
Ch. 25 Long Memory Process

While long memory models have only really been used by econometricians since

around 1980, they have played a role in the physical sciences since at least 1950,

with statisticians in fields as diverse as hydrology and climatology long recogniz-

ing the presence of long memory within data recorded over both time and space.

The presence of long memory can be defined from an empirical, data-oriented

approach in terms of the persistence of observed autocorrelations. The extent of

the persistence is consistent with an essential stationary process, but where the

autocorrelations takes far long to decay than the exponential rate associated

with the ARMA class. This phenomenon has been noted in different data sets

by Hurst (1951, 1957), Mandelbrot and Wallis (1968), Mandelbrot (1972), and

Mcleod and Hipel (1978) among others. When viewed as the time series realiza-

tion of a stochastic process, the autocorrelation function exhibits persis-

tence that is neither consistent with an I(1) process nor an I(0) process.

While a considerable amount of work has emphasized the role of persistence of

shocks, most of it has been directed towards testing for the presence of unit roots

in autoregressive representations of univariate and vector processes. However, the

knife-edge distinction between I(0) and I(1) processes can be far too restrictive.

The fractional differenced I(d), d is a fractional number, process can be regarded

as a halfway house between the I(0) and I(1) paradigms. One attractions of long

memory models is that they implies different long run predictions and effects of

shocks to conventional macroeconomics approaches.

1 Definition of Long Memory

There are several possible definitions of properties of ’long memory’. Given a

discrete time series process, Yt with autocorrelations function rj at lag j.

Definition 1:

According to Mcleod and Hipel (1978), the process possesses long memory if the

quantity

lim
T→∞

T∑
j=−T

|rj| (1)
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Ch. 25 1 DEFINITION OF LONG MEMORY

is not finite.

Note that for a stationary and invertible ARMA process having autocorrela-

tions

rk ≈ Aθk, |θ| < 1

for large k, and that these values tends to zero exponentially1 and is hence a short

memory process.

Alternatively, the memory of a process Yt can be expressed in terms of the

behavior of its partial sum

ST =
T∑

t=1

Yt.

Rosenblatt (1956) defines short dependency in terms of a process that satisfies

strong mixing, so that the maximal dependence between two points of a process

become trivially small as the distance between these points increase.

Definition 2:

A process Yt can be defined as having short memory if

σ2 = lim
T→∞

E(T−1S2
T ) (2)

exists and is nonzero, and

T−1/2S[Tr]

σ
=⇒ B(r), for all r ∈ [0, 1], (3)

where [Tr] is the integer part of Tr and B(r) is standard Brownian motion. This

allows departure from covariance stationary, but requires the existence of mo-

ments up to a certain order.

Definition 3:

A wider definition of long memory is to include any process which possesses an

autocovariance function for large k, such that

γk ≈ Ξ(k)k2H−2, (4)

1therefore limT→∞
∑T

j=−T |rj | is finite.
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Ch. 25 1 DEFINITION OF LONG MEMORY

where ≈ denotes approximate equality for large k and where Ξ(k) is any slowly

varying function at infinity 2 and is described in detail by Resnick (1987). H is

the Hurst effect or the parameters appears in the definition of fractional Brown-

ian motion to be discussed below.

Helson and Sarason (1967) show that any process with H > 0 and autoco-

variance function given by (4) violates the strong mixing condition, and hense is

long memory or long range dependent.

2A function f(x) is defined as being regularly varying at infinity with index α if
limt→∞[f(tx)/f(t)] = xα, for all x > 0, so that asymptotically f(x) is a power function.
The function is slowly varying at infinity if α = 0, so that f(x) asymptotically becomes a
constant. f(x) = log(x) is an example of a slowly varying function at infinity.
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Ch. 25 2 FRACTIONAL INTEGRATION PROCESS

2 Fractional Integration Process

As introduced above, these is a need for a family of models which have all the

desirable properties of:

(a) explicitly modeling long-term persistence;

(b) being flexible enough to explain both the short-term and long-term correla-

tion structure of a series;

(c) enabling synthetic series to easily generated from the model.

The aim of this section is to introduce a family of model which does meet

these requirements, by generalizing the well-known ARIMA(p, d, q) model of

Box and Jenkins (1976). The generalization consists of permitting the degree

of differencing d to take any real value rather than being restricted to integral

values; it turns out that for a suitable values of d, specifically 0 < d ≤ 1
2
, these

’fractionally differenced’ process es are capable of modeling long-term persistence.

2.1 Fractional White Noise

We formally defined an ARFIMA(0, d, 0), or a fractional white noise process

to be a discrete-time stochastic process Yt which can be represented as

(1− L)dYt = εt, (5)

where εt is a mean-zero white noise and d is possibly non-integer. The following

theorem give some of the basic properties of the process, assuming for convenience

that σ2
ε = 1.

Theorem 1:

Let Yt be an ARFIMA(0, d, 0) process.

(a) When d < 1
2
, Yt is a stationary process and has the infinite moving average

representation

Yt = ϕ(L)εt =
∞∑

k=0

ϕkεt−k, (6)

where

ϕk =
d(1 + d) · · · (k − 1 + d)

k!
=

(k + d− 1)!

k!(d− 1)!
=

Γ(k + d)

Γ(k + 1)Γ(d)
.
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Ch. 25 2 FRACTIONAL INTEGRATION PROCESS

Here, Γ(·) is a Gamma function. As k →∞, ϕk ∼ kd−1/(d− 1)! ≡ 1
Γ(d)

· kd−1.

(b) When d > −1
2
, Yt is invertible and has the infinite autoregressive representa-

tion

φ(L)Yt =
∞∑

k=0

φkYt−k = εt, (7)

where

φk =
−d(1− d) · · · (k − 1− d)

k!
=

(k − d− 1)!

k!(−d− 1)!
=

Γ(k − d)

Γ(k + 1)Γ(−d)
.

As k →∞, ϕk ∼ k−d−1/(−d− 1)! ≡ 1
Γ(−d)

· k−d−1.

(c) When −1
2

< d < 1
2
, the autocovariance of Yt (σ2

ε = 1) is

γk = E(YtYt−k) =
Γ(k + d)Γ(1− 2d)

Γ(k + 1− d)Γ(1− d)Γ(d)
(8)

and the autocorrelations functions is

rk =
γk

γ0

=
Γ(k + d)Γ(1− d)

Γ(k − d + 1)Γ(d)
. (9)

As k →∞, rk ∼ Γ(1−d)
Γ(d)

· k2d−1.

Proof:

For part (a).

Using the standard binomial expansion

(1− z)−d =
∞∑

k=0

Γ(k + d)zk

Γ(d)Γ(k + 1)
, (how?) (10)

it follows that

ϕk =
Γ(k + d)

Γ(k + 1)Γ(d)
, k ≥ 1.

