
Ch. 20 Processes with Deterministic Trends

1 Traditional Asymptotic Results of OLS

Suppose a linear regression model with stochastic regressor given by

Yt = x′tβ + εt, t = 1, 2, ..., T, ; β ∈ Rk, (1)

or in matrix form:

y = Xβ + ε.

We are interested in the asymptotic properties such as consistency and limiting

distribution 1 of the OLS estimator of β; β̂ = (X′X)−1X′y as T → ∞, under

simple traditional assumptions.

1Proposition:
Given restriction on the dependence, heterogeneity, and moments of a sequence of random
variables (you may think this sequence as a sample of size T) {Zt},

Z̄T − µ̄T
a.s.−→ 0,

where

Z̄T ≡ 1
T

T∑
t=1

Zt and µ̄T ≡ E(Z̄T ).

Proposition:
Given restriction on the dependence, heterogeneity, and moments of a sequence of random
variables (you may think this sequence as a sample of size T) {Zt},

(Z̄T − µ̄T )
(σ̄T /

√
T )

=
√

T (Z̄T − µ̄T )
σ̄T

L−→ N(0, 1),

where

Z̄T ≡ 1
T

T∑
t=1

Zt, µ̄T ≡ E(Z̄T ), and σ̄2
T /T ≡ var(Z̄T ) (that is σ̄2

T =
var(

∑T
t=1 Zt)

T
).

To see why this notation, notice that V ar(Z̄T ) = V ar(
P

Zt)
T 2 = V ar(

P
Zt)/T )

T = σ̄2
T

T , that is, we
assume V ar(

∑
Zt) is O(T 1).
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Ch. 20 1 TRADITIONAL ASYMPTOTIC RESULTS OF OLS

1.1 Independent Identically Distributed Observation

1.1.1 Consistency

To prove consistency of β̂, we use Kolmogorov’s laws of large number of Ch 4.

Rewrite

β̂ − β = (X′X)−1X′ε

=

(
X′X
T

)−1 (
X′ε
T

)

=

(∑T
t=1 xtx

′
t

T

)−1 (∑T
t=1 xtεt

T

)
,

we have the following result.

Theorem:

In addition to (1), suppose that

(a). {(x′t, εt)
′}(k+1)×1 is an i.i.d. sequences;

(b).
(i).E(xtεt) = 0

(ii).E|Xtiεt| < ∞, i = 1, 2, ..., k.

(c).
(i)E|Xti|2 < ∞, i = 1, 2, ..., k;
(ii)M ≡ E(xtx

′
t) is positive definite;

Then β̂
a.s−→ β.

Proof:

It is obvious that from these assumptions we have

(
X′ε
T

)
=

(∑T
t=1 xtεt

T

)
a.s−→ E

(∑T
t=1 xtεt

T

)
= 0

and
(

X′X
T

)
=

(∑T
t=1 xtx

′
t

T

)
a.s−→ E

(∑T
t=1 xtx

′
t

T

)
= M. (2)

Therefore

β̂ − β
a.s−→ M−10 = 0,

or

β̂
a.s−→ β.

2 Copy Right by Chingnun Lee r 2006



Ch. 20 1 TRADITIONAL ASYMPTOTIC RESULTS OF OLS

Remark:

(A). Assumption (b i) is talking about of the mean of this i.i.d. sequences (Xtiεt, i =

1, 2, ..., k), see Proposition 3.3 of White, 2001, p.32) and (bii) is about its first

moment exist.

(B). Assumption (ci) guarantee its (XtiXtj) first moment exist by Cauchy-Schwarz

inequality and (cii) is talking about of the mean of this i.i.d. (XtiXtj, i = 1, 2, .., k; j =

1, 2, ..., k) sequence.

An existence of the first moment is what is need for LLN of i.i.d. sequence.

See p.15 of Ch.4.

1.1.2 Asymptotic Normality

To prove asymptotic normality of β̂, we use Kolmogorov’s LLN and Lindeberg-

Lévy’s central limit theorem of Ch 4. Rewrite

√
T (β̂ − β) =

(
X′X
T

)−1√
T

(
X′ε
T

)

=

(∑T
t=1 xtx

′
t

T

)−1√
T

(∑T
t=1 xtεt

T

)
,

we have the following result.

