
Ch. 12 Stochastic Process

1 Introduction

The analysis of experimental data that have been observed at different points

in time leads to new and unique problems in statistical modeling and inference.

The obvious correlation introduced by the sampling of adjacent points in time

can severely restrict the applicability of the many conventional statistical method

traditionally dependent on the assumption that these adjacent observations are

independent and identically distributed. The systematic approach by which one

goes about answering the mathematical and statistical questions posed by these

time correlation is commonly referred as time series analysis. Time series

analysis is the theory of stochastic processes dealing with system which develop

in time in accordance with probabilistic laws.

A particularly important aspect of real observable phenomena, which the

random variables concept cannot accommodate, is their time dimension; the

concept of random variable is essential static. A number of economic phenomena

for which we need to formulate probability models come in the form of dynamic

processes for which we have discrete sequence of observations in time. Observed

data referring to economic variables such as inflation, national income, money

stock, represent examples where the time dependency might be very important.

The problem we have to face is extend the simple probability model,

Φ = {f(x; θ), θ ∈ Θ},

to one which enables us to model dynamic phenomena. We have already moved

in this direction by proposing the random vector probability model

Φ = {f(x1, x2, ..., xT ; θ), θ ∈ Θ}.

The way we viewed this model so far has been as representing different char-

acteristics of the phenomenon in question in the form of the jointly distributed

r.v.’s X1, X2, ..., XT . If we reinterpret this model as representing the same char-

acteristic but at successive points in time then this can be viewed as a dynamic

probability model. With this as a starting point let us consider the dynamic

probability model in the context of (S,F ,P).
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2 The Concept of a Stochastic Process

The natural way to make the concept of a random variable dynamic is to extend

its domain by attaching a date to the elements of the sample space S.

Definition:

Let (S,F ,P) be a probability space, let T be an index set of real numbers and

let RT be the product space generated by taking a copy of R for each element of

T . Then, a stochastic process is a measurable mapping x : S 7−→ RT , where

x(s) = {Xt(s), t ∈ T }.

T is called the index set, the the random variable Xt(s) is called a coordinate of

the process. A stochastic can also be characterized as a mapping from S×T → R.

The ordered sequence of random variables {Xt(s), t ∈ T } is called a stochastic

process.1

Three main elements of a stochastic process {Xt(s), t ∈ T } are:

(a). its range space (sometimes called the state space),2 usually R;

(b). the index T , usually one of R,R+ = [0,∞), Z = {..., 0, 1, 2, ...} and

(c). the dependence structure of the r.v.’s {Xt(s), t ∈ T } itself (level) or even the

second moment of Xt(s) (variation).

In what follows a stochastic process will be denoted by {Xt, t ∈ T } (s is

dropped and and we are concerning exclusively on discrete stochastic process.

That is, the index set T is a countable set such as T = {....,−2,−1, 0, 1, 2, ...}.

1Since a stochastic process determine the joint density of X1, X2, ..., XT , the marginal density
of Xt, t = 1, 2, ..., T is not necessary to be identical.

2In the function y = f(x), x is referred to as the argument of the function, and y is called
the value of the function. We shall also alternatively refer x as the independent variable and
y as the dependent variable. The set of all permissible value that x can take in a given context
is known as the domain of the function. The value into which an x value is mapped is called
the image of that x value. The set of all images is called the range of the function, which is
the set of all values that y variable will take.
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2.1 The Joint Distribution of a Stochastic Process in a
Finite Time Horizon

The dependence structure of {Xt, t ∈ T }, in direct analogy with the case of a

random vector, should be determined by the joint distribution of the process.

The question arises, however, since T is commonly an infinite set, do we need an

infinite dimensional distribution to define the structure of the process ?