Using the standard approximation derived from Sheppard’s formula, that for large

j, Γ(j + a)/Γ(j + b) is well approximated by ja−b, it follows that

ϕk ∼ kd−1/Γ(d) = kd−1/(d− 1)! ' Akd−1 (for a given value of d) (11)
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Ch. 25 2 FRACTIONAL INTEGRATION PROCESS

for k large and an appropriate constant A.

Consider now an MA(∞) model given exactly by (11), i.e.,

Yt = A

∞∑

k=1

kd−1εt−k + εt

so that ϕ0 = 1. This series has variance

V ar(Yt) = A2σ2
ε

(
1 +

∞∑

k=1

k2(d−1)

)
.

From the theory of infinity series, it is known that

∞∑

k=1

k−s converges for s > 1 (12)

but otherwise diverges. It follows that the variance of Yt is finite provided d < 1
2
,

but is infinite if d ≥ 1
2
. Also, since

∑∞
k=0 ϕ2

k < ∞ when d < 1/2, the fractional

white noise process is mean square summable and stationary for d < 1
2
.3

The proofs of part (b) is analogous to part (a) and is omitted.

For part (c), See Hosking (1981) and Granger and Joyeux (1980) for the proof

of γk and rk. It is note that

rk =
γk

γ0

=

Γ(k+d)Γ(1−2d)
Γ(k+1−d)Γ(1−d)Γ(d)

Γ(d)Γ(1−2d)
Γ(1−d)Γ(1−d)Γ(d)

=
Γ(k + d)Γ(1− d)

Γ(k − d + 1)Γ(d)
' Γ(1− d)

Γ(d)
k2d−1. (13)

2.1.1 Relations to the Definitions of Long-Memory Process

For 0 < d < 1
2
, the fractionally integrated process, I(d), Yt is long memory in the

sense of the condition (1), its autocorrelations are all positive (Γ(1−d)
Γ(d)

k2d−1) such

that condition (1) is violated 4 and decay at a hyperbolic rate.

For −1
2

< d < 0, the sum of absolute values of the processes autorelations

tends to a constant, so that it has short memory according to definition (1).5

3Brockwell and Davis (1987) show that Yt is convergent in mean square through its spectral
representation.

4Suppose that
∑

an converges. Then lim an = 0. See Fulks (1978), p.465.
5From (12),

∑∞
k=0

Γ(1−d)
Γ(d) k2d−1 converges for 1− 2d > 1 or that d < 0.
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In this situation, the ARFIMA(0, d, 0) process is said to be ’antipersistent’ or to

have ’intermediate memory’, and all its autocorrelations, excluding lag zero, are

negative and decay hyperbolically to zero.

The relation of the second definition of long memory with I(d) process can be

illustrated with the behavior of the partial sum ST in (2), when Yt is a fractional

white noise as in (5). Sowell (1990) shows that

lim
T→∞

V ar(ST )T−(1+2d) = lim
T→∞

E(S2
T )T−(1+2d) = σ2

ε

Γ(1− 2d)

(1 + 2d)Γ(1 + d)Γ(1− d)
.

Hence,

V ar(ST ) = O(T 1+2d),

which implies that the variance of the partial sum of an I(d) process, with d = 0,

grows linearly,i.e., at rate of O(T 1). For a process with intermediate memory with

−1
2

< d < 0, the variance of the partial sum grows at a slower rate than the

linear rate, while for a long memory process with 0 < d < 1
2
, the rate of growth

is faster than a linear rate.

The relation of the third definition of long memory with I(d) process can be

illustrated beginning with the definition of fractional Brownian motion.

Brownian motion is a continuous time stochastic process B(t) with indepen-

dent Gaussian increments. Its derivatives is the continuous-time white noise

process.

Fractional Brownian motion BH(t) is a generalization of these process. The

fractional Brownian motion with parameter H, usually 0 < H < 1, is the (1
2
−

H)th fractional derivatives of Brownian motion. The continuous-time fractional

noise is then defined as B′
H(t), the derivative of fractional Brownian motion; it

may also be thought of as the (1
2
−H)th fractional derivative of the continuous

time white noise,6 to which it reduces when H = 1
2
.

We seek a discrete time analogue of continuous time fractional white noise.

One possibility is discrete time fractional Gaussian noise, which is defined to be

a process whose correlation is the same as that of the process of unit increments

4BH(t) = BH(t)−BH(t− 1) of fractional Brownian motion.

6To see this, consider that B′(t) = εt, B′
H(t) = ε∗t and B′

H(t) = (1 − L)(1/2−H)B′(t). The
fractional white noise is therefore defined as ε∗t = (1 − L)(1/2−H)εt, where εt is a white noise
process.
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The discrete time analogue of Brownian motion is the random walk, Xt defined

by

(1− L)Xt = εt,

where εt is i.i.d.. The first difference of Xt is the discrete-time white noise process

εt. By analogy with the above definition of continuous time white noise we

defined fractionally differenced white noise with parameter H to be the (1
2
−

H)th fractional difference of discrete time white noise. The fractional difference

operator (1− L)d is defined in the natural way, by a binomial series:

(1− L)d =
∞∑

k=0

(
d
k

)
(−L)k = 1− dL− 1

2
d(1− d)L2 − 1

6
d(1− d)(2− d)L3 − ...

=
∞∑

k=0

Γ(k − d)zk

Γ(−d)Γ(k + 1)
. (14)

We write d = H − 1
2
, so that the continuous time fractional white noise with

parameters H has as its discrete time analogue the process Xt = (1− L)−dεt, or

(1− L)dXt = εt, where εt is a white noise process.

With the results above, the fractional white I(d) process is also a long mem-

ory precess according to definition 3 by substitution d = H − 1
2

into (9).

2.2 ARFIMA process

A natural extension of the fractional white noise model (5) is the fractional

ARMA model or the ARFIMA(p, d, q) model

φ(L)(1− L)dYt = θ(L)εt, (15)

where d denotes the fractional differencing parameter, φ(L) = 1− φ1L− φ2L
2 −

...−φpL
p, θ(L) = 1+ θ1L+ θ2L

2 + ...+ θqL
q and εt is white noise. The properties

of an ARFIMA process is summarized in the following theorem.

Theorem 2:

Let Yt be an ARFIMA(p, d, q) process. Then

(a) Yt is stationary if d < 1
2

and all the roots of φ(L) = 0 lie outside the unit circle.
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(b) Yt is invertible if d > −1
2

and all the roots of θ(L) = 0 lie outside the unit

circle.

(c) If −1
2

< d < 1
2
, the autocovariance of Yt, γk = E(YtYt−k) ∼ B · k2d−1, as

k →∞, where B is a function of d.

Proof:

(a). Writing Yt = ϕ(L)εt, we have ϕ(z) = (1 − z)−dθ(z)φ(z)−1. Now the power

series expansion of (1 − z)−d converges for all |z| ≤ 1 when d < 1
2
, that of θ(z)

converges for all z and θi since θ(z) is polynomial, and that of φ(z)−1 converges

for all |z| ≤ 1 when all the roots of φ(z) = 0 lie outside the unit circle. Thus when

all these conditions are satisfied, the power series expansion of ϕ(z) converges for

all |z| ≤ 1 and so Yt is stationary.