Theorem:

In addition to (1), suppose

(a). {(x′t, εt)
′} is an i.i.d. sequences;

(b).
(i) E(xtεt) = 0,
(ii) E|Xtiεt|2 < ∞, i = 1, 2, ..., k
(iii) VT ≡ V ar(T−1/2X′ε) = V is positive definite

(c).
(i)M ≡ E(xtx

′
t) is positive definite;

(ii)E|Xti|2 < ∞, i = 1, 2, ..., k;

Then D−1/2
√

T (β̂ − β)
L−→ N(0, I), where D ≡ M−1VM−1.
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Proof:

It is obvious that from these assumptions we have

√
T

(
X′ε
T

)
= T−1/2X′ε L−→ N(0, V ar(T−1/2X′ε) ≡ N(0,V)

and

(
X′X
T

)
=

(∑T
t=1 xtx

′
t

T

)
a.s−→ E

(∑T
t=1 xtx

′
t

T

)
= M.

Therefore

√
T (β̂ − β)

L−→ M−1 ·N(0,V)

≡ N(0,M−1VM−1),

or

(M−1VM−1)−1/2
√

T (β̂ − β)
L−→ N(0, I).

Remark:

(A). Assumption (bi) is talking about of the mean of this i.i.d. sequences (Xtiεt, i =

1, 2, ..., k), (bii.b) is about its second moment exist which is needed for the appli-

cation of Lindeberg-Lévy’s central limit theorem (see p.22 of Ch. 4) and (biii) is

to standardize the random vector T−1/2(X′ε) so that the asymptotic distribution

is unit multivariate normal.

(B). Assumption (ci) is talking about of the mean of this i.i.d. (XtiXtj, i =

1, 2, .., k; j = 1, 2, ..., k) sequence and (cii) guarantee its first moment exist by

Cauchy-Schwarz inequality. An existence of the first moment is what is need for

LLN of i.i.d. sequence. See p.15 of Ch.4.
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Ch. 20 1 TRADITIONAL ASYMPTOTIC RESULTS OF OLS

1.2 Independent Heterogeneously Distributed Observa-
tion

1.2.1 Consistency

To prove consistency of β̂, we use revised Markov laws of large number of Ch 4.

Rewrite

β̂ − β = (X′X)−1X′ε

=

(
X′X
T

)−1 (
X′ε
T

)

=

(∑T
t=1 xtx

′
t

T

)−1 (∑T
t=1 xtεt

T

)
,

we have the following result.

Theorem:

In addition to (1), suppose

(a). {(x′t, εt)
′} is an independent sequences;

(b).

(i) E(xtεt) = 0;

(ii) E|Xtiεt|1+δ < ∆ < ∞, for some δ > 0, i = 1, 2, ..., k;

(c).

(i) MT ≡ E(X′X/T ) is positive definite;

(ii) E|X2
ti|1+δ < ∆ < ∞, for some δ > 0, i = 1, 2, ..., k;

Then β̂
a.s−→ β.

Proof:

It is obvious that from these assumptions we have

(
X′ε
T

)
=

(∑T
t=1 xtεt

T

)
a.s−→ E

(∑T
t=1 xtεt

T

)
= 0

and

(
X′X
T

)
=

(∑T
t=1 xtx

′
t

T

)
a.s−→ E

(∑T
t=1 xtx

′
t

T

)
= MT.

Therefore

β̂ − β
a.s−→ M−1

T 0 = 0,
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or

β̂
a.s−→ β.

Remark:

1. Assumption (ii.a) is talking about of the mean of this independent sequences

(Xtiεt, i = 1, 2, ..., k) and (ii.b) is about its (1 + δ) moment exist.

2. Assumption (iii.a) is talking about of the limits of almost sure convergence of
X′X

T
and (iii.b) guarantee its (1 + δ) moment exist of (XtiXtj, i = 1, 2, .., k; j =

1, 2, ..., k) by Cauchy-Schwarz inequality.

An existence of the (1 + δ) moment is what is need for LLN of independent

sequence. See p.15 of Ch.4.

1.2.2 Asymptotic Normality

To prove asymptotic normality of β̂, we use revised Markov’s LLN and Liapounov

and Lindeberg-Feller’s central limit theorem of Ch 4. Rewrite

√
T (β̂ − β) =

(
X′X
T

)−1√
T

(
X′ε
T

)

=

(∑T
t=1 xtx

′
t

T

)−1√
T

(∑T
t=1 xtεt

T

)
,

we have the following result.

Theorem:

In addition to (1), suppose

(a). {(x′t, εt)
′} is an independent sequences;

(b).

(i) E(xtεt) = 0;

(ii) E|Xtiεt|2+δ < ∆ < ∞, for some δ > 0, i = 1, 2, ..., k;

(iii) VT ≡ V ar(T−1/2X′ε) is positive definite;

(c).

