
Ch. 24 Johansen’s MLE for Cointegration

We have so far considered only single-equation estimation and testing for cointe-

gration. While the estimation of single equation is convenient and often consis-

tent, for some purpose only estimation of a system provides sufficient information.

This is true, for example, when we consider the estimation of multiple cointe-

grating vectors, and inference about the number of such vectors. This chapter

examines methods of finding the cointegrating rank and derive the asymptotic

distributions. To develop these results, we first begin with a discussion of canon-

ical correlation analysis.

1 Canonical Correlation

1.1 Population Canonical Correlations

Let the (n1 × 1) vector yt and the (n2 × 1) vector xt denote stationary ran-

dom vector that are measured as deviation from their population means, so that

E(yty
′
t) represent the variance-covariance matrix of yt. In general, there might

be complicated correlations among the element of yt and xt, i.e.

E

[[
yt

xt

] [
yt

xt

]′]
=

[
E(yty

′
t) E(ytx

′
t)

E(xty
′
t) E(xtx

′
t)

]
=

[
Σyy Σyx

Σxy Σxx

]
.

If the two set are very large, the investigator may wish to study only a few of

linear combination of yt and xt which yield most highly correlated. He may find

that the interrelation is completely described by the correlation between the first

few canonical variate.

We now define two new (n×1) random vectors, ηt and ξt, where n the smaller

of n1 and n2. These vectors are linear combinations of yt and xt, respectively:

ηt ≡ K′yt,

ξt ≡ A′xt.

Here, K′ and A′ are (n×n1) and (n×n2) matrices, respectively. The matrices

K′ and A′ are chosen such that the following conditions holds.

(a) E(ηtη
′
t) = K′ΣyyK = In and E(ξtξ

′
t) = A′ΣxxA = In.

1



Ch. 24 1 CANONICAL CORRELATION

(b) E(ξtη
′
t) = A′ΣxyK = R, where

R =




r1 0 . . . 0
0 r2 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . rn




,

and ri ≥ 0, i = 1, 2, ..., n.

(c) The elements of ηt and ξt are ordered in such a way that

1 ≥ r1 ≥ r2 ≥ ... ≥ rn ≥ 0.

The correlation ri is known as the ith population canonical correlation

between yt and xt.

The population canonical correlations and the value of A and K can be cal-

culated as follows.

Theorem 1:

Let

Σ =

[
Σyy Σyx

Σxy Σxx

]

be a positive definite symmetric matrix and let (λ1, λ2, ..., λn1) be the eigenvalue

of Σ−1
yyΣyxΣ

−1
xxΣxy ordered λ1 ≥ λ2 ≥ ... ≥ λn1 . Let (k1,k2, ...,kn1) be the

associated (n1 × 1) eigenvectors as normalized by1

k′iΣyyki = 1 for i = 1, 2, ..., n1.

Let (µ1, µ2, ..., µn2) be the eigenvalue of Σ−1
xxΣxyΣ

−1
yyΣyx ordered µ1 ≥ µ2 ≥ ... ≥

µn2 . Let (a1, a2, ..., an2) be the associated (n2 × 1) eigenvectors as normalized by

a′iΣxxai = 1 for i = 1, 2, ..., n2.

Let n be the smaller of n1 and n2, and collect the first n vectors ki and the first

n vectors aj in matrices

K = [k1 k2 ... kn],

A = [a1 a2 ... an].

1If a computer program has calculated eigenvectors (k̃1, k̃2, ..., k̃n1) of the matrix
Σ−1

yyΣyxΣ−1
xxΣxy normalized by k̃′ik̃i = 1, it is trival to change these to eigenvectors

(k1,k2, ...,kn1) by setting ki = k̃i ÷
√

k̃′iΣyyk̃i or ki = Σ−1/2
yy k̃i.
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Assuming that λ1, λ2, ..., λn are distinct, then

(a) 0 ≤ λi < 1 for i = 1, 2, ..., n1 and 0 ≤ µj < 1 for j = 1, 2, ..., n2;

(b) λi = µi for i = 1, 2, ..., n;

(c) K′ΣyyK = In and A′ΣxxA = In;

(d) A′ΣxyK = R, where

R2 =




λ1 0 . . . 0
0 λ2 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . λn




.