This question was tackled by Kolmogorov (1933) who showed that when the

stochastic process satisfies certain regularity conditions the answer is definitely

’no’. In particular, if we define the ’tentative’ joint distribution of the process for

the subset (t1 < t2 < ... < tT ) of T by F (xt1 , xt2 , ..., xtT ) = Pr(Xt1 ≤ x1, Xt2 ≤
x2, ..., XtT ≤ xT ), then if the stochastic process {Xt, t ∈ T } satisfies the condi-

tions:

(a). symmetry: F (xt1 , xt2 , ..., xtT ) = F (xtj1 , xtj2 , ..., xtjT
) where j1, j2, ..., jT is

any permutation of the indices 1, 2, ..., T (i.e. reshuffling the ordering of the index

does not change the distribution).

(b). compatibility: limxT→∞ F (xt1 , xt2 , ..., xtT ) = F (xt1 , xt2 , ..., xtT−1
) (i.e. the

dimensionality of the joint distribution can be reduced by marginalization);

there exist a probability space (S,F ,P) and a stochastic process {Xt, t ∈ T } de-

fined on it whose finite dimensional distribution is the distribution F (xt1 , xt2 , ..., xtT )

as defined above. That is, the probability structure of the stochastic process

{Xt, t ∈ T } is completely specified by the joint distribution of F (xt1 , xt2 , ..., xtT )

for all values of T (a positive integer) and any subset (t1, t2, ..., tT ) of T .

2.2 The First and Second Moment of a Stochastic Process

Given that, for a specific t, Xt is a random variable, we can denote its distribu-

tion and density function by F (xt) and f(xt) respectively. Moreover the mean,

variance and higher moments of Xt (as a r.v.) can be defined as standard form
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as:

E(Xt) =

∫

xt

xtf(xt)dxt = µt,

E(Xt − µt)
2 =

∫

xt

(xt − µt)
2f(xt)dxt = γ2

t , and

E(Xt)
r = µrt, r ≥ 1,

for all t ∈ T .

Definition (Autocovariance Function):

The linear dependence measures between Xi and Xj

γi,j = E[(Xi − µi)(Xj − µj)], i, j ∈ T ,

is now called the autocovariance function. In standardized form

ri,j =
γi,j

γiγj

, i, j ∈ T ,

is called is autocorrelation function.

These numerical characteristics of the stochastic process {Xt, t ∈ T } play an

important role in the analysis of the process and its application to modeling real

observable phenomena. We say that {Xt, t ∈ T } is an uncorrelated process if

ri,j = 0 for any i, j ∈ T , i 6= j.

Example:

One of the most important example of a stochastic process is the normal process.

The stochastic process {Xt, t ∈ T } is said to be normal (or Gaussian) if any finite

subset of T , say t1, t2, ..., tT , (Xt1 , Xt2 , ..., XtT ) ≡ x′T has a multivariate normal

distribution, i.e.

f(xt1 , xt2 , ..., xtT ) = (2π)−T/2|VT |−1/2 exp[−1

2
(xT − µT )′V−1

T (xT − µT )],
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where

µT = E(xT ) =




E(Xt1)
E(Xt1)

.

.

.
E(XtT )




=




µ1

µ2

.

.

.
µT




, and

VT = E(xT − µT )(xT − µT )′ =




γ2
t1

γt1,t2 . . . γt1,tT

γt2,t1 γ2
t2

. . . γt2,tT

. . . . . .

. . . . . .

. . . . . .
γtT ,t1 . . . . γ2

tT




.

As in the case of a normal random variable, the distribution of a normal stochas-

tic process is characterized by the first two moment but now they are function of t.

One problem so far in the definition of a stochastic process given above is

much too general to enable us to obtain a operational probability model. In the

analysis of stochastic process we only have a single realization of the process and

we will have to deduce the value of µt and γ2
t with the help of a single observation.

(which is impossible !)

The main purpose of the next three sections is to consider various special

forms of stochastic process where we can construct probability models which are

manageable in the context of statistical inference. Such manageability is achieved

by imposing certain restrictions which enable us to reduce the number of unknown

parameters involved in order to be able to deduce their value from a single real-

ization. These restrictions come in two forms:

(a). restriction on the time-heterogeneity of the process; and

(b). restriction on the memory of the process.

