
Ch. 19 Models of Nonstationary Time Series

In time series analysis we do not confine ourselves to the analysis of stationary

time series. In fact, most of the time series we encounter are non − stationary.

How to deal with the nonstationary data and use what we have learned from

stationary model are the main subjects of this chapter.

1 Integrated Process

Consider the following two process

Xt = φXt−1 + ut, |φ| < 1;

Yt = Yt−1 + vt,

where ut and vt are mutually uncorrelated white noise process with variance σ2
u

and σ2
v , respectively. Both Xt and Yt are AR(1) process. The difference between

two models is that Yt is a special case of a Xt process when φ = 1 and is called

a random walk process. It is also refereed to as a AR(1) model with a unit root

since the root of the AR(1) process is 1. When we consider the statistical behav-

ior of the two processes by investigating the mean (the first moment), and the

variance and autocovariance (the second moment), they are completely different.

Although the two process belong to the same AR(1) class, Xt is a stationary

process, while Yt is a nonstationary process.

The process Yt explain the use of the term ”unit root process.” Another ex-

pression that is sometimes used is that the process Yt is integrated of order 1.

This is indicated as Yt ∼ I(1). The term ”integrated” comes from calculus; if

dY (t)/dt = v(t), then Y (t) is the integral of v(t).1 In discrete time series, if

4Yt = vt, then Y might also be viewed as the integral, or sum over t, of v.

1To see this, recall from the basic property of Riemann integral that suppose that v is
bounded on I : {a ≤ s ≤ b} and let Y (t) is defined on I by Y (t) ≡ ∫ t

a
v(s)ds, then Y ′(t0) =

limh→0
Y (t0+h)−Y (t0)

h = v(t0), ∀to ∈ (a, b]. In discrete time, setting h = 1 we obtain the unit
root process.
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Ch. 19 1 INTEGRATED PROCESS

1.1 First Two Moments of Random Walk (without drift)
Process

Assume that t ∈ T ∗, T ∗ = {0, 1, 2, ...},2 the first stochastic processes can be

expressed ad

Xt = φtX0 +
t−1∑
i=0

φiut−i.

Similarly, in the unit root case

Yt = Y0 +
t−1∑
i=0

vt−i.

Suppose that the initial observation is zero, X0 = 0 and Y0 = 0. The means

of the two process are

E(Xt) = 0 and E(Yt) = 0,

and variance are

V ar(Xt) =
t−1∑
i=0

φ2iV ar(ut−i) −→ 1

1− φ2
σ2

u

and

V ar(Yt) =
t−1∑
i=0

V ar(vt−i) = t · σ2
v −→∞.

The autocovariance of the two series are

γX
τ = E(XtXt−τ ) = E

[(
t−1∑
i=0

φiut−i

)(
t−τ−1∑

i=0

φiut−τ−i

)]

= E[(ut + φ1ut−1 + ... + φτut−τ + ... + φt−1u1)(ut−τ + φ1ut−τ−1 + ... + φt−τ−1u1)

=
t−τ−1∑

i=0

φiφτ+iσ2
u

= σ2
uφ

τ (
t−τ−1∑

i=0

φ2i)

−→ φτ

1− φ2
σ2

u

= φτγX
0 .

2This assumption that the starting data being 0 is required to derive the convergence of
integrated process to standard Brownian Motion. A standard Brown Motion is defined on
t ∈ [0, 1].
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Ch. 19 1 INTEGRATED PROCESS

and

γY
τ = E(YtYt−τ ) = E

[(
t−1∑
i=0

vt−i

)(
t−τ−1∑

i=0

vt−τ−i

)]

= E[(vt + vt−1 + ... + vt−τ + vt−τ−1 + ... + v1)(vt−τ + vt−τ−1 + ... + v1)]

= (t− τ)σ2
v .

We may expect that the autocorrelation functions are

rX
τ =

γX
τ

γX
0

= φτ −→ 0

and

rY
τ =

γY
τ

γY
0

=
(t− τ)

t
−→ 1, ∀ τ.