We may interpret the canonical correlations as follows. The first canonical

variates η1t and ξ1t can be interpreted as those linear combination of yt and xt,

respectively, such that the correlation between η1t and ξ1t is as large as possible.

The variates η2t and ξ2t gives those linear combination of yt and xt that are un-

correlated with η1t and ξ1t and yield the largest remaining correlation between

η2t and ξ2t, and so on.

1.2 Sample Canonical Correlations

The canonical correlations ri calculated by the procedure just described are pop-

ulation parameters–they are functions of the population moments Σyy,Σxy, and

Σxx. To find their sample analogs, all we have to do is to start from the sample

moment of Σyy,Σxy, and Σxx.

Suppose we have a sample of T observations on the (n1×1) vector yt and the

(n2 × 1) vector xt, whose sample moment are given by

Σ̂yy = (1/T )
T∑

t=1

yty
′
t

Σ̂yx = (1/T )
T∑

t=1

ytx
′
t

Σ̂xx = (1/T )
T∑

t=1

xtx
′
t.

Again, in many applications, yt and xt would be measured in deviations from

their sample means. Then all the sample canonical correlations can be calculated

from Σ̂yy, Σ̂yx and Σ̂xx as the procedures described in Theorem 1.
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2 Maximum Likelihood Estimation of a Gaussian

V AR for Cointegration and the Test for Coin-

tegration Rank

Consider a general V AR model 2 for the k × 1 vector yt with Gaussian error

yt = c + Φ1yt−1 + Φ2yt−2 + ... + Φpyt−p + εt, (1)

where

E(εt) = 0

E(εtε
′
s) =

{
Ω for t = s
0 otherwise.

We may rewrite (1) in the error correction form:

4yt = ξ14yt−1 + ξ24yt−2 + ... + ξp−14yt−p+1 + c + ξ0yt−1 + εt, (2)

where

ξ0 ≡ −(I−Φ1 −Φ2 − ...−Φp) = −Φ(1).

Suppose that yt is I(1) with h cointegrating relationship which implies that

ξ0 = −BA′ (3)

for B and A an (k × h) matrix. That is, under the hypothesis of h cointegrat-

ing relations, only h separate linear combination of the level of yt−1 appears in (2).

Consider a sample of size T+p observations on y, denoted (y−p+1,y−p+2, ...,yT ).

If the disturbance εt are Gaussian, then the log (conditional) likelihood of (y1,y2, ...,yT )

conditional on (y−p+1,y−p+2, ...,y0) is given by

L(Ω, ξ1, ξ2, ..., ξp−1, c, ξ0) = (−Tk/2) log(2π)− (T/2) log |Ω| − (1/2)

T∑
t=1

[
(4yt − ξ14yt−1 − ξ24yt−2 − ...− ξp−14yt−p+1 − c− ξ0yt−1)

′

×Ω−1(4yt − ξ14yt−1 − ξ24yt−2 − ...− ξp−14yt−p+1 − c− ξ0yt−1)
]
. (4)

The goal is to chose (Ω, ξ1, ξ2, ..., ξp−1, c, ξ0) so as to maximize (4) subject to

the constraint that ξ0 can be written in the form of (3).

2Here, yt in this V AR model are not necessary I(1) variates and are not necessary cointe-
grated.
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2.1 Concentrated Log-likelihood Function

2.1.1 Concentrated Likelihood Function

We often encounter in practice the situation where the parameter vector θ0 can

be naturally partitioned into two sub-vectors α0 and β0 as θ0 = (α′
0 β′0)

′.

Let the likelihood function be L(α β). The MLE is obtained by maximizing L

simultaneously for α and β: i.e.