(i) M ≡ E(X′X/T ) is positive definite;

(ii) E|X2
ti|1+δ < ∆ < ∞, for some δ > 0, i = 1, 2, ..., k;

Then D
−1/2
T

√
T (β̂ − β)

L−→ N(0, I), where DT ≡ M−1
T VTM−1

T .
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Ch. 20 1 TRADITIONAL ASYMPTOTIC RESULTS OF OLS

Proof:

It is obvious that from these assumptions we have

√
T

(
X′ε
T

)
= T−1/2X′ε

L−→ N(0, V ar(T−1/2X′ε) ≡ N(0,VT )

and
(

X′X
T

)
=

(∑T
t=1 xtx

′
t

T

)
a.s−→ E

(∑T
t=1 xtx

′
t

T

)
= MT .

Therefore
√

T (β̂ − β)
L−→ M−1

T N(0,VT )

≡ N(0,M−1
T VTM−1

T ),

or

(M−1
T VTM−1

T )−1/2
√

T (β̂ − β)
L−→ N(0, I).

Remark:

(A). Assumption (bi) is talking about of the mean of this independent sequences

(Xtiεt, i = 1, 2, ..., k), (bii) is about its (2 + δ) moment exist which is needed for

the application of Liapounov’s central limit theorem (see p.23 of Ch. 4) and (biii)

is to standardize the random vector T−1/2(X′ε) so that the asymptotic distribu-

tion is unit multivariate normal.

(B). Assumption (ci) is talking about of the limits of almost sure convergence of
X′X

T
and (iii.b) guarantee its (1 + δ) moment exist of (XtiXtj, i = 1, 2, .., k; j =

1, 2, ..., k) by Cauchy-Schwarz inequality. An existence of the (1 + δ) moment is

what is need for LLN of independent sequence. See p.15 of Ch.4.

From results above, the asymptotic normality of OLS estimator depend cru-

cial on the existence of at least second moments of the regressors Xti and from

that we have LLN such that X′X
T

a.s−→ E
(PT

t=1 xtx′t
T

)
= MT = O(1). As we

have seen from last chapter that a I(1) variables does not have a finite sec-

ond moments, therefore when the regressor is a unit root process, then tradi-

tional asymptotic results for OLS estimator would not apply. However, there

is a case that the regressor is not stochastic, but it violate the condition that
X′X

T

a.s−→ E
(PT

t=1 xtx′t
T

)
= MT = O(1), as we will see in the following that the

asymptotic normality still valid though the rate convergence to the normality

changes.
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Ch. 20 2 PROCESSES WITH DETERMINISTIC TIME TRENDS

2 Processes with Deterministic Time Trends

The coefficients of regression models involving unit roots or deterministic time

trends are typically estimated by OLS. However, the asymptotic distributions

of the coefficient estimates cannot be calculated in the same way as are those for

regression models involving stationary variables. Among other difficulties, the

estimates of different parameters will in general have different asymptotic rate of

convergence.

2.1 Asymptotic Distribution of OLS Estimators of the
Simple Time Trend Model

Consider the OLS estimation of the parameters of a simple time trend,

Yt = α + δt + εt, (3)

for εt a white noise process. If εt ∼ N(0, σ2), the model (3) satisfies the classical

assumption and the standard OLS t or F statistics would have exact small-sample

t or F distributions. On the other hand, if εt is non-Gaussian, then a slightly

different technique for finding the asymptotic distribution of the OLS estimates

of α and δ would to be used from that employed in last section.

Write (3) in the form of the standard regression model,

Yt = x′tβ + εt,

where

x′t ≡ [
1 t

]

β ≡
[

α
δ

]
.

Let β̂T denote the OLS estimate of β based on a sample of size T , the

deviation of β̂T from the true value can be expressed as

(β̂T − β) =

[
T∑

t=1

xtx
′
t

]−1 [
T∑

t=1

xtεt

]
. (4)

To find the asymptotic distribution of (β̂T −β), the approach in last section was

to multiply (4) by
√

T , resulting in

√
T (β̂T − β) =

[
(1/T )

T∑
t=1

xtx
′
t

]−1 [
(1/
√

T )
T∑

t=1

xtεt

]
. (5)
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Ch. 20 2 PROCESSES WITH DETERMINISTIC TIME TRENDS

The usual assumption was that (1/T )
∑T

t=1 xtx
′
t converge in probability to non-

singular matrix M while (1/
√

T )
∑T

t=1 xtεt converges in distribution to a N(0,V)

random variables, implying that
√

T (β̂T − β)
L−→ N(0, (M−1VM−1)).