5 Copy Right by Chingnun Lee r 2008



Ch. 12 3 MODEL’S RESTICTIONS IN A STOCHASTIC PROCESS

3 Model’s Restictions in a Stochastic Process

3.1 Restricting the Time-Heterogeneity of a Stochastic
Process

For an arbitrary stochastic process {Xt, t ∈ T } the distribution function F (xt; θt)

depends on t with the parameter θt characterizing it being function of t as well.

That is, a stochastic process is time-heterogeneous in general. This, however,

raises very difficult issues in modeling real phenomena because usually we only

have one observation for each t. Hence in practice we will have to estimate θt

on the basis of a single observation, which is impossible. For this reason we are

going to consider an important class of stationary process which exhibit con-

siderable time-homogeneity and can be used to model phenomena approaching

their equilibrium steady − state, but continuously undergoing ’random’ func-

tions. This is the class of stationary stochastic processes.

Definition (Strongly Stationary):

A stochastic process {Xt, t ∈ T } is said to be (strictly) stationary if any subset

(t1, t2, ..., tT ) of T and any τ ,

F (xt1 , ..., xtT ) = F (xt1+τ , ..., xtT +τ ).

That is, the distribution of the process remains unchanged when shifted in time by

an arbitrary value τ . In terms of the marginal distributions, (strictly) stationarity

implies that

F (Xt) = F (Xt+τ ), t ∈ T ,

and hence F (xt1) = F (xt2) = ... = F (xtT ). That is stationarity implies that

Xt1 , Xt2 , ..., XtT are (individually) identically distributed.

The concept of stationarity, although very useful in the context of probability

theory, is very difficult to verify in practice because it is defined in terms of dis-

tribution function. For this reason the concept of the second order stationarity,

defined in terms of the first two moments, is commonly preferred.
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Definition (Weakly Stationary):

A stochastic process {Xt, t ∈ T } is said to be (weakly) stationary if

E(Xt) = µ for all t;

γti,tj = E[(Xti − µ)(Xtj − µ)] = γ|tj−ti|, ti, tj ∈ T .

These suggest that weakly stationarity for {Xt, t ∈ T } implies that its mean and

variance γ2
ti

= γ0 are constant and free of t and its autocovariance depends on

the interval |tj − ti|; not ti and tj. Therefore, γk = γ−k.

Example:

Consider the normal stochastic process in the above example. With the weakly

stationarity assumption, now

µT = E(XT ) =




µ
µ
.
.
.
µ




VT =




γ0 γ1 . . . γT−1

γ1 γ0 . . . γT−2

. . . . . .

. . . . . .

. . . . . .
γT−1 . . . . γ0




,

a sizeable reduction in the number of unknown parameters from T +[T (T +1)/2]

to (T + 1). It is important, however, to note that even in the case of stationarity

the number of parameters increase with the size of the subset (t1, ..., tT ) although

the parameters do not depend on t ∈ T .3 This is because time-homogeneity does

not restrict the ’memory’ of the process. In the next section we are going to

consider ’memory’ restrictions in an obvious attempt to ’solve’ the problem of

the parameters increasing with the size of the subset (t1, t2, ..., tT ) of T .

3To see this, consider VT+1 =




γ0 γ1 . . . γT−1 γT

γ1 γ0 . . . γT−2 γT−1

. . . . . .

. . . . . .

. . . . . .
γT−1 . . . . γ0 γ1

γT . . . . γ1 γ0




. With an additional

observation XtT+1 , we have an additional autocovariance γT .
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3.2 Restricting the Memory of a Stochastic Process

3.2.1 Asymptotic Independence

In the case of a typical economic times series, viewed as a particular realization of

a stochastic process {Xt, t ∈ T } one would expect that the dependence between

Xti and Xtj would tend to weaken as the distance (tj−ti) increase. Formally, this

dependence can be described in terms of the joint distribution F (xt1 , xt2 , ..., xtT )

as follows:

Definition (Asymptotically Independent):

A stochastic process {Xt, t ∈ T } is said to be asymptotically independent if

for any subset (t1, t2, ..., tT ) of T and any τ , β(τ) defined by

|F (xt1 , xt2 , ..., xtT , xt1+τ , ..., xtT+τ
)− F (xt1 , xt2 , ..., xtT )F (xt1+τ , ..., xtT+τ

)|
≤ β(τ) goes to zero as τ →∞.