∂ ln L

∂α
= 0; (5)

∂ ln L

∂β
= 0. (6)

However, sometimes it is easier to maximize L in two step. First, maximize

it with respect to β by taking α as given, insert the maximizing value of β back

into L; second, maximize L with respect to α. More precisely, define

L∗(α) = L[α, β̂(α)], (7)

where β̂(α) is defined as the solution to

∂ ln L

∂β

∣∣∣∣
β̂

= 0, (8)

and define α̂∗ as the solution to

∂ ln L∗

∂α

∣∣∣∣
α̂∗

= 0. (9)

We call L∗(α) the concentrated likelihood function of α. It is able to show

that the MLE of α from (5) and (6) simultaneously α̂, and from concentrated

likelihood (9), α̂∗, are identical and have the same limiting distribution.

2.1.2 Calculate Auxiliary Regressions

The first step involve concentrating the likelihood function. This means take Ω

and ξ0 as given and maximization (4) with respect to (c, ξ1, ξ2, ..., ξp−1). This

restricted maximization problem take the form of seemingly unrelated regres-

sion of the elements of the (k × 1) vector 4yt − ξ0yt−1 on a constant and the

explanatory variables (4yt−1,4yt−2, ...,4yt−p+1). Since each of the k regres-

sions in this system has the identical explanatory variables, the estimates of

(c, ξ1, ξ2, ..., ξp−1) would come from OLS regression of each regressions of each

elements of 4yt − ξ0yt−1 on a constant and (ξ1, ξ2, ..., ξp−1). Denote the value
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of (c, ξ1, ξ2, ..., ξp−1) that maximize (4) for a given value of ξ0 (and Ω, although

it doesn’t matter from the properties of SURE model) by
[
ĉ∗(ξ0), ξ̂

∗
1(ξ0), ξ̂

∗
2(ξ0), ..., ξ̂

∗
p−1(ξ0)

]
.

These values are characterized by the condition that the following residual vec-

tor must have sample mean zero and be orthogonal to (4yt−1,4yt−2, ...,4yt−p+1):

[4yt − ξ0yt−1]−
{
ĉ∗(ξ0) + ξ̂

∗
1(ξ0)4yt−1 + ξ̂

∗
2(ξ0)4yt−2 + ..... + ξ̂

∗
p−1(ξ0)4yt−p+1

}
.(10)

To obtain (10) with unknown ξ0 (although we assume it is known at this

stage to form concentrated log-likelihood function), we may form two auxiliary

regressions and estimate them by OLS to get

4yt = π̂0 + Π̂14yt−1 + Π̂24yt−2 + ..... + Π̂p−14yt−p+1 + ût (11)

and

yt−1 = θ̂0 + Θ̂14yt−1 + Θ̂24yt−2 + ..... + Θ̂p−14yt−p+1 + v̂t, (12)

where both the residual vector ût and ût have sample mean zero and be orthogonal

to (4yt−1,4yt−2, ...,4yt−p+1) also. Moreover, ût − ξ0ût also have sample mean

zero and is orthogonal to (4yt−1,4yt−2, ...,4yt−p+1). Therefore, the residual

vector (10) can be expressed by

ût − ξ0v̂t = (4yt − π̂0 − Π̂14yt−1 − Π̂24yt−2 − .....− Π̂p−14yt−p+1)

−ξ0(yt−1 − θ̂0 − Θ̂14yt−1 − Θ̂24yt−2 − .....− Θ̂p−14yt−p+1)

with

ĉ∗(ξ0) = π̂0 − ξ0θ̂0

ξ̂
∗
i (ξ0) = Π̂i − ξ0Θ̂i, for i = 1, 2, ..., p− 1.

The concentrated log likelihood function is found by replacing (c, ξ1, ξ2, ..., ξp−1)

with (ĉ∗(ξ0), ξ̂
∗
1(ξ0), ξ̂

∗
2(ξ0), ..., ξ̂

∗
p−1(ξ0)) in (4):

L(Ω, ξ0) = (−Tk/2) log(2π)− (T/2) log |Ω| − (1/2)
T∑

t=1

[
(ût − ξ0v̂t)

′Ω−1(ût − ξ0v̂t)
]
.(13)

We can go one step further to concentrate out Ω. Recall from the analysis

of estimation of V AR on p.17 of Chapter 18 that the value of Ω that maximize

(13) (for a given ξ0) is given by

Ω̂
∗
(ξ0) = 1/T

T∑
t=1

[(ût − ξ0v̂t)(ût − ξ0v̂t)
′] . (14)
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As in expression (24) of Chapter 18, the value obtained for (13) when evaluated

at (14) is then

L(ξ0) ≡ L(Ω̂
∗
(ξ0), ξ0)