(b). The proof is similar to (a) except that the conditions are required on the

convergence of π(z) = (1− z)dφ(z)θ(z)−1.

(c). See Hosking (1981) p.171.

The reason for choosing this family of ARFIMA(p, d, q) process for modeling

purposes is therefore obvious from Theorem 2. The effect of the d parameter on

distant observation decays hyperbolically as the lag increases, while the effects

of the φi and θj parameters decay exponentially. Thus d may be chosen to de-

scribe the high-lag correlation structure of a time series while the φi and θj

parameters are chosen to describe the low-lag correlation structure. Indeed

the long-term behavior of an ARFIMA(p, d, q) process may be expected to be

similar to that of an ARFIMA(0, d, 0) process with the same value of d, since for

very distant observations the effects of the φi and θj parameters will be negligible.

Theorem 2 shows that this is indeed so.

Exercise:

Plot the autocorrelation function for lags 1 to 50 under the following process:

(a) (1− 0.8L)Yt = εt;
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(b) (1− 0.8L)Yt = (1− 0.3L)(1− 0.2L)(1− 0.7L)εt;

(c) (1− L)0.25Yt = εt;

(d) (1− L)−0.25Yt = εt.

2.2.1 Calculation of the Autocovariance Functions of ARFIMA(p, d, q)

Sowell (1992) derives the autocovariance of the stationary ARFIMA(p, d, q)

process. They are complicated functions of hypergeometric functions. Theses

autocovariance are needed for conducting the exact maximum likelihood estima-

tion as well as for generating data in Monte Carlo studies,7 both of which have

been pursued quite extensively in recent years.

Theorem 3 (Sowell 1992):

Let ρj, j = 1, ..., p be the p distinct roots of a stationary AR(p) process with the

p coefficients φ1, φ2, ..., φp, and define

ζj ≡
[
ρj

p∏
i=1

(1− ρiρj)

p∏

m6=j

(ρj − ρm)

]−1

.

Also, consider the autocovariance of an invertible MA(q) process with the q

coefficients θ1, θ2, ..., θq;

ϕi =

q−|i|∑

k=0

θkθk+|i|, i = 0, 1, ..., q,

and the autocovariance of a fractional white noise process (assume σ2
ε = 1):

γk =
Γ(k + d)Γ(1− 2d)

Γ(k + 1− d)Γ(1− d)Γ(d)
, k = 0, 1, 2, .... (16)

Then the autocovariance of the ARFIMA(p, d, q) process as in (15) can be ex-

pressed as

γ∗k = γk

p∑
j=1

ζjA(k, ρj), k = 0, 1, 2, ..., (17)

where

A(k, ρj) =

q∑
i=−q

ϕiB(k, p + i)[ρ2p
j C(p + i− k, ρj) + C(k − p− i, ρj)− 1], (18)

7See section 2.2.3 below.
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B(k, h) =
Γ(1− d + k)Γ(d + k + h)

Γ(d + k)Γ(1− d + k + h)
,

and

C(h, ρj) =
∞∑

s=0

Γ(1− d + h)Γ(d + h + s)

Γ(d + h)Γ(1− d + h + s)
ρs

j .

As we seen the Sowell’s original formula lies in the evaluation of a large num-

ber of hypergeometric functions. Obviously, an efficient algorithm for calculating

such autocovariances is called for. Chung (1994) provides some alternative meth-

ods for the calculation of these autocovariances. We present it in the following.

Theorem 4 (Chung 1994):

The expression for A(k, ρj) in (18) can be expressed alternatively as:

A(k, ρj) = ρp
j

q∑
i=0

ϕiαi(k, ρj), k = 0, 1, 2, ...,

where

αi(k, ρj) = (ρi
j + ρ−i

j )D(k, ρj) +

p+1−i∑
s=1

(ρi−s
j − ρs−i

j )B(k, s) + δi(k, ρj),

with

δi(k, ρj) =





−D(k, ρj), if i = 0∑p−1−i
s=1 (ρ−i−s

j − ρs+i
j )B(k, s), if 0 < i < p− 1

0, if 0 < i = p− 1
ρp

j − ρ−p
j , if i = p

ρi
j − ρ−i

j +
∑i−p

s=1(ρ
i−s
j − ρs−i

j )B(−k, s), if i > p,

and

D(k, ρj) = C(k, ρj) + C(−k, ρj)− 1.

2.2.2 Mean-Reverting of ARFIMA(p, d, q)

In the study of unit root process, the term ’nonstationary’ seems to have the

same meaning with a process that have permeant effect from shock.8 However,

8See section 2.2.3 of Chapter 19.
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in this section, we show that this is not the case. An innovation may have no

long-run impact even on a nonstationary fractionally integrated process.

Consider again the ARFIMA(p, d, q) process

φ(L)(1− L)dYt = θ(L)εt, (19)

where all the roots of φ(L) = 0 and θ(L) = 0 lie outside the unit circle and εt is

i.i.d.(0, σ2
ε).

Model (19) includes I(1); that is, d = 1, as a special case. The distinction

between d = 1 and d < 1 is crucial in terms of mean-reversion property of

Yt. Although the effect of any shock (εt) is known to persist forever for an I(1)

process, it dies out, albeit slowly, for an I(d) process with d < 1, where Yt is

nonstationary when 1
2

< d < 1 from Theorem 1. This can be seen by studying

the moving average representation for (1− L)Yt:

(1− L)Yt = A(L)εt,

where A(L) = 1 + A1L + A2L
2 + ...., derived from

A(L) = (1− L)1−dψ(L), (20)

with ψ(L) = φ(L)−1θ(L). The impact of a unit innovation at time t on the value

of Y at time t+k is equal to 1+A1 +A2 + ...+Ak.
9 For a mean-reverting process,

the infinite impulse response A(1) (= 1 + A1 + A2 + ....) equals 0, implying no

long-run impact of the innovation on the value of Y . Using (10) to find the series

representation for (1− L)1−d, (20) can be written as

A(L) = F (d− 1, 1, 1; L)ψ(L), (21)

where F (·) is the hypergeometric function defined by

F (m, n, p; L) =

∑∞
k=0 Γ(m + j)Γ(n + k)Γ(p)Lk

Γ(m)Γ(n)Γ(p + k)Γ(k + 1)
.

Using some known properties of the hypergeometric function (Gradshteyn and

Ryzhik 1980, pp. 1039-1042), it can be shown that F (d−1, 1, 1, ; 1) = 0 for d < 1.

It follows that

A(1) = F (d− 1, 1, 1, ; 1)ψ(1) = 0

9See also section 2.2.3 of Chapter 19.
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for d < 1.10 Hence an I(d) process with d less than unity is mean-reverting.