That is if β(τ) → 0 as τ →∞ the two subsets (Xt1 , Xt2 , ..., XtT ) and (Xt1+τ , ..., XtT+τ
)

become independent.

A particular case of asymptotic independence is that of m−dependence which

restricts β(τ) to be zero for all τ > m. That is, Xt1 and Xt2 are independent for

|t1 − t2| > m.

3.2.2 Asymptotic Un-correlation

An alternative way to express the weakening of the dependence between Xti and

Xtj as |tj − ti| increases in terms of the autocorrelation function which is a mea-

sure of linear dependence.

Definition (Asymptotically Uncorrelated):

A stochastic process {Xt, t ∈ T } is said to be asymptotically uncorrelated if

for there exists a sequence of constants {ρ(τ), τ ≥ 1} defined by

∣∣∣∣
γt,t+τ

γtγt+τ

∣∣∣∣ ≤ ρ(τ), for all t ∈ T ,
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such that

0 ≤ ρ(τ) ≤ 1 and

∞∑
τ=0

ρ(τ) < ∞.

As we can see, the sequence of constants {ρ(τ), τ ≥ 1} defines an upper bound

for the sequence of autocorrelation coefficients r(t, t + τ). Moreover, given that

ρ(τ) → 0 as τ → ∞ is a necessary and ρ(τ) < τ−(1+δ) for δ > 0, a sufficient

condition for
∑∞

τ=0 ρ(τ) < ∞, the intuition underlying the above definition is

obvious.

At this stage it is important to note that the above concept of asymptotic

independence and uncorrelatedness which restrict the memory of a stochastic

process are not defined in terms of a stationary stochastic process but a general

time-heterogeneous process. This is the reason why β(τ) and ρ(τ) for τ ≥ 1

define only upper bounds for the two measures of dependence given that when

equality is used in their definition they will depend on (t1, t2, ..., tT ) as well as τ .

3.2.3 Mixing Process

A more general formulation of asymptotic independence can be achieved using

the concept of a σ-field generated by a random vector. Let F t
1 denote the σ-field

generated by X1, X2, ..., XT where {Xt, t ∈ T } is a stochastic process. A measure

of the dependence among the elements of the stochastic process can be defined

in terms of the events B ∈ F t
−∞ and A ∈ F∞

t+τ by

α(τ) = sup
τ
|P (A ∩B)− P (A)P (B)| .

Definition (Strongly Mixing Process):

A stochastic process {Xt, t ∈ T } is said to be strongly mixing (α−mixing)

if α(τ) → 0 as τ →∞.

As we can see, this is a direct generalization of the asymptotic independence

which is defined in terms of particular events A and B related to the definition of

the joint distribution function. In the case where {Xt, t ∈ T } is an independent

process α(τ) = 0 for τ ≥ 1.
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Another interesting special case defined above of a mixing process is the

m − dependent process where α(τ) = 0 for τ > m. In this sense an indepen-

dent process is a zero-dependent process. The usefulness of the concept of an

m − dependent process stems from the fact that commonly in practice any as-

ymptotically independent (or mixing) process can be approximated by such a

process for ’large enough’ m.4

A stronger form of mixing, sometimes called uniform mixing, can be defined

in terms of the following measure of dependence:

ϕ(τ) = sup
τ
|P (A|B)− P (A)| , P (B) > 0.

Definition (Uniformly Mixing Process):

A stochastic process {Xt, t ∈ T } is said to be uniformly mixing (ϕ−mixing)

if ϕ(τ) → 0 as τ →∞.