= (−Tk/2) log(2π)− (T/2) log |Ω̂∗
(ξ0)| − (Tk/2)

= (−Tk/2) log(2π)− (Tk/2)− (T/2) log

∣∣∣∣∣(1/T )
T∑

t=1

[(ût − ξ0v̂t)(ût − ξ0v̂t)
′]

∣∣∣∣∣

= K0 − (T/2) log

∣∣∣∣∣(1/T )
T∑

t=1

[(ût − ξ0v̂t)(ût − ξ0v̂t)
′]

∣∣∣∣∣ . (15)

(15) represents the biggest value one can achieve for the log likelihood for any

given value of ξ0. Maximizing the log-likelihood function thus comes down to

choosing ξ0 so as to minimize

∣∣∣∣∣(1/T )
T∑

t=1

[(ût − ξ0v̂t)(ût − ξ0v̂t)
′]

∣∣∣∣∣ . (16)

2.2 Canonical Correlations Analysis of MLE

Next, we compute the second-moment matrices of all of these residuals and their

cross-products, Suu, Suv, Svu, and Svv, where

Suu = T−1

T∑
t=1

ûtû
′
t

Suv = T−1

T∑
t=1

ûtv̂
′
t

Svv = T−1

T∑
t=1

v̂tv̂
′
t

Consequently, from (15) we have the loglikelihood function now become

L(ξ0) = K0 − (T/2) log |Suu − ξ0Svu − Suvξ
′
0 + ξ0Svvξ′0| . (17)

If ξ0 were unrestricted, a conventional regression estimator would result. How-

ever, we are interested in the class of solution that result from the imposition of

the restriction that

ξ0 = B∗A′.
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Hence,3 from (17),

L∗(B∗,A) = K0 − (T/2) log
∣∣Suu −B∗A′Svu − SuvAB∗′ + B∗A′SvvB

∗A′∣∣ . (18)

Next, concentrate L∗(B∗,A) with respect to B∗, which will deliver an expres-

sion for the MLE of B∗ as a function of A, and yields a further concentrated

likelihood function which depends only on A. Once the MLE of A is obtained,

we can solve backwards for estimator of all the other unknown parameters as

functions of the MLE of A. Thus, from (18), the FOC is

∂L∗(B∗,A)

∂B∗ = 0, (how?)

which implies

B̂∗ = SuvA(A′SvvA)−1. (19)

Substituting B̂∗ into (21) yields L∗∗(A):

L∗∗(A) = K1 − (T/2) log
∣∣Suu − SuvA(A′SvvA)−1A′Svu

∣∣ . (20)

At first sight, differentiating L∗∗(A) with respect to A looks formidable. But

we can solve the problem by applying partitioned inversion results 4 to (20) and

obtain

∣∣Suu − SuvA(A′SvvA)−1A′Svu

∣∣ = |A′SvvA|−1 |Suu|
∣∣A′SvvA−A′SvuS

−1
uuSuvA

∣∣
= |A′SvvA|−1 |Suu|

∣∣A′(Svv − SvuS
−1
uuSuv)A

∣∣ .

Then maximizing L∗∗(A) with respect to A corresponds to minimizing the

generalized variances ratio,

∣∣A′(Svv − SvuS
−1
uuSuv)A

∣∣ / |A′SvvA| , (21)

noting that |Suu| is a constant.5

3Here, for neatness of computation, we let B∗ = −B.
4Using the results from p.15 of Chapter 1 that

∣∣∣∣
A11 A12

A21 A22

∣∣∣∣ = |A22| · |A11 −A12A−1
22 A21|

= |A11| · |A22 −A21A−1
11 A12|.