Note that when 1
2
≤ d < 1, the Yt process is covariance nonstationary because

its variance is not finite.11 Nonetheless, the Yt process is mean-reverting, since

an innovation has no permanent effect on the value of Yt. This is in contrast

to an I(1) process, which is both covariance nonstationary and not mean-

reverting. For an I(1) process, the effect of an innovation can persistent forever.

2.2.3 How to Simulate an ARFIMA(p, d, q) Process

A sample of size T for the ARFIMA(p, d, q) process (15), y, can be formed

as follows.12 First, a (T × 1) vector, v, consisting of NT (0, IT ) is generated

from Gauss. Then the desired T × T covariance matrix Σ is constructed. This

is simply the Toeplitz matrix formed from the autocovariances, which is given

by (17).13 We next obtain the Choleski factorization of Σ, Σ = PP′, where

P is lower triangular. Finally the sample, y, is generated as y = Pv; clearly

Cov(y) = PP′ = Σ. Construction of y in this way eliminates dependence on pre-

sample startup values, which can be particularly problematic with long-memory

models.

10Can this result be look apparent form (11) that when d < 1, limj→∞ ϕj = 0 ?
11The fact is from its infinite moving average coefficients are not square-summable.
12In fact, this method is applicable to the simulation of any sample for the stationary ARMA

model.
13The elements of an m × m Toeplitz matrix A satisfy aij = aj−i for scalars

a−m+1, a−m+2, ..., am−1; that is, A has the form

A =




a0 a1 a2 . . . am−2 am−1

a−1 a0 a1 . . . am−3 am−2

a−2 a−1 a0 . . . am−4 am−3

. . . . . . . .

. . . . . . . .

. . . . . . . .
a−m+2 a−m+3 a−m+4 . . . a0 a1

a−m+1 a−m+2 a−m + 3 . . . a−1 a0




.
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2.3 Fractional Brownian Motion

Mandelbrot and Van Ness (1968) introduced fractional Brownian Bd(r), for d ∈
(−1

2
, 1

2
) and 0 ≤ r ≤ 1:

Bd(r) ≡ 1

Γ(1 + d)V
1
2

d

(∫ r

0

(r − x)ddB(x) +

∫ 0

−∞
[(r − x)d − (−x)d]dB(x)

)
. (22)

Here, B(r) is the standard Brownian motion and

Vd ≡ 1

Γ(1 + d)2

(
1

1 + 2d
+

∫ ∞

0

[(1 + τ)d − τ d]2dτ

)
=

Γ(1− 2d)

(1 + 2d)Γ(1 + d)Γ(1− d)
,

this scale constant being chosen to make E(Bd(1))2 = 1. It is easily verified that

E(Bd(r)) = 0.14 Note that Bd(r) = B(r) when d = 0. For d 6= 0, Bd(r) can be

formally interpreted as a fractional derivative of B(r) in the sense of Weyl (1917).

A fractional Brownian motion differs from a standard Brownian motion B(r)

by having correlated increments, positively correlated when d > 0 and nega-

tively correlated otherwise. Thus, it is easily verified from the definition in (22)

that

E(Bd(r + δ)−Bd(r))
2 = δ2d+1

for r ∈ [0, 1) and 0 < δ < 1− r and hence that, for example,

E[Bd(r)(Bd(r + δ)−Bd(r))] =
1

2
((r + δ)2d+1 − r2d+1 − δ2d+1), (how?) (23)

when d = 0, this result is back to standard Brownian motion which has indepen-

dent increment. (See p.6 of Chapter 21.)

2.4 FCLT of Fractional Integrated Process

It is often possible to characterize limiting distributions of discrete stochastic

processes as functions of continuous stochastic processes by applying functional

central limit theorems. The functional central limit theorems that apply to frac-

tionally integrated times series are presented in Davydov (1970), Avram and

Taqqu (1987), Mielniczuk (1997), Davidson and DeJong (2000), Chung (2002)

14This is what Marinucci and Robinson (1999) called ’Type I’ fractional Brownian motion.
There is another form of definition that is called ’Type II’ fractional Brownian.
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and Wang, Lin, and Gulati (2003) et.al. and the continuous stochastic process

is the fractional Brownian motion. We present three of the applicability of these

functional central limit theorems to fractionally integrated series in the followings.

Theorem 5 (Davydov 1970, Fractional (differenced) i.i.d. process):

A fractional white noise process Yt, is written as

(1− L)dYt = εt,

where εt is i.i.d. with zero mean and variance σ2
ε and E|εt|r < ∞ for r ≥

max[4,−8d/(1 + 2d)]. Define the variance of the partial sum of Yt by σ2
T =

V ar(
∑T

t=1 Yt). Then for −1
2

< d < 1
2
,

Bd,T (r) =

∑[Tr]∗
t=1 Yt

σT

⇒ Bd(r).

This is a generalization of Donsker Theorem. When d = 0, σ2
T = Tσ2

ε , and then

BT (r) =

∑[Tr]∗
t=1 Yt

T 1/2σε

=
T−1/2

∑Tr
t=1 Yt

σε

⇒ B(r)

as (10) of Chapter 21.

As McLeish has extended Donsker’s Theorem to the case that the innovation

is a mixing process, Davidson and DeJong (2000) extend the Davydov’s FCLT

results to the case where the innovation after d differencing is a mixing process.

We present them in the following.

Theorem 6 (Davidson and DeJong 2000, Fractional (differenced) mixing process):

Let the fractionally integrated Yt be

(1− L)dYt = ut,

where ut satisfies the following assumption:

(a) has zero mean;

(b) satisfies supt E|εt|γ < ∞ for some γ > 2;

(c) is stationary, 15 and 0 < σ2
u < ∞, where σ2

u = limT→∞ T−1
∑T

t=1

∑T
s=1 E(utus);

16

15This is a stronger condition than Phillips (1987)’s. This condition excludes any possible
heterogeneous innovation.

16Hence, ut is a short memory process according to this assumption.
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(d) is strong mixing with mixing coefficients αm that satisfy
∑∞

m=1 α
1−2/γ
m < ∞.

Define the variance of the partial sum of Yt by σ2
T = V ar(

∑T
t=1 Yt). Then for

−1
2

< d < 1
2
,

Bd,T (r) =

∑[Tr]∗
t=1 Yt

σT

⇒ Bd(r).

On the other hand, Wang et.al. (2003) extend Davydov’s FCLT results para-

metrically. In particular, they assume that the innovation after d differenceing is

a MA(∞) process.

Theorem 7 (Wang, Lin, and Gulati 2003, Fractional (differenced) MA(∞)

process):

Let the fractionally integrated Yt be

(1− L)dYt = vt,

where vt is a linear process of an i.i.d. random variable, say ηt, i.e.

vt =
∞∑

j=0

ϕjηt−j, t = 1, 2, ...

with
∑∞

j=0 j(1/2)−d|ϕj| < ∞,
∑∞

j=0 ϕj 6= 0 and E|ηt|max{2,2/(1+2d)} < ∞.

