/T ) · 2|γ3|+ ... + (q/T ) · 2|γq| < ε/2

for all T ≥ N , ensuring that
∣∣∣∣∣

∞∑
j=−∞

γj − T · var(ȲT )

∣∣∣∣∣ < ε.

This completes the proof.
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5.6 Martingale Difference Sequences

Theorem:

Let {Yt} be a scalar martingale difference sequence with ȲT = (1/T )
∑T

t=1 Yt.

Suppose that

(a). E(Y 2
t ) = σ2

t > 0 with (1/T )
∑T

t=1 σ2
t → σ2 > 0,7

(b). E|Yt|r < ∞ for some r > 2 and all t, and

(c). (1/T )
∑T

t=1 Y 2
t

p−→ σ2,

then
√

T (ȲT − 0)

σ

L−→ N(0, 1).

7A martingale difference sequence is a serially uncorrelated sequence.
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