For xt given in (5), we note that

1

T v+1

T∑
t=1

tv → 1

v + 1
, (6)

implying that

T∑
t=1

xtx
′
t =

[ ∑
1

∑
t∑

t
∑

t2

]
=

[
T T (T + 1)/2

T (T + 1)/2 T (T + 1)(2T + 1)/6

]
≡

[
O(T 1) O(T 2)
O(T 2) O(T 3)

]
. (7)

In contrast to the usual results as (2), the matrix (1/T )
∑T

t=1 xtx
′
t in (5)

diverges. To obtain converge and nondegenerates limiting distribution, we can

think of premultiplying and postmultiplying
[∑T

t=1 xtx
′
t

]
by the matrix

Υ−1
T =

[
T 1/2 0

0 T 3/2

]−1

,

and obtains
{

Υ−1
T

[
T∑

t=1

xtx
′
t

]
Υ−1

T

}
=

{[
[T−1/2 0

0 T−3/2

] [ ∑
1

∑
t∑

t
∑

t2

] [
[T−1/2 0

0 T−3/2

]}

=

[
T−1

∑
1 T−2

∑
t

T−2
∑

t T−3
∑

t2

]
→ Q,

where

Q =

[
1 1

2
1
2

1
3

]
(8)

according to (6).

Turning next to the second term in (4) and premultiplying it by Υ−1
T ,

Υ−1
T

[
T∑

t=1

xtεt

]
=

[
T−1/2 0

0 T−3/2

] [ ∑
εt∑
tεt

]
=

[
(1/
√

T )
∑

εt

(1/
√

T )
∑

(t/T )εt

]
. (9)

We now prove the asymptotic normality of (9) under standard assumption

about εt. Suppose that εt is i.i.d. with mean zero, variance σ2, and finite fourth

moment. Then the first element of the vector in (9) satisfies

(1/
√

T )
∑

εt
L−→ N(0, σ2)
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by the Linderberg-Lévy CLT.

For the second element of the vector in (9), observe that {(t/T )εt} is a martin-

gale difference sequence that satisfies the definition on p.13 of Ch. 4. Specifically,

its variance is

σ2
t = E[(t/T )εt]

2 = σ2 · (t2/T 2),

where

(1/T )
T∑

t=1

σ2
t = σ2(1/T 3)

T∑
t=1

t2 → σ2/3.

Furthermore, to apply CLT of a martingale difference sequence, we need to show

that (1/T )
∑T

t=1[(t/T )εt]
2 p−→ σ2/3 as the condition (iii) on page 26 of Ch. 4.

To prove this, notices that

E

(
(1/T )

T∑
t=1

[(t/T )εt]
2 − (1/T )

T∑
t=1

σ2
t

)2

= E

(
(1/T )

T∑
t=1

[(t/T )εt]
2 − (1/T )

T∑
t=1

(t/T )2σ2

)2

= E

(
(1/T )

T∑
t=1

(t/T )2(ε2
t − σ2)

)2

= (1/T )2

T∑
t=1

(t/T )4E(ε2
t − σ2)2

= E(ε2
t − σ2)2

(
1/T 6

T∑
t=1

t4

)
→ 0,

according to (6) and fourth moment of εt exist by assumption.

This imply that

(1/T )
T∑

t=1

[(t/T )εt]
2 − (1/T )

T∑
t=1

σ2
t

m.s−→ 0,

which also imply that

(1/T )
T∑

t=1

[(t/T )εt]
2 p−→ σ2/3.

Hence, from Theorem ? (p.26 of Ch. 4), (1/
√

T )
∑T

t=1(t/T )εt satisfies the

CLT:

(1/
√

T )
T∑

t=1

(t/T )εt
L−→ N(0, σ2/3).
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Finally, consider the joint distribution of the two element in the (2 × 1) vector

described by (9). Any linear combination of these elements takes the form

(1/
√

T )
T∑

t=1

[λ1 + λ2(t/T ))]εt.