Define the variance of the partial sum of Yt by σ2
T = V ar(

∑T
t=1 Yt). Then for

−1
2

< d < 1
2
,

Bd,T (r) =

∑[Tr]∗
t=1 Yt

σT

⇒ Bd(r).

2.5 LLN and CLT of Fractional Integrated Process, See
Hosking, 1996

In this section we consider an interesting question that does the laws of large

number (LLN) and the central limit theorem (CLT) still holds for long memory

process whose autocovariance are not absolutely summable.
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Let Yt be a covariance stationary process with mean E(Yt) = µ and autoco-

variance γk which satisfy

γk =
Γ(k + d)Γ(1− 2d)

Γ(k + 1− d)Γ(1− d)Γ(d)
∼ λk−α, (24)

where λ = Γ(1−2d)
Γ(1−d)Γ(d)

> 0, α = 1− 2d and 0 < α < 1.

The sample mean of a realization Yt, t = 1, 2, ..., T of a times series is

Ȳ = T−1

T∑
t=1

Yt,

and has mean µ and variance

V ar(Ȳ ) = T−2

T∑
t=1

T∑
j=1

γt−j.

In the following we consider the large sample properties of the sample mean of

long memory times series. We state the main limit theorems here in Hosking’s

(1996) form.

Theorem 8 (Hosking 1996, LLN):

Let Yt, t = 1, 2, ..., T be a sample of size T from a covariance stationary times

series whose autocovariance function γk satisfies (24). Then

V ar(Ȳ ) ∼ 2λT−α

(1− α)(2− α)
.

Proof (Informal):

From Sowell’sa results that the variance of the partial sum of an fractional white

noise is O(T (1+2d)), then

V ar(Ȳ ) = V ar

(∑
Yt

T

)
=

T 1+2d Γ(1−2d)
(1+2d)Γ(1+d)Γ(1−d)

T 2
= T 2d−1 Γ(1− 2d)

(1 + 2d)Γ(1 + d)Γ(1− d)

≡ 2λT−α

(1− α)(2− α)
.

Although the long memory process violate the mixing condition, however from

the result above, E(Ȳ ) = µ and V ar(Ȳ ) is op(1), it follows that there exist the

laws of large number for the long memory (LLN) process:

Ȳ
m.s.−→ µ,
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which implies

Ȳ
p−→ µ.

Theorem 9 (Hosking 1996, CLT):

In addition to (24), suppose that the time series Yt also satisfies

Yt = µ +
∞∑

j=0

ψjat−j,

where at is a white noise process consisting of independent and identically dis-

tributed random variables with second moment exists E(a2
t ) < ∞. We further

assume that in this presentation17

ψj ∼ δj−β, δ > 0, β =
1

2
(1 + α).

Then the central limit theorem (CLT) for this long memory process is expressed

as

Tα/2(Ȳ − µ)
L−→ N

(
0,

2λ

(1− α)(2− α)

)
.

17i.e. −β = −1/2− (1/2)α = −1/2− (1/2)(1− 2d) = d− 1 as in (6).
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3 Estimation and Testing

3.1 Semi-parametric Estimation of d in the Frequency

3.1.1 Spectral Analysis

Let Yt be a covariance stationary process with mean E(Yt) = µ and jth auto-

covariance γj. Assume that these autocovariance are absolutely summable, the

autocovariance-generating function is given by

gY (z) =
∞∑

j=−∞
γjz

j, (25)

where z denotes a complex scalar. If () is divided by 2π and evaluated at some z

represented by z = e−iω for i =
√−1 and ω a real scalar, the result is called the

population spectrum of Y :

sY (ω) =
1

2π
gY (e−iω) =

1

2π

∞∑
j=−∞

γje
−iωj. (26)

Note that the spectrum is a function of ω: given any particular value of ω and

a sequence of autocovariance {γj}∞j=−∞, we could in principle calculate the value

of sY (ω).

De Moivre’s theorem18 allows us to write e−iωj as

e−iωj = cos(ωj)− i · sin(ωj). (27)

Substituting (27) into (26), it appears that the spectrum can equivalently be

written as

sY (ω) =
1

2π

∞∑
j=−∞

γj[cos(ωj)− i · sin(ωj)]. (28)

Note that for a covariance-stationary process, γj = γ−j. Hence, (28) implies

sY (ω) =
1

2π
γ0[cos(0) + i · sin(0)]

+
1

2π

{ ∞∑
j=1

γj[cos(ωj) + cos(−ωj)− i · sin(ωj)− i · sin(−ωj)]

}
.(29)

18See Alpha Chiang (1984) p.522.
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Next, we make use of the following results from trigonometry:

cos(0) = 1

sin(0) = 0

sin(−θ) = − sin(θ)

cos(−θ) = cos(θ).

Using these relations, (29) simplifies to

sY (ω) =
1

2π

{
γ0 + 2

∞∑
j=1

γj cos(ωj)

}
. (30)

Assuming that the sequence of autocovariances {γj}∞j=−∞ is absolutely summable,

expression (30) implies that the population spectrum exists and that sY (ω) is a

continuous, real-valued function of ω. It is possible to go a bit further and show

that if the γj’s represent autocovariance of a covariance-stationary process, then

sY (ω) will be nonnegative for all ω. Since cos(ωj) = cos(−ωj) for any ω, the

spectrum is symmetric around ω = 0. Finally, since cos[(ω + 2πk) · j] = cos(ωj)

for any integers k and j, it follows from (30) that sY (ω + 2πk) = sY (ω) for any

integer k. Hence, the spectrum is a periodic function of ω. If we know the value

of sY (ω) for all ω between 0 and π, we can infer the value of sY (ω) for any ω.

3.1.2 The Spectrum of a Linear Transformation

Suppose we transform Y according to

Xt = h(L)Yt,

where

h(L) =
∞∑

j=−∞
hjL

j

and

∞∑
j=−∞

|hj| < ∞.

Recall from Section 4.1 of Chapter 14 that the autocovariance-generating function

20 Copy Right by Chingnun Lee r 2005



Ch. 25 3 ESTIMATION AND TESTING

of X can be calculated from the autocovariance-generating function of Y using

the formula

gX(z) = h(z)h(z−1)gY (z). (31)

The population spectrum of X is thus

sX(ω) =
1

2π
gX(e−iω) =

1

2π
h(e−iω)h(eiω)gY (e−iω). (32)

Substituting (32) into (31) reveals that the population spectrum of X is related

to the population spectrum of Y according to

sX(ω) = h(e−iω)h(eiω)sY (ω). (33)

Operating on a series Yt with the filter h(L) has the effect of multiplying the

spectrum by the function h(e−iω)h(eiω).

For the ”difference operator” h(L) = (1−L) the function h(e−iω)h(eiω) would

be

h(e−iω)h(eiω) = (1− e−iω)(1− eiω)

= 1− eiω − e−iω + 1

= 2− 2 · cos(ω),

where the line follows from the fact that

e−iω + eiω = cos(ω)− i · sin(ω) + cos(ω) + i · sin(ω) = 2 · cos(ω).