.
5By a standard result from the theory of canonical correlations, an expression of the form

∣∣ζ′(M1 −M2)ζ
∣∣ ∣∣ζ′M1ζ

∣∣−1

can be minimized by solving the equation |λM1 −M2| = 0. See Banerjee, p.265 or Johansen
1996, p.92.
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This ratio is minimized by the choice of Âk×h = (â1, â2, ..., âh), where Â =

(â1, â2, ..., âk) are the eigenvector of the equation

|λSvv − SvuS
−1
uuSuv| = 0, (22)

or

SvuS
−1
uuSuvai = λiSvvâi, (23)

normalized by

â′iSvvâj =

{
1 i = j
0 otherwise

∀i = 1, 2, ..., k,

i.e.

Â′
SvvÂ = Ik, (24)

Â′SvvÂ = Ih. (25)

Since Svv is symmetric and positive definite matrix, from the eigenvalues

equation (23) we have6

SvuS
−1
uuSuvÂ = SvvÂΛk (26)

and

SvuS
−1
uuSuvÂ = SvvÂΛh, (27)

this implies

Â′SvuS
−1
uuSuvÂ = Â′SvvÂΛh = Λh, (28)

6To see this,

SvuS−1
uuSuvÂ = SvuS−1

uuSuv[â1, â2, ..., âk]
= [SvuS−1

uuSuvâ1, SvuS−1
uuSuvâ2, ...,SvuS−1

uuSuvâk]
= [λ1Svvâ1, λ2Svvâ2, ..., λkSvvâk]

and

SvvÂΛk = [SvvÂΛ1, SvvÂΛ2, ...,SvvÂΛk]
= [λ1Svvâ1, λ2Svvâ2, ..., λkSvvâk].
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where

Λk =




λ1 0 . . . 0
0 λ2 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . λk




=
[

Λ1 Λ2 . . .Λk

]

with λ1 ≥ λ2 ≥ ... ≥ λk ≥ 0.

We see Â indeed minimize the generalized variances ratio (21) by substituting

(25) and (28) into (21) to get
∣∣∣Â′(Svv − SvuS

−1
uuSuv)Â

∣∣∣ /
∣∣∣Â′SvvÂ

∣∣∣ =
∣∣∣Â′(Svv − SvuS

−1
uuSuv)Â

∣∣∣
=

∣∣∣Â′SvvÂ− Â′SvuS
−1
uuSuvÂ

∣∣∣
= |Ih −Λh|

=




1− λ1 0 . . . 0
0 1− λ2 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . 1− λh




=




1− r̂2
1 0 . . . 0

0 1− r̂2
2 . . . 0

. . . . . .

. . . . . .

. . . . . .
0 0 . . . 1− r̂2

h




.

(29)

Therefore, Â have chosen the highest h canonical correlations among the k

element of ut and vt so that the |A′(Svv − SvuS
−1
uuSuv)A| / |A′SvvA| is mini-

mization.

Substituting (29) back into (20), it follows that the maximum value achieved

for the likelihood function is given by

L∗∗(A) = K1 − (T/2) log |Suu| − (T/2) log

[
h∏

i=1

(1− λi)

]
(30)

= K1 − (T/2) log |Suu| − (T/2)
h∑

i=1

log(1− λi). (31)
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2.3 Likelihood Ratio Test for Cointegration Rank

Denote by Hh the hypothesis that there are the rank of ξ0 is h in the system

(1). When ξ0 is unrestricted, all k eigenvalue are retained and the unrestricted

maximum of the likelihood function is given by

L∗∗(A) = K1 − (T/2) log |Suu| − (T/2)
k∑

i=1

log(1− λi). (32)

The likelihood ratio test statistic for the hypothesis Hh in Hk (yt is station-

ary) can be based on twice the difference the log-likelihood in (31) and that in

(32); that is,

ηh = −2 log(Hh|Hk) = −T

k∑

i=h+1

log(1− λi). (33)

Similarly the likelihood ratio test statistic for testing Hh in Hh+1 is given by

κh = −2 log(Hh|Hh+1) = −T log(1− λh+1). (34)

Both ηh and κh have non-standard distributions which are functionals of mul-

tivariate Brownian motion.