Then [λ1 +λ2(t/T ))]εt is also a martingale difference sequence with positive vari-

ance given by σ2[λ2
1 + 2λ1λ2(t/T )) + λ2

2(t/T )2] satisfying

(1/T )
T∑

t=1

σ2
[
λ2

1 + 2λ1λ2(t/T )) + λ2
2(t/T )2

] −→ σ2[λ2
1 + 2λ1λ2

(
1

2

)
+ λ2

2

(
1

3

)
]

= σ2
[

λ1 λ2

] [
1 1/2

1/2 1/3

] [
λ1

λ2

]

= σ2λ′Qλ

for λ ≡ (λ1, λ2)
′ and Q the matrix in (8). Furthermore, we can show that

(1/T )
T∑

t=1

[λ1 + λ2(t/T ))]2ε2
t

p−→ σ2λ′Qλ.

That is this martingale difference sequence [λ1 + λ2(t/T ))]εt could apply CLT.

Thus, any linear combination of the two elements in the vector in (9) is asymp-

totically Gaussian, implying that bivariate Gaussian distribution:

[
(1/
√

T )
∑

εt

(1/
√

T )
∑

(t/T )εt

]
L−→ N(0, σ2Q)

form Cramer-Wold device and the fact that E{[(1/√T )
∑

εt][(1/
√

T )
∑

(t/T )εt]} =
1

T 2 σ
2
∑

t → 1
2
σ2.

Collecting results we have

[
T 1/2(α̂T − α)

T 3/2(δ̂T − δ)

]
= ΥT

[
T∑

t=1

xtx
′
t

]−1 [
T∑

t=1

xtεt

]

= ΥT

[
T∑

t=1

xtx
′
t

]−1

ΥTΥ−1
T

[
T∑

t=1

xtεt

]

=

{
Υ−1

T

[
T∑

t=1

xtx
′
t

]
Υ−1

T

}−1 {
Υ−1

T

[
T∑

t=1

xtεt

]}

L−→ Q−1 ·N(0, σ2Q)

≡ N(0, σ2Q−1).
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It turns out that the OLS estimators α̂T and δ̂T have different asymptotic rates

of convergence. Note that the time trend estimator δ̂T is superconsistent–not

only δ̂T
p−→ δ, but even when multiplied by T , we still have

T (δ̂T − δ)
p−→ 0.
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2.2 Asymptotic Distribution of OLS Estimators for an
Autoregressive Process Around a Deterministic Time
Trend

The same principles can be used to study a general autoregressive process around

a deterministic trend:

Yt = α + δt + φ1Yt−1 + φ2Yt−2 + ... + φpYt−p + εt. (10)

It is assumed that εt is i.i.d. with mean zero, variance σ2, and finite fourth

moment, and that roots of

1− φ1z − φ2z
2 − ...− φpz

p = 0

lie outside the unit circle. Consider a sample of size T + p observations on Y ,

and let α̂, δ̂, φ̂1,T , ..., φ̂p,T denote coefficients based on OLS estimation of (10) for

t = 1, 2, ..., T .

Remark: The regressor Yt−i, i = 1, ..., p in (10) is a trend-stationary process

(it is nonstationary itself !). To remove the nonstationarity of the regressors for

the validity of LLN (X′X/T
p−→ E(X′X/T )), we may transform the regressor in

terms of zero-mean covariance-stationary process by subtracting time trend from

each regressor.

2.2.1 A useful Transformation of the Regressors

By adding and subtracting φj[α + δ(t− j)] for j = 1, 2, ..., p on the right side, the

regression model (10) can be equivalent be written as ( for each regressor Yt−j, it

has a constant α and trend δ(t− j))

Yt = α(1 + φ1 + φ2 + ... + φp)− δ(φ1 + 2φ2 + ... + pφp)

+δ(1 + φ1 + φ2 + ... + φp)t

+φ1[Yt−1 − α− δ(t− 1)] + φ2[Yt−2 − α− δ(t− 2)] + ...

+φp[Yt−p − α− δ(t− p)] + εt

or

Yt = α∗ + δ∗t + φ∗1Y
∗
t−1 + φ∗2Y

∗
t−2 + ... + φ∗pY

∗
t−p + εt. (11)
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where

α∗ = α(1 + φ1 + φ2 + ... + φp)− δ(φ1 + 2φ2 + ... + pφp)

δ∗ = δ(1 + φ1 + φ2 + ... + φp)

φ∗j = φj for j = 1, 2, ..., p

and

Y ∗
t−j = Yt−j − α− δ(t− j) for j = 1, 2, ..., p.

The original regression model (10) can be written

Yt = x′tβ + εt, (12)

where

xt =




Yt−1

Yt−2

.

.

.
Yt−p

1
t




β =




φ1

φ2

.

.

.
φp

α
δ




.