To find the value of the population spectrum of X at any frequency ω, we first find

the value of the population spectrum of Y vat ω and then multiply by 2−2·cos(ω).

For example, the spectrum at frequency ω = 0 is multiplied by zero, the spec-

trum at frequency ω = π/2 is multiplied by 2, and the spectrum at frequency

ω = π is multiplied by 4. Differencing the data removes the low-frequency

components and accentuates the high-frequency components.
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3.1.3 Spectrum of an I(d) process

Suppose that

(1− L)dYt = Xt,

where Xt is a stationary ARMA process. If Xt has spectrum sX(ω), then Yt

does not strictly posses a spectrum,19 but from the filtering considerations the

spectrum of Yt can be thought of as

sY (ω) = |1− z|−2dsX(ω), ω 6= 0,

where z = e−iω.

3.1.4 GPH Estimator

Geweke and Porter-Hudak (1983), henceforth GPH, suggested a semiparametric

estimation of the fractional differencing estimator, d, that is based on a regres-

sion of the ordinates of the log spectral density on trigonometric function. The

estimator exploit the theory of linear filters to write the process (1−L)dYt = ut,

where ut ∼ I(0), as

sY (ω) = |1− e−iω|−2dsu(ω), (34)

where sY (ω) and su(ω) are the spectral densities of Yt and ut respectively.

Consider a sample series of Yt of size T . Taking logarithms of (34) and eval-

uating at harmonic frequencies ωj = 2πj/T (j = 0, 1, ..., T − 1), we have

ln(sY (ωj)) = ln(su(0))− d ln(4 sin2(ωj/2)) + ln[su(ωj)/su(0)]. (35)

For low-frequency ordinates ωj near 0, say j ≤ n < T , the last term is negligible

compared with the other terms. Adding I(ωj), the periodogram at ordinate j, to

both side of (36) yields

ln(I(ωj)) = ln(su(0))− d ln(4 sin2(ωj/2)) + ln[I(ωj)/sY (ωj)]. (36)

This suggest estimating d using a simple linear regression equation

ln(I(ωj)) = β0 + β1 ln(4 sin2(ωj/2))εj, j = 1, 2, ..., n, (37)

19Since a I(d) process Yt, it is long memory such that its autocovariance is not absolutely
summable.
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where εj equal ln[I(ωj)/sY (ωj)], is asymptotically i.i.d. across harmonic frequen-

cies and n = g(T ) is an increasing function of T . The theoretical asymptotic

variance of εj is known to be equal to π2/6, which is often imposed in estimation

to raise efficiency. Under some regularity conditions on g(T ), satisfied by, for

example, T ν for 0 < ν < 1, Geweke and Porter-Hudak (1983) showed that the

least-square estimate of β1 provides a consistent estimate of d and hypothesis

testing concerning the value of d can be based on the t statistics of the regression

coefficient.
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3.2 Exact MLE Estimation of an Gaussian ARFIMA(p, d, q)
Model, Sowell

Consider a stationary normally distributed fractionally integrated time series Yt

generated by the model by the following ARFIMA(p, d, q) model

φ(L)(1− L)dYt = θ(L)εt, (38)

where d denotes the fractional differencing parameter, φ(L) = 1− φ1L− φ2L
2 −

...− φpL
p, θ(L) = 1 + θ1L + θ2L

2 + ... + θqL
q and εt ∼ i.i.d. N(0, σ2). Attention

will be restricted to the class of models which satisfy the following assumptions:

(a). The roots of φ(L) = 0 and θ(L) = 0 are outside the unit circle.

(b). d < 1/2,

(c). The roots of φ(L) = 0 are simple.

Now let yT be a sample of T observations such that yT = [Y1 Y2 ... YT ]′ and

yT ∼ N(0,Σ), with logarithm of the likelihood can be expressed as

L(d, φ1, φ2, ..., φp, θ1, θ2, ..., θq, σ
2) = −T

2
log 2π − 1

2
log |Σ| − 1

2
y′TΣ−1yT ,

where stationarity from assumption (b) implies that the covariance matrix is a

Toeplitz form

Σ = [γj−i] for i, j = 1, 2, ..., T,

and γk is the one as in (17). Sowell (1992) was able to derive the full maximum

likelihood estimator for this ARFIMA(p, d, q) model from this log-likelihood

functions which can be evaluated on a computer. However, it is nevertheless com-

putationally demanding, with every iteration of the likelihood requiring inversion

of a T -dimensional covariance matrix and having each element a non-linear func-

tion of hypergeometric functions.

3.2.1 Asymptotic Distribution of MLE

Let θ = (φ1, φ2, ..., φp, θ1, θ2, ..., θq, d)′ denote the true parameter value where

without loss of generality it is assumed that σ2 = 1. Li and McLeod (1986) de-

rive the asymptotic distribution of the MLE, θ̂ of this ARFIMA(p, d, q) model.
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Theorem 10 (Li and McLeod, 1986):

The asymptotic distribution of
√

T (θ̂ − θ) is normal with mean zero and covari-

ance matrix I−1, where

I =

[
Ip,q J
J′ π2/6

]
, (39)

here, J = [γud(0), ..., γud(p−1), γvd(0), ..., γvd(q−1)], and Ip,q is the usual informa-

tion matrix of the autoregressive-moving average process on (φ1, φ2, ..., φp, θ1, θ2, ..., θq).

Note that the information on d is independent of the ARMA parameter value.

The above result holds when µ is known. When the mean µ is estimated by

the maximum likelihood method the situation is more complicated and a simi-

lar result has not yet been obtained. As pointed out by the referee of Li and

McLead’s paper, the estimator of µ is converge at a slower rate (T 1/2−d, d > 0)

than20 the other parameter estimator which are all T 1/2.

3.2.2 Small Sample Properties

Sufficient conditions for the consistency and asymptotic normality of the exact

maximum likelihood estimators are presented in Dahlhaus (1989). However, be-

cause the fractional differencing parameter captures long-cycle characteristics of

a series, asymptotic properties of MLE may be of questionable use in small sam-

ples. To discover the small sample properties, Monte Carlo simulation was used

to compare different estimation procedures. Sowell finds that the MLE gener-

ally had smaller bias and MSE when the true µ = 0. However, the study by

Cheung and Diebold (1993) noted that the unexpected performance of Sowell’s

full MLE of the fractional-differencing parameter d when µ is unknown in an

ARFIMA(0, d, 0) model.

20See the results of Theorem 9.
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3.3 Conditional MLE Estimation of an Gaussian ARFIMA(p, d, q)
Model, CSS, Chung and Baillie, 1993

Chung and Baillie (1993) consider the properties of an alternative conditional

sum-of-squares (CSS) estimator of the model (38) (with a unknown µ) which

minimize (see also Chapter 17, eq. (18))

S(d, µ, φ1, φ2, ..., φp, θ1, θ2, ..., θq, σ
2) =

1

2
log σ2 +

1

2σ2

T∑
t=1

ε2
t

=
1

2
log σ2 +

1

2σ2

T∑
t=1

[φ(L)θ(L)−1(1− L)d(Yt − µ)]2.