The mean of Xt and Yt are the same, but the variance (including autoco-

variance) are different. The important thing to note is that the variance and

autocovariance of Yt are function of t, while those of Xt converge to a constant

asymptotically. Thus as t increase the variance of Yt increase, while the variance

of Xt converges to a constant.

1.2 First Two Moments of Random Walk With Drift Process

If we add a constant to the AR(1) process, then the means of two processes

also behave differently. Consider the AR(1) process with a constant (or drift) as

follows

Xt = α + φXt−1 + ut, |φ| < 1

and

Yt = α + Yt−1 + vt.

The successive substitution yields

Xt = φtX0 + α

t−1∑
i=0

φi +
t−1∑
i=0

φiut−i
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Ch. 19 1 INTEGRATED PROCESS

and

Yt = Y0 + αt +
t−1∑
i=0

vt−i. (1)

Note that Yt contains a (deterministic) trend t. If the initial observations are

zero, X0 = 0 and Y0 = 0, then the means of two process are

E(Xt) −→ α

1− φ
and

E(Yt) = αt

but the variance and the autocovariance are the same as those derived from AR(1)

model without the constant. By adding a constant to the AR(1) processes, the

means of two processes as well the variance are different. Both mean and variance

of Yt are time varying, while those of Xt are constant.

Since the variance (the second moment) and even mean (the first moment) of

the nonstationary series is not constant over time, the conventional asymptotic

theory cannot be applied for these series (Recall the moment condition in CLT

on p.22 of Ch. 4).

1.3 Random Walk with Reflecting Barrier

While the unit root hypothesis is evident in time series analysis to describe ran-

dom wandering behavior of economic and financial variables, the data containing

a unit root are in fact possibly been censored before they are observed. For ex-

ample, in the financial literatures, price subject to price limits imposed in stock

markets, commodity future exchanges, the positive nominal interest rate, and

foreign exchange futures markets have been treated as censored variables. Cen-

sored data are also common in commodity markets where the government has

historically intervened to support prices or to impose quotas (see de Jong and

Herrera, 2004).

Lee et. al. (2006) study how to test the unit root hypothesis when the time

series data is censored. The underlying latent equation that contained a unit root

is a general I(1) process:

Zt = ρZt−1 + vt, t = 1, 2, ..., T,

where ρ = 1, vt is zero-mean stationary and invertible process to be specified

below. However, Zt is censored from the left and is observed only through the
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Ch. 19 1 INTEGRATED PROCESS

censored sample Yt, i.e.

Wt = max(c, Zt),

where c is a known constant. Let C be the set of censored observations. For

those Zt, t ∈ C, we call them latent variables. Our problem is to inference ρ on

the basis of T observations on Wt.

Equations on Zt and Wt constitute a censored unit root process3 which is

one example of the dynamic censored regression model except for the absence

of all exogenous explanatory variables in the right-hand side of Zt. The static

censored regression model are standard tools in econometrics. Statistical theory

of this model in cross-section situations has been long been understood; see for

example the treatment in Maddala (1983). Dynamic censored regression model

have also become popular for time series when lags of the dependent variable have

been included among the regressors. Lee (1999) and de Jong and Herrera (2004)

propose maximum likelihood method for estimation of such model. However, the

assumption is made in their studies that the lag polynomial 1 − ρb in Zt has its

root outside the unit circle, which completely excludes the possibility of a unit

root in the latent equation.

3When the special case that vt is a white noise process, then Zt is called a random walk
with a reflecting barriers at c. The content of a dam is one example of this process.
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Ch. 19 2 DETERMINISTIC TREND AND STOCHASTIC TREND

2 Deterministic Trend and Stochastic Trend

Many economic and financial times series do trended upward over time (such as

GNP, M2, Stock Index etc.). See the plots of Hamilton, p.436. For a long time

each trending (nonstationary) economic time series has been decomposed into

a deterministic trend and a stationary process. In recent years the idea of sto-

chastic trend has emerged, and enriched the framework of analysis to investigate

economic time series.