The algebraic transformation in arriving at (11) could then be described as rewrit-

ing (12) in the form

Yt = x′tG
′[G′]−1β + εt = [x∗t ]

′β∗ + εt, (13)

where

G′ ≡




1 0 . . . 0 0 0
0 1 . . . 0 0 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
0 0 . . . 1 0 0

−α + δ −α + 2δ . . . −α + pδ 1 0
−δ −δ . . . −δ 0 1




,
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[G′]−1 ≡




1 0 . . . 0 0 0
0 1 . . . 0 0 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
0 0 . . . 1 0 0

α− δ α− 2δ . . . α− pδ 1 0
δ δ . . . δ 0 1




,

(hints: From partitioned inverse rule,

[
I 0
H I

]−1

=

[
I 0
−H I

]
.)

x∗t ≡ Gxt =




Y ∗
t−1

Y ∗
t−2

.

.

.
Y ∗

t−p

1
t




β∗ ≡ [G′]−1β =




φ∗1
φ∗2
.
.
.

φ∗p
α∗

δ∗




.

The OLS estimate of β∗ based on regression of Yt on x∗t is given by

β̂
∗

=

[
T∑

t=1

x∗t [x
∗
t ]
′
]−1 [

T∑
t=1

xtYt

]

=

[
G

(
T∑

t=1

xtx
′
t

)
G′

]−1

G

(
T∑

t=1

xtYt

)

= [G′]−1

(
T∑

t=1

xtx
′
t

)−1

G−1G

(
T∑

t=1

xtYt

)

= [G′]−1

(
T∑

t=1

xtx
′
t

)−1 (
T∑

t=1

xtYt

)

= [G′]−1β̂,

where β̂ is the coefficients OLS estimation from original data of Yt on xt.

The asymptotic distribution of β̂ can therefore be inferred from

β̂ = G′β̂
∗
. (14)
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2.2.2 The Asymptotic Distribution of OLS Estimates for the Trans-
formed Regression

To derive the asymptotic distribution β̂
∗
T , we note that

ΥT (β̂
∗
T − β∗) = ΥT

[
T∑

t=1

x∗t [x
∗]′t

]−1 [
T∑

t=1

x∗t εt

]

= ΥT

[
T∑

t=1

x∗t [x
∗]′t

]−1

ΥTΥ−1
T

[
T∑

t=1

x∗t εt

]

=

{
Υ−1

T

[
T∑

t=1

x∗t [x
∗]′t

]
Υ−1

T

}−1 {
Υ−1

T

[
T∑

t=1

x∗t εt

]}
,

where

ΥT =




T 1/2 0 0 . . . 0 0 0
0 T 1/2 0 . . . 0 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .
0 0 0 . . . T 1/2 0 0
0 0 0 . . . 0 T 1/2 0
0 0 0 . . . 0 0 T 3/2




.

From (13),

T∑
t=1

x∗t [x
∗]′t =




∑
(Y ∗

t−1)
2

∑
Y ∗

t−1Y
∗
t−2 . . .

∑
Y ∗

t−1Y
∗
t−p

∑
Y ∗

t−1

∑
tY ∗

t−1∑
Y ∗

t−2Y
∗
t−1

∑
(Y ∗

t−2)
2 . . .

∑
Y ∗

t−2Y
∗
t−p

∑
Y ∗

t−2

∑
tY ∗

t−2

. . . . . . . .

. . . . . . . .

. . . . . . . .∑
Y ∗

t−pY
∗
t−1

∑
Y ∗

t−pY
∗
t−2 . . .

∑
(Y ∗

t−p)
2

∑
Y ∗

t−p

∑
tY ∗

t−p∑
Y ∗

t−1

∑
Y ∗

t−2 . . .
∑

Y ∗
t−p

∑
1

∑
t∑

tY ∗
t−1

∑
tY ∗

t−2 . . .
∑

tY ∗
t−p

∑
t

∑
t2




,

and therefore,

Υ−1
T

T∑
t=1

x∗t [x
∗]′tΥ

−1
T

=




T−1
∑

(Y ∗
t−1)

2 T−1
∑

Y ∗
t−1Y

∗
t−2 . . . T−1

∑
Y ∗

t−1Y
∗
t−p T−1

∑
Y ∗

t−1 T−2
∑

tY ∗
t−1

T−1
∑

Y ∗
t−2Y

∗
t−1 T−1

∑
(Y ∗

t−2)
2 . . . T−1

∑
Y ∗

t−2Y
∗
t−p T−1

∑
Y ∗

t−2 T−2
∑

tY ∗
t−2

. . . . . . . .