If the initial observations Y0, Y−1, ... are assumed fixed, Chung and Baillie (1993)

show that minimizing the conditional sum-of-square function will asymptotically

equivalent to MLE. The minimum CSS procedure in the context of ARFIMA

processes was originally suggested by Hosking (1984). It is worth noting that sim-

ilar estimation methods have been implemented in the stationary and invertible

class of ARMA models. For an infinite number of observations the CSS estimator

will be equivalent to MLE. Similar results for ARMA processes are provided by

Pierce (1971).

3.3.1 Asymptotic equivalence of CSS and MLE

Chung and Baillie (1993) show setting the initial values Y 0, Y−1, ... to zero is im-

material in examining the asymptotic distribution of the CSS estimator in the

simple fractionally integrated white-noise ARFIMA(0, d, 0) model. In particular

they show that the asymptotic variance of CSS estimator d̂CSS is the same as

that of the MLE, which is 6/π2 as shown in (39).

3.3.2 Small Sample Properties

Some results concerning the small sample performance of the CSS estimator are

reported in Chung and Baillie (1993). They conclude that for the ARFIMA(0, d, 0)

model with T = 100 and with µ unknown, CSS is extremely similar to Sowell’s

full MLE. For the ARFIMA(p, d, q) model with unknown mean and complicated

ARMA dynamics, i.e., p, q > 2, the CSS estimator can produce substantially

biases in a sample of 300. The estimation of the intercept µ can substantially
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affect the properties of the other parameter estimates. However, the CSS esti-

mator performs quite well for ARFIMA models with known mean parameter

and T = 500. They conclude that the assumption of µ being known is far from

innocuous. The estimation of µ in small sample sizes corrupts the CSS estimates

of the other parameters. The resulting bias will be sufficiently large to make

inference extremely unreliable.

27 Copy Right by Chingnun Lee r 2005



Ch. 25 4 ISSUES RELATING TO UNIT ROOT AND COINTEGRATION

4 Issues Relating to Unit Root and Cointegra-

tion

4.1 Power of Unit Root Test Against Fractional Alterna-
tive

See Lee and Shie (2004) for the generalized fractional unit root distribution.

4.1.1 Dickey-Fuller Test

Diebold and Rudebusch (1991) examine the properties of Dickey-Fuller unit root

tests under fractionally-integrated alternatives and find that these tests have quite

low power. Print p.157-158.

4.1.2 Augmented Dickey-Fuller Test

Hassler and Wolters (1994) concerned with testing the hypothesis H0 : β = 1 in

the model

Xt = βXt−1 + εt, (t = 1, 2, ..., T ) (40)

where the disturbance are stationary, but fractionally integrated, (1 − L)dεt =

ut, ut ∼ i.i.d.(0, σ2). One is interested in the power of the Augmented Dickey

Fuller test, i.e. the conventional t-test of H0; β = 1 in

Xt = βXt−1 + ϕ14Xt−1 + · · ·+ ϕ4Xt−p + εtp, (41)

where p →∞ as T →∞.

Hassler and Wolters (1994) show that the power of this test decrease quite

drastically as p increase. They also conjecture that this test is not consistent

against fractional alternatives, the rationale being that, as p → ∞, the εtp are

approaching the independent u′ts from (1− L)dεt = ut:from

(1− L)d+1Xt =
∞∑

j=0

djXt−j

where

∞∑
j=0

dj = 0, d0 = 1.

28 Copy Right by Chingnun Lee r 2005



Ch. 25 4 ISSUES RELATING TO UNIT ROOT AND COINTEGRATION

One can deduce the following relationships for the coefficients and disturbance in

(41):

β = −
p+1∑
j=1

dj, ϕj =

p+1∑
j=i+1

dj and εtp = ut +
∞∑

j=p+1

Xt−j.

Therefore, as p →∞, we have β → 1 and εtp
p−→ ut, and one might expect that

the t− test of H0 : β = 1 in (41) behaves approximately as s standard t-test does

(i.e. it does not reject with increasing probability). Print p.4.

Kramer (1998) argue this intuition is misleading by showing that if p does

not tend to infinity too fast, the conventional t-statistic is consistent against frac-

tional alternatives.

4.1.3 Phillips-Perron Test

See Lee and Shie (2004).
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4.2 Fractional Cointegration

In the usual framework of cointegration we have two series Yt and Xt which

are I(1) and the linear combination of Yt and Xt which is I(0). However, a

broader definition of fractional cointegration is that there exists an I(d−b) linear

combination of I(d) series with b ≥ 0. Under this definition a continuous measure

of cointegration can provide more information than the I(1)/I(0) framework.

In the past two decades, economists have developed a number of tools to

examine whether economic variables stochastically trend together in ways that

are predicted by economic theory—most notably by a cointegration test. The

single equation testing procedure of Engle and Granger (1987) and the multi-

variate testing procedures of Johansen (1988, 1991) have become the two most

popular methods of testing cointegration. They both rely on the dichotomy of

a I(1)/I(0) in the equilibrium error (variables that are linearly combined by a

cointegrating vector), where I(1) and I(0) stand for the integration of order one

and zero, respectively. After the appearance of a unit root21 in all the data series

is considered, Engle and Granger22 (1987) suggest unit root tests on the residuals

from the ordinary least squares estimator (OLS) of a single cointegrating vector.

Phillips and Durlauf (1986) and Stock (1987) show this OLS estimator to be su-

per consistent, while in Johansen’s (1988, 1991) methodology, a Gaussian vector

autoregression (VAR) is considered23 from which one can test for the existence

of one or more cointegrating vectors.

Empirical evidence such as from Diebold, Husted, and Rush (1991) and Baillie

and Bollerslev (1994a) however indicate that the equilibrium error may respond

more slowly to shocks, so that deviations from equilibrium are more persistent

than from a stationary I(0) process. Indeed, according to Granger (1986), there is

no requirement for the equilibrium error in a cointegration relationship to mimic

an I(0) process, as also shown by the method proposed by Engle and Granger

(1987) and Johansen (1988, 1991).

Cheung and Lai (1993a) first model the equilibrium error to be a fractionally-

integrated, I(d) process as introduced by Granger and Joyeux (1980) and Hosk-

21Banerjee et al. (1993), Stock (1994) and Phillips and Xiao (1998) survey many of the most
popular methods on an unit root test.

22There does exist difficulties with non-standard distributions for hypothesis tests about this
single cointegration vector that are due to non-zero correlation between the regressor and the
disturbance. Related approaches to correct this correlation are suggested by Stock and Watson
(1993) and Phillips and Hansen (1990).