2.1 Detrending Methods

2.1.1 Differencing-Stationary

One of the easiest ways to analyze those nonstationary-trending series is to make

those series stationary by differencing. In our example, the random walk series

with drift Yt can be transformed to a stationary series by differencing once

4Yt = Yt − Yt−1 = (1− L)Yt = α + vt.

Since vt is assumed to be a white noise process, the first difference of Yt is sta-

tionary.4 The variance of 4Yt is constant over the sample period. In the I(1)

process,

Yt = Y0 + αt +
t−1∑
i=0

vt−i, (2)

αt is a deterministic trend while
∑t−1

i=0 vt−i is a stochastic trend.

When the nonstationary series can be transformed to the stationary series by

differencing once, the series is said to be integrated of order 1 and is denoted by

I(1), or in common, a unit root process. If the series needs to be differenced d

times to be stationery, then the series is said to be I(d). The I(d) series (d 6= 0)

is also called a differencing − stationary process (DSP ). When (1 − L)dYt

is a stationary and invertible series that can be represented by an ARMA(p, q)

model, i.e.

(1− φ1L− φ2L
2 − ...− φpL

p)(1− L)dYt = α∗ + (1 + θ1L + θ2L
2 + ... + θqL

q)εt (3)

4It is simple to see this result: E(4Yt) = α, V ar(4Yt) = σ2
v and E[(4Yt − α)(4Ys − α)] =

vtvs = 0 for t 6= s.
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Ch. 19 2 DETERMINISTIC TREND AND STOCHASTIC TREND

or

φ(L)4dYt = α∗ + θ(L)εt,

where all the roots of φ(L) = 0 and θ(L) = 0 lie outside the unit circle, we say

that Yt is an autoregressive integrated moving-average ARIMA(p, d, q) process.

In particular an unit root process, d = 1 or an ARIMA(p, 1, q) process is therefore

φ(L)4Yt = α∗ + θ(L)εt

or

(1− L)Yt = α + ψ(L)εt, (4)

where α = φ−1(1)α∗, ψ(L) = φ−1(L)θ(L) and is absolutely summable.

Successive substitution of (4) yields a generalization of (2):

Yt = Y0 + αt + ψ(L)
t−1∑
i=0

εt−i. (5)

2.1.2 Trend-Stationary

Another important class that accommodate the trend in the model is the trend−
stationary process (TSP ). Consider the series

Xt = µ + αt + ψ(L)εt, (6)

where the coefficients of ψ(L) is absolute summable.

The mean of Xt is E(Xt) = µ + αt and is not constant over time, while the

variance of Xt is V ar(Xt) = (1+ψ2
1 +ψ2

2 + ...)σ2 and constant. Although the mean

of Xt is not constant over the period, it can be forecasted perfectly whenever we

know the value of t and the parameters µ and α. In the sense it is stationary

around the deterministic trend t and Xt can be transformed to stationarity by re-

gressing it on time. Note that both DSP model equation (5) and the TSP model

equation (6) exhibit a linear trend, but the appropriated method of eliminating

the trend differs. (It can be seen that the DSP is only trend − nonstationary

from the definition of TSP .)
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Ch. 19 2 DETERMINISTIC TREND AND STOCHASTIC TREND

Most econometric analysis is based the variance and covariance among the

variables. For example, the OLS estimator from the regression Yt on Xt is the

ratio of the covariance between Yt and Xt to variance of Xt. Thus if the variance

of the variables behave differently, the conventional asymptotic theory cannot be

applicable. When the order of integration is different, the variance of each process

behave differently. For example, if Yt is an I(0) variable and Xt is I(1), the OLS

estimator from the regression Yt on Xt converges to zero asymptotically, since

the denominator of the OLS estimator, the variance of Xt, increase as t increase,

and thus it dominates the numerator, the covariance between Xt and Yt. That is,

the OLS estimator does not have an asymptotic distribution. (It is degenerated

with the conventional normalization of
√

T . See Ch. 21 for details)

2.2 Comparison of Trend-stationary and Differencing
-Stationary Process

The best way to under the meaning of stochastic and deterministic trend is to

compare their time series properties. This section compares a trend-stationary

process (6) with a unit root process (4) in terms of forecasts of the series, variance

of the forecast error, dynamic multiplier, and transformations needs to achieve

stationarity.