. . . . . . . .

. . . . . . . .
T−1

∑
Y ∗

t−pY
∗
t−1 T−1

∑
Y ∗

t−pY
∗
t−2 . . . T−1

∑
(Y ∗

t−p)
2 T−1

∑
Y ∗

t−p T−2
∑

tY ∗
t−p

T−1
∑

Y ∗
t−1 T−1

∑
Y ∗

t−2 . . . T−1
∑

Y ∗
t−p T−1T T−2

∑
t

T−2
∑

tY ∗
t−1 T−2

∑
tY ∗

t−2 . . . T−2
∑

tY ∗
t−p T−2

∑
t T−3

∑
t2




.(15)
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For the first p rows and columns, the row i, column j elements of the matrix (15)

T−1

T∑
t=1

Y ∗
t−iY

∗
t−j

p−→ γ∗|i−j|

by LLN of covariance stationary process.

The first p element of row p + 1 (and the first p element of column p + 1)

T−1

T∑
t=1

Y ∗
t−i

p−→ 0

also by LLN of zero-mean covariance stationary process.

The first p element of row p + 2 (and the first p element of column p + 2)

T−1

T∑
t=1

(t/T )Y ∗
t−i

p−→ 0

from the theorem below. Thus,

Υ−1
T

T∑
t=1

x∗t [x
∗]′tΥ

−1
T

p−→ Q∗ (16)

where

Q∗ =




γ∗0 γ∗1 γ∗2 . . . γ∗p−1 0 0
γ∗1 γ∗0 γ∗1 . . . γ∗p−2 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

γ∗p−1 γ∗p−2 γ∗p−3 . . . γ∗0 0 0
0 0 0 . . . 0 1 1

2

0 0 0 . . . 0 1
2

1
3




.
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Theorem:

Let Y ∗
t−i be covariance-stationary with mean zero and absolutely summable au-

tocovariance, then T−2
∑

ty∗t−i

p−→ 0, i = 1, 2, ..., p.

Proof:

We show that E(T−2
∑

tY ∗
t−i−0)2 → 0 which would imply that T−2

∑
tY ∗

t−i
m.s−→ 0

and also that T−2
∑

tY ∗
t−i

p−→ 0.

To see this, since

E(T−2
∑

tY ∗
t−i − 0)2 = (1/T 4)E[(Y1−i + 2Y2−i + ... + TYT−i)(Y1−i + 2Y2−i + ... + TYT−i)]

= (1/T 4)E{(Y1−i)[(Y1−i + 2Y2−i + ... + TYT−i)]

+(2Y2−i)[(Y1−i + 2Y2−i + ... + TYT−i)]

+(3Y3−i)[(Y1−i + 2Y2−i + ... + TYT−i)]

+... + (TYT−i)[(Y1−i + 2Y2−i + ... + TYT−i)]}
= (1/T 4){[1 · 1γ0 + 1 · 2γ1 + 1 · 3γ2 + 1 · 4γ3 + ... + 1 · TγT−1]

+[2 · 1γ1 + 2 · 2γ0 + 2 · 3γ1 + 2 · 4γ2 + ... + 2 · TγT−2]

+[3 · 1γ2 + 3 · 2γ1 + 3 · 3γ0 + 3 · 4γ1 + 3 · 5γ2 + ... + 3 · TγT−3]

+... + [T · 1γT−1 + T · 2γT−2 + T · 3γT−3 + ... + T · Tγ0]}

= (1/T 4)

{
T∑

t=1

t2γ0 + 2
T−1∑
t=1

t(t + 1)γ1 + 2
T−2∑
t=1

t(t + 2)γ2 + ... + 2TγT−1

}

= (1/T )

{[
T∑

t=1

t2/T 3

]
γ0 +

[
T−1∑
t=1

t(t + 1)/T 3

]
2γ1

[
T−2∑
t=1

t(t + 2)/T 3

]
2γ2 + .... +

[
T/T 3

]
2γT−1

}

= (1/T )