Looking at the two definitions of mixing we can see that α(τ) and ϕ(τ) define

absolute and relative measures of temporal dependence, respectively. The former

is based on the definition of dependence between two events A and B separated

by τ periods using the absolute measure

[P (A ∩B)− P (A) · P (B)] ≥ 0

and the latter the relative measure

[P (A|B)− P (A)] ≥ 0.

Because ϕ(τ) ≥ α(τ) (why ?),5 ϕ−mixing implies α−mixing.

3.2.4 Ergodicity

In the context of weakly-stationary stochastic process, asymptotic uncorrelat-

edness can be defined more intuitively in terms of the temporal covariance as

4For example, the Augmented Dickey-Fuller test in an ARIMA(p, 1, q) model. See Chapter
21 for detail.

5By definition, ϕ(τ) = [P (A|B) − P (A)] = P (A∩B)
P (B) − P (A), i.e. P (B)ϕ(τ) = P (A ∩ B) −

P (A) · P (B)] = α(τ). Since 0 < P (B) < 1, we have ϕ(τ) ≥ α(τ). That is if ϕ(τ) = 0, then
α(τ) must be zero.
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follows:

Cov(Xt, Xt+τ ) = γτ → 0 as τ →∞.

A stronger form of such memory restriction is so called ergodicity property.

Ergodicity can be viewed as a condition which ensures that the memory of the

process as measured by γτ ”weakens by averaging overtime”.

Definition:

A weakly-stationary stochastic process {Xt, t ∈ T } is said to be ergodic if 6

lim
T→∞

(
1

T

T∑
τ=0

γτ

)
= 0.

3.3 Some Equvalent Implications

Definition:

A necessary condition is in the nature of a prerequisite: suppose that a statement

p is true only if another statement q is true; then q constitutes a necessary

condition of p. Symbolically, we express this as follows:

p =⇒ q

which is read:

1. ”p only if q, ” or alternative

2. ”if p, then q”. It is also logically correct to mean

3. ”p implies q”, and

4. ”p is a stronger condition than q ” and

5. p ⊂ q.

6which imply
∑∞

τ=0 |γτ | < ∞ and this further implies that γτ → 0.
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4 Some Special Stochastic Process

We will consider briefly several special stochastic process which play an impor-

tant role in econometric modeling. These stochastic processes will be divided into

parametric and non-parametric process. The non-parametric process are de-

fined in terms of their joint distribution function or the first few joint moments.

On the other hand, parametric process are defined in terms of a generating mech-

anism which is commonly a functional form based on a non-parametric process.

4.1 Non-Parametric process

4.1.1 White Noise Process

Definition (White Noise):

A stochastic process {Xt, t ∈ T } is said to be a white-noise process if

(a). E(Xt) = 0;

(b). E(XtXτ ) =

{
σ2 if t = τ
0 if t 6= τ.

Hence, a white-noise process is both time-homogeneous, in view of the fact that it

is a weakly-stationary process, and has no memory. In the case where {Xt, t ∈ T }
is also assumed to be normal the process is also strictly stationary.

Despite its simplicity (or because of it) the concept of a white-noise process

plays a very important role in the context of parametric time-series models to be

considered next, as a basic building block.

4.1.2 Martingales Process

Let {Xt, t ∈ T } be a stochastic process defined on (S,F , P (·)) and let {Ft} be

a sequence of σ − fields Ft ⊂ F for all t (i.e. {Ft} is an increasing sequence of

σ − fields) satisfying the following conditions:

(a). Xt is a random variable relatives to {Ft} for all t ∈ T .

(b). E(|Xt|) < ∞ for all t ∈ T .
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(c). E(Xt|Ft−1) = Xt−1, for all t ∈ T .

Then {Xt, t ∈ T } is said to be a martingale with respect to {Ft, t ∈ T }.

4.1.3 Markov Process

An important class of stochastic process is that of Markov process. These process

are based on so- called Markov property that ’the future’ of the process, given

the ’present’, is independent of the ’past’.