2.2.1 Returning to a Central Line ?

The TSP model (6) has a central line µ + αt, around which, Xt oscillates. Even

if shock let Xt deviate temporarily from the line there takes place a force to bring

it back to the line. On the other hand, the unit root process (5) has no such a

central line. One might wonder about a deterministic trend combined with a ran-

dom walk. The discrepancy between Yt and the line Y0 + αt, became unbounded

as t →∞.

2.2.2 Forecast Error

The TSP and unit root specifications are also very different in their implications

for the variance of the forecast error. For the trend-stationary process (6), the s
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Ch. 19 2 DETERMINISTIC TREND AND STOCHASTIC TREND

ahead forecast is

X̂t+s|t = µ + α(t + s) + ψsεt + ψs+1εt−1 + ψs+2εt−2 + ....

which are associated with forecast error

Xt+s − X̂t+s|t = {µ + α(t + s) + εt+s + ψ1εt+s−1 + ψ2εt+s−2 + ....

+ψs−1εt+1 + ψsεt + ψs+1εt−1 + ....}
−{µ + α(t + s) + ψsεt + ψs+1εt−1 + ....}

= εt+s + ψ1εt+s−1 + ψ2εt+s−2 + ... + ψs−1εt+1.

The MSE of this forecast is

E[Xt+s − X̂t+s|t]
2 = {1 + ψ2

1 + ψ2
2 + ... + ψ2

s−1}σ2.

The MSE increases with the forecasting horizon s, though as s becomes large, the

added uncertainty from forecasting farther into the future becomes negligible:5

lim
s→∞

E[Xt+s − X̂t+s|t]
2 = {1 + ψ2

1 + ψ2
2 + ...}σ2 < ∞.

Note that the limiting MSE is just the unconditional variance of the stationary

component ψ(L)εt.

To forecast the unit root process (4), recall that the change4Yt is a stationary

process that can be forecast using the standard formula:

4Ŷt+s|t = Ê[(Yt+s − Yt+s−1)|Yt, Yt−1, ...]

= α + ψsεt + ψs+1εt−1 + ψs+2εt−2 + ...

The level of the variable at date t + s is simply the sum of the change between t

and t + s:

Yt+s = (Yt+s − Yt+s−1) + (Yt+s−1 − Yt+s−2) + ... + (Yt+1 − Yt) + Yt (7)

= 4Yt+s +4Yt+s−1 + ... +4Yt+1 + Yt. (8)

Therefore the s period ahead forecast error for the unit root process is

Yt+s − Ŷt+s|t = {4Yt+s +4Yt+s−1 + ... +4Yt+1 + Yt}
−{4Ŷt+s|t +4Ŷt+s−1|t + ... +4Ŷt+1|t + Yt}

= {εt+s + ψ1εt+s−1 + ... + ψs−1εt+1}
+{εt+s−1 + ψ1εt+s−2 + ... + ψs−2εt+1}+ ... + {εt+1}

= εt+s + [1 + ψ1]εt+s−1 + [1 + ψ1 + ψ2]εt+s−2 + ...

+[1 + ψ1 + ψ2 + ... + ψs−1]εt+1,

5Since ψj is absolutely summable.
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Ch. 19 2 DETERMINISTIC TREND AND STOCHASTIC TREND

with MSE

E[Yt+s − Ŷt+s|t]
2 = {1 + [1 + ψ1]

2 + [1 + ψ1 + ψ2]
2 + ... + [1 + ψ1 + ψ2 + ... + ψs−1]

2}σ2.

The MSE again increase with the length of the forecasting horizon s, though in

contrast to the trend-stationary case. The MSE does not converge to any fixed

value as s goes to infinity. See Figures 15.2 on p. 441 of Hamilton.