Theorem 1:

The statistics ηh (= −2 log(Hh|Hk)) has a limiting distribution which, if B′
⊥c 6= 0,

can be expressed in terms of a (k − h)-dimensional Wiener process w with i.i.d.

components as

tr

{∫
(dw)f ′

[∫
ff ′du

]−1 ∫
f(dw)′

}
, (35)

where f ′ = (f ′1, F
′
2), and

f 1i(t) = Wi(t)−
∫

Wi(u)du i = 1, 2, ..., k − h− 1

and

F2(t) = t− 1

2
.
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The statistics κh(= −2 log(Hh|Hh+1)) is asymptotically distributed as the maxi-

mum eigenvalues of the matrix in (35). The asymptotic distribution of ηh is given

is that of the variables in the case 3 section of Table B.10, while the asymptotic

distribution of κh is given in the case 3 of Table B.11 of Hamilton (1994).

If B′
⊥c = 0 and assumes that no restriction are imposed on the constant

term in the estimation of auxiliary regression (11) and (12), then the asymptotic

distribution of ηh and κh are given as the trace and the maximum eigenvalues

respectively of the matrix in (35) with f(t) = w(t)− ∫
w(u)du. The asymptotic

distribution of ηh is given in the case 2 section of Table B.10, while the asymp-

totic distribution of κh is given in the case 2 panel of Table B.11.

If c is not included in the estimated model (1), then the asymptotic distribu-

tion of ηh and κh are given as the trace and the maximum eigenvalues respectively

of the matrix in (35) with f(t) = w(t) and the asymptotic distribution of ηh is

given in the case 1 section of Table B.10, while the asymptotic distribution of

κh is given in the case 1 panel of Table B.11.

2.4 MLE estimation of Parameters

Given the cointegration rank (h) have been inferenced from the likelihood ratio

test discussed above, the parameters are estimated from

B̂ = −B̂∗ = −SuvÂ(Â′SvvÂ)−1 = −SuvÂ. (36)

and therefore

ξ̂0 = −B̂Â′ = SuvÂÂ′. (37)

The other parameters then is obtained as following

ĉ∗(ξ̂0) = π̂0 − ξ̂0θ̂0, (38)

ξ̂
∗
i (ξ̂0) = Π̂i − ξ̂0Θ̂i, for i = 1, 2, ..., p− 1, (39)

Ω̂
∗
(ξ̂0) = 1/T

T∑
t=1

[
(ût − ξ̂0v̂t)(ût − ξ̂0v̂t)

′
]
. (40)

Johansen (1988) prove that these estimator are consistent.

Example:

See the example on p.647 of Hamilton.
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3 Extension

3.1 Linear Restriction on Cointegrating Vector

A different set of generalization concerns testing linear restriction on A and B.

These would correspond to investigating a priori theories about the cointegrat-

ing vectors, and about their role in different equations. Consider a system of k

variables that is assumed to be characterized h cointegrating relations. We might

then want to test a restriction on theses cointegrating vector, such as only q of

the variables are involved in the cointegration relations. For example, we might

be interested in whether the middle coefficient in the PPP theory is zero, that is,

in whether the cointegrating relation involved solely the price levels between two

countries. For this case, h = 1, q = 2, and k = 3.

Consider testing linear restriction on A of the form

Hq : A = DE, (41)

where D is a known k×q matrix and E is an q×h matrix of unknown parameters

and h ≤ q < k.

The error correction term in (1) will takes the form

ξ0yt = −BA′yt = −BE′D′yt.

This is equivalently to say that the cointegrating relations are restricted to involve

only D′yt. For the preceding example,

D′ =
[

1 0 0
0 0 1

]

such that

ξ0yt = −BA′yt = −BE′D′yt

= −BE′
[

1 0 0
0 0 1

] 


pt

st

p∗t


 = −BE′

[
pt

p∗t

]
,

only pt and p∗t enter the cointegrating relations.
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Maximum likelihood estimation (E) is unaltered until equation (21), which

become

∣∣E′D′(Svv − SvuS
−1
uuSuv)DE

∣∣ / |E′D′SvvDE|
=

∣∣E′(D′SvvD−D′SvuS
−1
uuSuvD)E

∣∣ / |E′(D′SvvD)E|
=

∣∣∣E′(S̃vv − S̃vuS
−1
uuS̃uv)E

∣∣∣ /
∣∣∣E′S̃vvE

∣∣∣

where S̃vv = D′SvvD and S̃vu = D′Svu.