Definition (Markov Process):

A stochastic process {Xt, t ∈ T } is said to be a Markov process if for every

Borel function h(Xt) ∈ B∞t (’the future’) such that

E|h(Xt)| < ∞,

E(h(Xt)|Bt
−∞) = E(h(Xt|Ft−1),

where Bb
α = {Ft, α < t < b}.

4.1.4 Brownian Motion

A particular form of a Markov process with a long history in physics is the so-

called Brownian motion (or Wiener) process.

Definition (Brownian Motion):

Let (S,F ,P) be a complete probability space. Then W : S × [0, 1] → R1 is

a standard Wiener process if each of r ∈ [0, 1], W (·, r) is F -measurable, and in

addition,

(a). The process starts at zero: P [W (·, 0) = 0] = 1.

(b). The increments are independent: if 0 ≤ a0 ≤ a1... ≤ ak ≤ 1, then

W (·, ai)−W (·, ai−1) is independent of W (·, aj)−W (·, aj−1), j = 1, .., k, j 6= i for

all i = 1, ..., k.

(c). The increments are normally distributed: For 0 ≤ a ≤ b ≤ 1, the increment

W (·, b)−W (·, a) is distributed as N(0, b− a).
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4.2 Parametric Stochastic Processes

The main difference between the type of stochastic process considered so far and

the one to be considered in this section is that the latter are defined in terms of

a generating mechanism; they are ’derived’ stochastic processes.

4.2.1 (Weakly) Stationary Process

Definition (AR(1) Process) 13:

A stochastic process {Xt, t ∈ T } is said to be a autoregressive of order one

(AR(1)) if it satisfies the stochastic difference equation,

Xt = φXt−1 + ut

where φ is a constant and ut is a white-noise process.

Definition (AR(p) Process):

A stochastic process {Xt, t ∈ T } is said to be a autoregressive of order p

(AR(p)) if it satisfies the stochastic difference equation,

Xt = φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + ut,

where φ1, φ2, ..., φp are constants and ut is a white-noise process.

Definition (MA(q) Process):

A stochastic process {Xt, t ∈ T } is said to be a moving average process of

order q (MA(q)) if it can be expressed in the form

Xt = ut + θ1ut−1 + θ2ut−2 + ... + θqut−q,

where θ1, θ2, ..., θq are constants and ut is a white-noise process.

That is, the white-noise process is used to build the process {Xt, t ∈ T },
being a linear combination of the last q ut−i’s.
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Definition (ARMA(p, q) Process):

A stochastic process {Xt, t ∈ T } is said to be an autoregressive moving

average process of order p, q (ARMA(p, q)) if it can be expressed in the form

Xt = φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + ut + θ1ut−1 + θ2ut−2 + ... + θqut−q,

where φ1, φ2, ..., φp, θ1, θ2, ..., θq are constants and ut is a white-noise process.

Definition (ARFIMA(p, d, q) Process):

A stochastic process {Yt, t ∈ T } is said to be an fractionally autoregres-

sive integrated moving average process of order p, d, q (ARFIMA(p, d, q))

if it can be expressed as a stationary ARMA(p, q) process after fractionally-

differenced ”d” times:

(1− L)dYt = Xt,

and

Xt = φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + ut + θ1ut−1 + θ2ut−2 + ... + θqut−q,

where φ1, φ2, ..., φp, θ1, θ2, ..., θq are constants, |d| < 0.5 and ut is a white-noise

process.

4.2.2 Non-Stationary Process

Definition (Unit Root Process):

A stochastic process {Yt, t ∈ T } is said to be an autoregressive integrated

moving average process of order p, q (ARIMA(p, 1, q)) if it can be expressed

as a stationary ARMA(p, q) process after first-differenced

(1− L)1Yt = Xt,

and

Xt = φ1Xt−1 + φ2Xt−2 + ... + φpXt−p + ut + θ1ut−1 + θ2ut−2 + ... + θqut−q,

where φ1, φ2, ..., φp, θ1, θ2, ..., θq are constants and ut is a white-noise process.
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