The model of a TSP and the model of DSP have totally different views about

how the world evolves in future. In the former the forecast error is bounded even

in the infinite horizon, but in the latter the error become unbounded as the hori-

zon extends.

One result is very important to understanding the asymptotic statistical prop-

erties to be presented in the subsequent chapter. The (deterministic) trend intro-

duced by a nonzero drift α, (αt is O(T )) asymptotically dominates the increas-

ing variability arising over time due to the unit root component. (
∑t−1

i=0 εt−i is

O(T 1/2).) This means that data from a unit root with positive drift are certain

to exhibit an upward trend if observed for a sufficiently long period.6

2.2.3 Impulse Response

Another difference between TSP and unit root process is the persistence of in-

novations. Consider the consequences for Xt+s if εt were to increase by one unit

with ε′s for all other dates unaffected. For the TSP process (4), this impulse

response is given by

∂Xt+s

∂εt

= ψs.

For a trend-stationary process, then, the effect of any stochastic disturbance

eventually wears off:

lim
s→∞

∂Xt+s

∂εt

= 0.

6Hamilton p. 442: ” Figure 15.3 plots realization of a Gaussian random walk without drift
and with drift. The random walk without drift, shown in panel (a), shows no tendency to
return to its starting value or any unconditional mean. The random walk with drift, shown in
panel (b), shows no tendency to return to a fixed deterministic trend line, though the series is
asymptotically dominated by the positive drift term.” That is, the random walk is trending up,
but it is not causing by the purpose of returning to the trend line.
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Ch. 19 2 DETERMINISTIC TREND AND STOCHASTIC TREND

By contrast, for a unit root process, the effect of εt on Yt+s is seen from (8)

and (4) to be

∂Yt+s

∂εt

=
∂4Yt+s

∂εt

+
∂4Yt+s−1

∂εt

+ ... +
∂4Yt+1

∂εt

+
∂Yt

∂εt

= ψs + ψs−1 + ... + ψ1 + 1 (since
∂4Yt+s

∂εt

= ψs from (4))

An innovation εt has a permanent effect on the level of Y that is captured by

lim
s→∞

∂Yt+s

∂εt

= 1 + ψ1 + ψ2 + ... = ψ(1).

Example:

The following ARIMA(4, 1, 0) model was estimated for Yt:

4Yt = 0.555 + 0.3124Yt−1 + 0.1224Yt−2 − 0.1164Yt−3 − 0.0814yt−4 + ε̂t.

For this specification, the permanent effect of a one-unit change in εt on the level

of Yt is estimated to be

ψ(1) =
1

φ(1)
=

1

(1− 0.312− 0.122 + 0.116 + 0.081)
= 1.31.

2.2.4 Transformations to Achieve Stationarity

A final difference between trend-stationary and unit root process that deserves

comment is the transformation of the data needed to generate a stationary time

series. If the process is really trend stationary as in (6), the appropriate treatment

is to subtract αt from Xt to produce a stationary representation. By contrast,

if the data were really generated by the unit root process (5), subtracting αt

from Yt, would succeed in removing the time-dependence of the mean but not the

variance as seen in (5).

There have been several papers that have studied the consequence of overdiffer

− encing and underdifferencing:

(a). If the process is really TSP as in (6), difference it would be

4Xt = µ + αt− µ− α(t− 1) + ψ(L)(1− L)εt = α + ψ∗(L)εt. (9)
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Ch. 19 2 DETERMINISTIC TREND AND STOCHASTIC TREND

In this representation, this look like a DSP however, a unit root has been intro-

duced into the moving average representation, ψ∗(L) which violates the definition

of I(d) process as in (4). This is the case of over-differencing.

(b). If the process is really DSP as in (6), and we treat it as TSP , we have a

case of under-differencing.
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Ch. 19 3 OTHER APPROACHES TO TRENDED TIME SERIES

3 Other Approaches to Trended Time Series

3.1 Fractional Integration

3.1.1 Fractional White Noise

We formally defined an ARFIMA(0, d, 0), or a fractional white noise process

to be a discrete-time stochastic process Yt which may be represented as

(1− L)dYt = εt, (10)

where εt is a mean-zero white noise and d is possibly non-integer. The following

theorem give some of the basic properties of the process, assuming for convenience

that σ2
ε = 1.