23Lutkepohl and Claessen (1997)’s cointegrated VARMA and Saikkonen and Luukkonen
(1997)’s infinite order non-gaussian VAR models are two efforts that ease Johansen’s assump-
tion.
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ing (1981) in their application of testing purchasing power parity (PPP) theory.

Subsequent applications of so-called fractional cointegration, (e.g., Baillie and

Bollerslev (1994b), Masih and Masih (1995), Booth and Tse (1995), Hsueh and

Pan (1998), Masih and Masih (1998), and Choudhry (1999) etc.) all entail a

two-step testing procedure. Given that variables do share common integrated

processes (usually I(1)), they conduct an OLS estimator of a fractional cointe-

grating vector and then examine whether the residuals from the OLS are I(d),24

and d is a real number less than one. The main differences in those applications

are the estimation procedure of fractional difference parameter d, either by the

semi-nonparametric procedure of Geweke and Porter-Hudak (1983) or the max-

imum likelihood estimator (MLE) of Sowell (1992), or the conditional sum of

squares estimator (CSS) of Chung and Baillie (1993). However, a main drawback

of those empirical applications is in the impossibility of hypothesis testing about

the fractional cointegration vector that has made testing economic relationship

impossible. This paper originates from this hypothesis testing problem.

To investigate the asymptotic properties of the OLS estimator of a fractional

cointegration vector, Cheung and Lai (1993) show the consistency of this estima-

tor. Tsay (2000) further derives the convergence rate of this estimator. Robin-

son and Marinucci (2001) first characterize the limiting distribution of both the

OLS estimator and the narrow-band least square (NBLS) estimator of the frac-

tional cointegration vector. These limiting distributions are characterized as a

function of ”Type II fractional Brownian Motion” (see Marinucci and Robinson

(1999)). They show that the NBLS estimator demonstrates advantages over the

OLS estimator in term of bias elimination and convergence rates in some cases
25. However, under the case of fractional cointegration in a set of I(1) variables

with the equilibrium error being I(d), d < 1, it is found that these two estimators

make no asymptotic difference. The OLS and NBLS estimators of the fractional

cointegration vector have the same convergence rate and limiting distribution.

24In another way, Dueker and Startz (1998) illustrate a cointegration testing methodology
based on the joint estimates of the fractional orders of integration of a cointegration vector and
its parent series.

25The cases depend on the order of integration in the regressand, regressor, and the error
term. Detailed discussion of these cases could be found in Robinson and Marinucci (2001)

31 Copy Right by Chingnun Lee r 2005



Ch. 25 4 ISSUES RELATING TO UNIT ROOT AND COINTEGRATION

4.2.1 Asymptotics of OLS Estimator of Fractional Cointegration

Consider two time series , Xt and Yt, which are I(d) and are fractionally cointe-

grated of order (d, b)such that there exists a β that

Yt = βXt + εt,

where εt is I(d− b) with d > 1
2

and d ≥ b > 0. The least squares estimator of β

is given by

β̂ = β +

∑T
t=1 Xtεt∑T
t=1 X2

t

. (42)

The convergence rate of β̂ thus depends on theses of
∑T

t=1 Xtεt and
∑T

t=1 X2
t .

This is examined in two possible situations:

(a). (d− b ≥ 1
2
). By the Cauchy-Schwarz inequality, we have

T∑
t=1

X2
t

T∑
t=1

ε2
t ≥

(
T∑

t=1

Xtεt

)2

. (43)

This implies that

(
T∑

t=1

X2
t /T 2d

)(
T∑

t=1

ε2
t /T

2(d−b)

)
≥

(
T∑

t=1

Xtεt/T
2d−b

)2

. (44)

Since it is known that26

T∑
t=1

X2
t = O(T 2d) and

T∑
t=1

εt = O(T 2(d−b)), (45)

Equation (44) implies that
∑T

t=1 Xtεt = O(T τ ) with τ ≤ 2d− b. In other words,∑T
t=1 X2

t /T 2d is bounded, and
∑T

t=1 Xtεt/T
2d−b+δ converges in probability to 0

for all δ > 0. It then follows from (42) that

T b−δ(β̂ − β) =

∑T
t=1 Xtεt/T

2d−b+δ

∑T
t=1 X2

t /T 2d
(46)

converges in probability to 0 for all δ > 0.

(b). (0 ≤ d− b < 1
2
). In this case

T∑
t=1

X2
t = O(T 2d) and

T∑
t=1

εt = O(T ), (47)

26See Lemma A.1, (b) of Lee and shie (2004), p.297.
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since εt is I(d − b), which is stationary process for d − b < 1
2
. Applying the

Cauchy-Schwarz inequality, (43) yield
(

T∑
t=1

X2
t /T 2d

)(
T∑

t=1

ε2
t /T

)
≥

(
T∑

t=1

Xtεt/T
d+1/2

)2

. (48)

This suggests that
∑T

t=1 Xtεt = O(T τ ) with tau ≤ d + 1
2
. A tighter bound,

however, can be obtained by observing that

T∑
t=1

Xtεt/T
2d−b (49)

converges in distribution to some functions of Brownian motions, following from

the functional central limit theorem. This implies that
∑T

t=1 Xtεt = O(T τ ) with

tau ≤ 2d− b, so the result in (46) still hold.

4.2.2 Empirical Application, I(1− b) cases

(a). Cheung and Lai (1993):

This study examines the relevance of long-run PPP using a fractional cointe-

gration approach that integrated the notions of cointegration and of fractional

differencing. In particular, they estimated the model:

spt = α̂0 + α̂1pt + et,

where spt is the foreign price index converted to domestic currency units, pt is

the domestic price index, α̂i, i = 1, 2 is the OLS estimators and et is the OLS

residuals. Given that the unit root hypothesis can not be rejected on spt and pt,

we estimate the fractional differencing parameter of et. Empirical results show

that all of the estimates of d lie between 0 and 1, suggesting possible fractional

integration behavior of et, i.e., fractional cointegration behavior exists between

spt and pt.

(b). Baillie and Bollerslev (1994):

This study examine whether a group of exchange rate are cointegrated. In par-

ticular, they estimated the model:

WGt = α̂0 + α̂1UKt + α̂2JPt + α̂3CNt + α̂4FRt + α̂5ITt + α̂1SWt + et,

and performed the CSS to estimate the fractional differencing parameter on the

cointegrating residual et They get an estimate of d = 0.89 which is significantly

less than one.
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4.3 Regression with I(d) Regressors and Disturbance

Chung (2002) find that, even though all the regressors (one of which is I(d1), 0 <

d−1 < 1/2) and the disturbance (I(d2), 0 < d2 < 1/2) are stationary and ergodic,

the join long memory in one single regressor and in the disturbance (d1+d2 > 1/2)

can invalidate the usual asymptotic theory for OLS estimation. Specifically, the

convergence rates of the OLS estimators become slower, the limits are not nor-

mal, and the standard t and F tests are all collapse.

4.3.1 MLE of Fractional Cointegration

Dueker and Startz (1998)

4.4 Fractional DF test Econometrica 2003
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