The minimization is by the choice of Êq×h = (ê1, ê2, ..., êh), where Ê =

(ê1, ê2, ..., êq) are the eigenvector of the equation

S̃−1
vv S̃vuS

−1
uuS̃uvei = λ∗i ei, (42)

normalized by

e′iS̃vvej =

{
1 i = j
0 otherwise

∀i = 1, 2, ..., q.

A likelihood-ratio test against the unrestricted value of A can be calculated

and amounts to testing Hq within Hh, and is therefore based on

ηqh = T

h∑
i=1

log[(1− λ∗i )/(1− λi)]. (43)

In this case, the null hypothesis involves only coefficients on I(0) variables,

and standard asymptotic distribution theory turns out to apply. Johansen (1988,

1991) showed that the likelihood ratio statistic (43) has an asymptotic χ2 distri-

bution with h(k − p) degree of freedom.

Example;

See the example on p.649 of Hamilton.

3.2 MLE in the Absence of Deterministic Time trend

The preceding analysis assumed that c, the (k × 1) vector of constant terms in

the V AR, was unrestricted. The value of c contributes h constant terms for the

cointegrating relations,7 along with k − h deterministic trends that are common

7See Johansen’s Granger Representation Theorem on the dimension of E(A′yt).
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to each of the k elements of yt.
8 In some applications it might be of interest to

allow constant terms in the cointegrating relations but to rule out deterministic

time trend for any of the variables. This would require that B′
⊥c = 0 or9

c = Bµ∗
1,

where µ∗
1 is an (h × 1) vector corresponding to the unconditional mean of zt =

A′yt. Thus, for this restricted case, we want to estimate only the h elements of

µ∗
1 rather than all k elements of c.

3.2.1 Calculate Auxiliary Regressions

To maximize the likelihood function subject to the restrictions that there are

h cointegrating relations and no deterministic time trends in any of the series,

Johansen’s (1991) first step was to concentrated out ξ1, ξ2, ..., and ξp−1 (but not

c) For given c and ξ0, this is achieved by OLS regression of 4yt− c− ξ0yt−1 on

the explanatory variables (4yt−1,4yt−2, ...,4yt−p+1). The residuals from three

separated regressions:

4yt = Π̃14yt−1 + Π̃24yt−2 + ..... + Π̃p−14yt−p+1 + ũt,

yt−1 = Θ̃14yt−1 + Θ̃24yt−2 + ..... + Θ̃p−14yt−p+1 + ṽt,

and

1 = w̃′
14yt−1 + w̃′

24yt−2 + ..... + w̃′
p−14yt−p+1 + w̃t,

The concentrated log likelihood function is then

L(Ω, c, ξ0) = (−Tk/2) log(2π)− (T/2) log |Ω|

−(1/2)
T∑

t=1

[
(ũt − cw̃t − ξ0ṽt)

′Ω−1(ũt − cw̃t − ξ0ṽt)
]
. (44)

Further concentrating out Ω results in

L(c, ξ0) = (−Tk/2) log(2π)− (Tk/2)

−(T/2) log

∣∣∣∣∣(1/T )
T∑

t=1

[(ũt − cw̃t − ξ0ṽt)(ũt − cw̃t − ξ0v̂t)
′]

∣∣∣∣∣ .(45)

8See Johansen’s Granger Representation Theorem on the dimension of E(4yt).
9This would satisfy B′

⊥c = 0.
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Imposing the constraints c = Bµ∗
1 and ξ0 = −BA′ = B∗A′, the magnitude in

(45) can be written as

L(c, ξ0) = (−Tk/2) log(2π)− (Tk/2)

−(T/2) log

∣∣∣∣∣(1/T )
T∑

t=1

[
(ũt −B∗Ã′w̃t)(ũt −B∗Ã′w̃t)

′
]∣∣∣∣∣ , (46)

where

w̃t =

[
w̃t

ṽt

]

(k+1)×1

Ã′ =
[ −µ∗

1 A′ ]
h×(k+1)

. (47)