Theorem 1:

Let Yt be an ARFIMA(0, d, 0) process.

(a) When d < 1
2
, Yt is a stationary process and has the infinite moving average

representation

Yt = ϕ(L)εt =
∞∑

k=0

ϕkεt−k, (11)

where

ϕk =
d(1 + d)...(k − 1 + d)

k!
=

(k + d− 1)!

k!(d− 1)!
=

Γ(k + d)

Γ(k + 1)Γ(d)
.

Here, Γ(·) is a Gamma function. As k →∞, ϕk ∼ kd−1/(d− 1)! ≡ 1
Γ(d)

· kd−1.

(b) When d > −1
2
, Yt is invertible and has the infinite autoregressive representa-

tion

φ(L)Yt =
∞∑

k=0

φkYt−k = εt, (12)

where

φk =
−d(1− d)...(k − 1− d)

k!
=

(k − d− 1)!

k!(−d− 1)!
=

Γ(k − d)

Γ(k + 1)Γ(−d)
.

As k →∞, ϕk ∼ k−d−1/(−d− 1)! ≡ 1
Γ(−d)

· k−d−1.
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Ch. 19 3 OTHER APPROACHES TO TRENDED TIME SERIES

(c) When −1
2

< d < 1
2
, the autocovariance of Yt (σ2

ε = 1) is

γk = E(YtYt−k) =
Γ(k + d)Γ(1− 2d)

Γ(k + 1− d)Γ(1− d)Γ(d)
(13)

and the autocorrelations functions is

rk =
γk

γ0

=
Γ(k + d)Γ(1− d)

Γ(k − d + 1)Γ(d)
. (14)

As k →∞, rk ∼ Γ(1−d)
Γ(d)

· k2d−1.

Proof:

For part (a).

Using the standard binomial expansion

(1− z)−d =
∞∑

k=0

Γ(k + d)zk

Γ(d)Γ(k + 1)
, (how?) (15)

it follows that

ϕk =
Γ(k + d)

Γ(k + 1)Γ(d)
, k ≥ 1.

Using the standard approximation derived from Sheppard’s formula, that for large

k, Γ(k + a)/Γ(k + b) is well approximated by ja−b, it follows that

ϕk ∼ kd−1/(d− 1)! ' Akd−1 (16)

for k large and an appropriate constant A.

Consider now an MA(∞) model given exactly by (11), i.e.,

Yt = A

∞∑

k=1

kd−1εt−k + εt

so that ϕ0 = 1. This series has variance

V ar(Yt) = A2σ2
ε

(
1 +

∞∑

k=1

k2(d−1)

)
.

From the theory of infinity series, it is known that

∞∑

k=1

k−s converges for s > 1 (17)
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but otherwise diverges. It follows that the variance of Yt is finite provided d < 1
2
,

but is infinite if d ≥ 1
2
. Also, since

∑∞
k=0 ϕ2

k < ∞, the fractional white noise

process is mean square summable and stationary for d < 1
2
.7

The proofs of part (b) is analogous to part (a) and is omitted.

For part (c), See Hosking (1981) and Granger and Joyeux (1980) for the proof

of γk and rk. It is note that

rk =
γk

γ0

=

Γ(k+d)Γ(1−2d)
Γ(k+1−d)Γ(1−d)Γ(d)

Γ(d)Γ(1−2d)
Γ(1−d)Γ(1−d)Γ(d)

=
Γ(k + d)Γ(1− d)

Γ(k − d + 1)Γ(d)
' Γ(1− d)

Γ(d)
k2d−1. (18)

3.1.2 Relations to the Definitions of Long-Memory Process

For 0 < d < 1
2
, the fractionally integrated process, I(d), Yt is long memory in the

sense of the condition (1), its autocorrelations are all positive (Γ(1−d)
Γ(d)

k2d−1) such

that condition (1) is violated 8 and decay at a hyperbolic rate.