∣∣∣∣∣

[
T∑

t=1

t2/T 3

]
γ0 +

[
T−1∑
t=1

t(t + 1)/T 3

]
2γ1

[
T−2∑
t=1

t(t + 2)/T 3

]
2γ2 + .... +

[
T/T 3

]
2γT−1

∣∣∣∣∣ ,
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then

T · E(T−2
∑

tY ∗
t−i − 0)2 =

∣∣∣∣∣

[
T∑

t=1

t2/T 3

]
γ0 +

[
T−1∑
t=1

t(t + 1)/T 3

]
2γ1

[
T−2∑
t=1

t(t + 2)/T 3

]
2γ2 + .... +

[
T/T 3

]
2γT−1

∣∣∣∣∣ ,

≤
{∣∣∣∣∣

T∑
t=1

t2/T 3

∣∣∣∣∣ |γ0|+
∣∣∣∣∣
T−1∑
t=1

t(t + 1)/T 3

∣∣∣∣∣ 2|γ1|
∣∣∣∣∣
T−2∑
t=1

t(t + 2)/T 3

∣∣∣∣∣ 2|γ2|+ .... +
∣∣T/T 3

∣∣ 2|γT−1|
}

≤ {|γ0|+ 2|γ1|+ 2|γ2|+ ...}
(

since (1/T v+1

T∑
t=1

tv → 1/(v + 1) < 1

)

< ∞.

So, E(T−2
∑

tY ∗
t−i − 0)2 −→ 0 and therefore T−2

∑
tY ∗

t−i

p−→ 0 as claimed.

We now turn to second element of OLS estimator,

{
Υ−1

T

[
T∑

t=1

x∗t εt

]}
=




T−1/2
∑

Y ∗
t−1εt

T−1/2
∑

Y ∗
t−2εt

.

.

.
T−1/2

∑
Y ∗

t−pεt

T−1/2
∑

εt

T−1/2
∑

(t/T )εt




= T−1/2

T∑
t=1

ξt,

where

ξt =




∑
Y ∗

t−1εt∑
Y ∗

t−2εt

.

.

.∑
Y ∗

t−pεt∑
εt∑

(t/T )εt




.

But ξt is a martingale difference with variance

E(ξtξ
′
t) = σ2Q∗

t ,
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where

Q∗
t =




γ∗0 γ∗1 γ∗2 . . . γ∗p−1 0 0
γ∗1 γ∗0 γ∗1 . . . γ∗p−2 0 0
. . . . . . . . .
. . . . . . . . .
. . . . . . . . .

γ∗p−1 γ∗p−2 γ∗p−3 . . . γ∗0 0 0
0 0 0 . . . 0 1 t/T
0 0 0 . . . 0 t/T t2/T 2




and

(1/T )
T∑

t=1

Q∗
t → Q∗.

Applying the CLT for martingale difference, it can be shown that

Υ−1
T

T∑
t=1

x∗t εt
L−→ N(0, σ2Q∗). (17)

It follow from (16) and (17) that

ΥT (β̂∗
T − β)

L−→ N(0, [Q∗]−1σ2Q∗[Q∗]−1) = N(0, σ2[Q∗]−1). (18)

2.2.3 The Asymptotic Distribution of OLS Estimators for the Original
Regression

From (14) we have



φ̂1

φ̂2

.

.

.

φ̂p

α̂

δ̂




=




1 0 . . . 0 0 0
0 1 . . . 0 0 0
. . . . . . . .
. . . . . . . .
. . . . . . . .
0 0 . . . 1 0 0

−α + δ −α + 2δ . . . −α + pδ 1 0
−δ −δ . . . −δ 0 1







φ̂∗1
φ̂∗2
.
.
.

φ̂∗p
α̂∗

δ̂∗




.

The original OLS estimators φ̂i are identical to the estimators from the trans-

formed regression φ̂∗i , the asymptotic distribution of φ̂i is given immediately from
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(18). The estimator α̂ is a linear combination of variables that converges to

a Gaussian distribution at rate
√

T , so α̂ behave the same way. Specifically,

α̂ = g′αβ̂
∗
T , where

g′α ≡
[ −α + δ −α + 2δ . . . −α + pδ 1 0

]
,

so from (18),

√
T (α̂− α)

L−→ N(0,g′ασ2[Q∗]−1gα).

Finally, the estimator δ̂ is a linear combination of variables converging at

different rate:

δ̂ = g′δβ̂
∗
T + δ̂∗T ,

where

g′δ =
[ −δ −δ . . . −δ 0 0

]
.

Since g′δβ̂
∗
T is O(T−1/2) and δ̂∗T is O(T−3/2), δ̂ is O(T−1/2) (see p. 3 of Ch 4),

therefore,

√
T (δ̂ − δ)

L−→ N(0,g′δσ
2[Q∗]−1gδ).

Thus, each of the elements of β̂T individually is asymptotically Gaussian

and is O(T−1/2). The asymptotic distribution of the full vector
√

T (β̂T − β) is

multivariate Gaussian.
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