By constructing

S̃ww = T−1

T∑
t=1

w̃tw̃
′
t,

S̃uu = T−1

T∑
t=1

ũtṽ
′
t,

S̃uw = T−1

T∑
t=1

ũtw̃
′
t,

(46) is an expression of exactly the same as (18) with A replaced by Ã and v̂t

replaced by w̃t. Thus, the restricted log likelihood function is

L∗(B∗, Ã) = K0 − (T/2) log
∣∣∣S̃uu −B∗Ã

′
S̃wu − S̃uwÃB∗′ + B∗Ã

′
S̃wwB∗Ã

′∣∣∣ .

This ratio is minimized by the choice of Ãk×h = (ã1, ã2, ..., ãh), where Ã =

(ã1, ã2, ..., ãk+1) are the eigenvector of the equation

S̃wuS̃
−1
uuS̃uwãi = λ̃iS̃wwãi,

normalized by

ã′iS̃wwãj =

{
1 i = j
0 otherwise

∀i = 1, 2, ..., k + 1.

The maximum value achieved for the log likelihood function subject to the con-

straints that there are h cointegrating relations and no deterministic trend is

L∗∗(A) = K1 − (T/2) log |Suu| − (T/2) log

[
h∏

i=1

(1− λ̃i)

]
(48)

= K1 − (T/2) log |Suu| − (T/2)
h∑

i=1

log(1− λ̃i). (49)
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3.2.2 Likelihood Ratio Test for Cointegration Rank

Theorem 2:

Under the hypothesis H∗
h : ξ0 = BA′ and c = Bµ∗

1, the likelihood ratio test

statistics −2 log(H∗
h|Hk) and −2 log(H∗

h|H∗
h+1) are distributed as the trace and

maximal eigenvalues respectively of the matrix in (38), with f = (w(t)′, 1)′. This

distribution is tabulated on Table A3 of Johansen and Juselius (1990), p.209.

Finally we test the hypothesis H∗
h in Hh, by a likelihood ratio test, i.e., test

that the trend is absent under the assumption that there are h cointegrating re-

lations.

Theorem 3:

The asymptotic distribution of the likelihood ratio test −2 log(H∗
h|Hh) for the

hypothesis H∗
h given the hypothesis Hh, i.e., B′

⊥c = 0, when there are h coin-

tegrating vectors, is asymptotically distributed as χ2 with k−h degree of freedom.

3.2.3 MLE estimation of Parameters

Given the cointegration rank (h) have been inferred from the likelihood ratio test

discussed above, the parameters are estimated from

B̃ = −B̃∗ = −S̃uwÃ(Ã′S̃wwÃ)−1 = −S̃uwÃ (50)

and therefore

B̃Ã′ = −S̃uwÃÃ′. (51)

Recall from (47) we have

B̃Ã′ =
[ −B̃µ∗

1 −B̃A′ ]

=
[ −c −ξ0

]

Thus, (51) implies that the maximum likelihood estimate of c and ξ0 are given

by
[

c̃ ξ̃0

]
= S̃uwÃÃ′.

The MLE of ξi and Ω are given by

ξ̃i = Π̃i − c̃w̃′
t − ξ̃0Θ̃i, for i = 1, 2, ..., p− 1, (52)

Ω̃ = 1/T
T∑

t=1

[
(ũt − c̃w̃t − ξ̃0ṽt)(ũtc̃w̃t − ξ̃0ṽt)

′
]
. (53)
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4 SIMULATION OF JOHANSEN’S LR TEST STATISTICS’S CRITICAL

VALUES: FUNCTIONAL OF MULTIVARIATE BROWNIAN MOTION

4 Simulation of Johansen’s LR test Statistics’s

Critical Values: Functional of Multivariate Brown-

ian Motion

The limit distribution are expressed as functions of the stochastic matrix W with

i.i.d. components as

{∫
(dW )F ′

[∫
FF ′du

]−1 ∫
F (dW )′

}
. (54)

The (k−h)-dimensional Brownian motion w(t) = (W1(t),W2(t), ..., Wk−h(t))
′

can be approximated by a random walk with T = 400 (say) steps.
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