For −1
2

< d < 0, the sum of absolute values of the processes autocorrelations

tend to a constant, so that it has short memory according to definition (1).9

In this situation, the ARFIMA(0, d, 0) process is said to be ’antipersistent’ or to

have ’intermediate memory’, and all its autocorrelations, excluding lag zero, are

negative and decay hyperbolically to zero.

The relation of the second definition of long memory with I(d) process can be

illustrated with the behavior of the partial sum ST in (2), when Yt is a fractional

white noise as in (5). Sowell (1990) shows that

lim
T→∞

V ar(ST )T−(1+2d) = lim
T→∞

E(S2
T )T−(1+2d) = σ2

ε

Γ(1− 2d)

(1 + 2d)Γ(1 + d)Γ(1− d)
.

Hence,

V ar(ST ) = O(T 1+2d),

7Brockwell and Davis (1987) show that Yt is convergent in mean square through its spectral
representation.

8Suppose that
∑

an converges. Then lim an = 0. See Fulks (1978), p.465.
9From (12),

∑∞
k=0

Γ(1−d)
Γ(d) k2d−1 converges for 1− 2d > 1 or that d < 0.
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which implies that the variance of the partial sum of an I(d) process, with d = 0,

grows linearly,i.e., at rate of O(T 1). For a process with intermediate memory with

−1
2

< d < 0, the variance of the partial sum grows at a slower rate than the

linear rate, while for a long memory process with 0 < d < 1
2
, the rate of growth

is faster than a linear rate.

The relation of the third definition of long memory with I(d) process can be

illustrated beginning with the definition of fractional Brownian motion.

Brownian motion is a continuous time stochastic process B(t) with indepen-

dent Gaussian increments. Its derivatives is the continuous-time white noise

process.

Fractional Brownian motion BH(t) is a generalization of these process. The

fractional Brownian motion with parameter H, usually 0 < H < 1, is the (1
2
−

H)th fractional derivatives of Brownian motion. The continuous-time fractional

noise is then defined as B′
H(t), the derivative of fractional Brownian motion; it

may also be thought of as the (1
2
−H)th fractional derivative of the continuous

time white noise, to which it reduces when H = 1
2
.

We seek a discrete time analogue of continuous time fractional white noise.

One possibility is discrete time fractional Gaussian noise, which is defined to be

a process whose correlation is the same as that of the process of unit increments

4BH(t) = BH(t)−BH(t− 1) of fractional Brownian motion.

The discrete time analogue of Brownian motion is the random walk, Xt defined

by

(1− L)Xt = εt,

where εt is i.i.d.. The first difference of Xt is the discrete-time white noise process

εt. By analogy with the above definition of continuous time white noise we

defined fractionally differenced white noise with parameter H to be the (1
2
−

H)th fractional difference of discrete time white noise. The fractional difference

operator (1− L)d is defined in the natural way, by a binomial series:

(1− L)d =
∞∑

k=0

(
d
k

)
(−L)k = 1− dL− 1

2
d(1− d)L2 − 1

6
d(1− d)(2− d)L3 − ...

=
∞∑

k=0

Γ(k − d)zk

Γ(−d)Γ(k + 1)
. (19)

We write d = H − 1
2
, so that the continuous time fractional white noise with

parameters H has as its discrete time analogue the process Xt = (1− L)−dεt, or
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(1− L)dXt = εt, where εt is a white noise process.

With the results above, the fractional white I(d) process is also a long mem-

ory process according to definition 3 by substitution d = H − 1
2

into (9).

3.1.3 ARFIMA process

A natural extension of the fractional white noise model (5) is the fractional

ARMA model or the ARFIMA(p, d, q) model

φ(L)(1− L)dYt = θ(L)εt, (20)

where d denotes the fractional differencing parameter, φ(L) = 1− φ1L− φ2L
2 −

...−φpL
p, θ(L) = 1+ θ1L+ θ2L

2 + ...+ θqL
q and εt is white noise. The properties

of an ARFIMA process is summarized in the following theorem.

Theorem 2:

Let Yt be an ARFIMA(p, d, q) process. Then

(a) Yt is stationary if d < 1
2

and all the roots of φ(L) = 0 lie outside the unit circle.

(b) Yt is invertible if d > −1
2

and all the roots of θ(L) = 0 lie outside the unit

circle.

c) If −1
2

< d < 1
2
, the autocovariance of Yt, γk = E(YtYt−k) ∼ B · k2d−1, as

k →∞, where B is a function of d.

Proof:

(a). Writing Yt = ϕ(L)εt, we have ϕ(z) = (1 − z)−dθ(z)φ(z)−1. Now the power

series expansion of (1 − z)−d converges for all |z| ≤ 1 when d < 1
2
, that of θ(z)

converges for all z and θi since θ(z) is polynomial, and that of φ(z)−1 converges

for all |z| ≤ 1 when all the roots of φ(z) = 0 lie outside the unit circle. Thus when

all these conditions are satisfied, the power series expansion of ϕ(z) converges for

all |z| ≤ 1 and so Yt is stationary.
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(b). The proof is similar to (a) except that the conditions are required on the

convergence of π(z) = (1− z)dφ(z)θ(z)−1.

(c). See Hosking (1981) p.171.

The reason for choosing this family of ARFIMA(p, d, q) process for modeling

purposes is therefore obvious from Theorem 2. The effect of the d parameter on

distant observation decays hyperbolically as the lag increases, while the effects

of the φi and θj parameters decay exponentially. Thus d may be chosen to de-

scribe the high-lag correlation structure of a time series while the φi and θj

parameters are chosen to describe the low-lag correlation structure. Indeed

the long-term behavior of an ARFIMA(p, d, q) process may be expected to be

similar to that of an ARFIMA(0, d, 0) process with the same value of d, since for

very distant observations the effects of the φi and θj parameters will be negligible.

Theorem 2 shows that this is indeed so.

Exercise:

Plot the autocorrelation function for lags 1 to 50 under the following process:

(a) (1− 0.8L)Yt = εt;

(b) (1− 0.8L)Yt = (1− 0.3L)(1− 0.2L)(1− 0.7L)εt;

(c) (1− L)0.25Yt = εt;

(d) (1− L)−0.25Yt = εt.
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3.2 Occasional Breaks in trend

According to the unit root specification (6), events are occurring all the time that

permanently affect Y . Perron (1989) and Rappoport and Reichlin (1989) have

argued that economic events that have large permanent effects are relatively rare.

This idea can be illustrated with the following model, in which Yt is a TSP but

with a single break:

Yt =

{
µ1 + αt + εt for t < T0

µ2 + αt + εt for t ≥ T0.
(21)

We first difference (10) to obtain

4Yt = ξt + α + εt − εt−1, (22)

where ξt = (µ2−µ1) when t = T0 and is zero otherwise. Suppose that ξt is viewed

as a random variable with Bernoulli distribution,

ξt =

{
µ2 − µ1 with probability p

0 with probability 1− p.

Then, ξt is a white noise with mean E(ξt) = p(µ2 − µ1). (11) could be rewritten

as

4Yt = κ + ηt, (23)

where

κ = p(µ2 − µ1) + α

ηt = ξt − p(µ2 − µ1) + εt − εt−1.

But ηt is the sum of a zero mean white noise process ξ∗t = [ξt − p(µ2 − µ1)]

and an independent MA(1) process [εt − εt−1]. ηt has mean zero E(ηt = 0) and

autocovariance functions, γη
τ = 0 for τ ≥ 2. Therefore an MA(1) representation

for ηt exists, say ηt = υt − θυt−1. From this perspective, (11) could be viewed as

an ARIMA(0, 1, 1)process,

4Yt = κ + υt − θυt−1,

with a non-Gaussian distribution for the innovation υt which is a sum of Gaussian

and Bernoulli distribution. See the plot on p.451 of Hamilton.
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