
Ch. 9 Heteroscedasticity
(June 13, 2016)

1 Introduction

Regression disturbances whose variance are not constant across observations are het-

eroscedastic. There are several reasons why the disturbance of εi may be variable,

some of which are as follows.1

(a). Following the error-learning models, as people learn, their errors of behavior be-

come smaller over time.

(b). As income grows, people have more discretionary income and hence more scope

for choice about the disposition of their income. Hence, σ2
i is likely to increase

with income.

(c). As data collecting techniques improve, σ2
i is likely to decrease. etc. �

In the heteroscedastic model, the variances of the disturbances are

V ar(εi|x) = σ2
i , i = 1, 2, ..., N.

We continue to assume that the disturbances are pairwise uncorrelated. Thus,

E(εε′|x) =


σ2

1 0 . . . 0
0 σ2

2 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . σ2

N

 .
1See Gujarati (2003), Basic Econometrics. p. 389.
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It will sometimes prove useful to write σ2
i = σ2ωi. Hence

E(εε′|x) = σ2


ω1 0 . . . 0
0 ω2 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . ωN

 ,

= σ2Σ,

where

Σ =


ω1 0 . . . 0
0 ω2 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . ωN

 . (9-1)

This form is an arbitrary scaling which allows us to use a normalization,

tr(Σ) =
N∑
i=1

ωi = N.

(For example, σ2 =
∑N

i=1 σ
2
i

N
.) This makes the classical regression with homoscedastic

disturbances a simple special case with ωi = 1, i = 1, 2, ..., N .

Example.
See Figure 11.1 (p.216) of Greene 5th edition. �
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2 Testing for Heteroscedasticity

One can rarely be certain that the disturbances are heteroscedastic however, and un-

fortunately, what form the heteroscedasticity takes if they are. As such, it is useful to

be able to test for homoscedasticity and if necessary, modify our estimation procedure

accordingly.

Most of the test for heteroscedasticity are based on the following strategy. OLS

estimator is a consistent estimator of β even in the presence of heteroscedasticity. As

such, the OLS residuals will mimic, albeit imperfectly because of sampling variability,

the heteroscedasticity of the true disturbance. Therefore, tests designed to detect het-

eroscedasticity will, in most cases, be applied to the OLS residuals.

2.1 Nonspecific Tests for Heteroscedasticity

2.1.1 White’s General Test

White (1980) addressed the case where nothing is known about the structure of the

heteroscedasticity other than the heteroscedastic variance σ2
i are uniformly bounded.

It would be desirable to be able to test a general hypothesis of the form:

H0 : σ2
i = σ2 for all i,

H1 : Not H0.

If there is no heteroscedasticity (under H0), then s2(X′X) will give a consistent

estimator of variance β̂, where if there is, then it will not (see Ch. 8 sec.1). The

correct covariance matrix for the OLS is estimated by

V̂ ar(β̂)HAC

= (X′X)
−1

(
T∑
t=1

e2
txtx

′
t)

)
. (X′X)

−1

White derives a test for heteroscedasticity which consists of comparing the elements

of NS0(=
∑N

i=1 e
2
txtx

′
t) and s2(X′X)(= s2

∑N
t=1 xtx

′
t), thus indicating whether or not

the usual OLS formula s2(X′X) is a consistent covariance estimator. Large discrep-

ancies between NS0 and s2(X′X) support the contention of heteroscedasticity while

small discrepancies support homoscedasticity.
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A simple operational version of this test is carried out by obtaining NR2 in the

regression of e2
i on a constant and all unique variables in x⊗ x. This statistics is

asymptotically distributed as χ2
p, where p is the number of regressors in the regression,

including the constant.

2.2 Specific Tests for Heteroscedasticity

If nothing is known a priori other than the heteroscedastic variance are uniformly

bounded, White (1980) general test is applicable.

There may be instance when the form of the heteroscedasticity is not known, but

nevertheless, it is known that the disturbance variance in monotonically related to the

size of a known exogenous variable Z by which observations on the dependent variable

Y can be ordered. One frequently used test in this instance is the Goldfeld-Quandt

test.

When it is believed that the broader class of heteroscedasticity is σ2
i = h(z′iα),

where h(·) is a general function independent of i, is applicable (such as σ2
i = z′iα,

σ2
i = (z′iα)2 and σ2

i = exp(z′iα)). If so, the Breush-Pagan test is appropriate.

2.2.1 The Goldfeld-Quandt Test

A very popular test for determining the presence of heteroscedasticity which is mono-

tonically related to an exogenous variable by which observations on the dependent

variable can be ordered is the Goldfeld-Quandt (1965) test.

For the GoldfeldQuandt test, we assume that the observations can be divided into

two groups in such a way that under the hypothesis of homoscedasticity, the disturbance

variances would be the same in the two groups, whereas under the alternative, the

disturbance variances would differ systematically. The steps of this test are as follow:

(a). Order the observations (from “supposed” large to small variance) by the values

of the variables Z.

(b). Choose p central observations and omit them, provides (N − p)/2 > k.
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(c). Fit separate regression by OLS to the two groups, with N1 and N2 observations,

respectively.

(d). Let SSE1 and SSE2 denote the sum of squared residuals based on the large vari-

ance (which you suppose they do) and the small variance group, respectively. �

Recall that
e′1e1
σ2
1
∼ χ2

[N1−k] and
e′2e2
σ2
2
∼ χ2

[N2−k], then the statistics

F =
e′1e1/N1 − k
e′2e2/N2 − k

=
SSE1/N1 − k
SSE2/N2 − k

∼ F[N1−k,N2−k],

under the null hypothesis of homoscedasticity σ2
1 = σ2

2 = σ2,

2.2.2 The Breush-Pagan Test

The Goldfeld-Quandt test has been found to be reasonably powerful when we are able

to identify correctly the variable to use in the sample separation. This requirement

does limit its generality, however. Breush-Pagan (1979) assume a border class of het-

eroscedasticity defined by

σ2
i = σ2h(α0 + z′iα),

where zi is a (p × 1)vector of exogenous variables. This model is homoscedastic if

α = 0.

Breush and Pagen (1979) consider the general estimation equation

ê2
i

σ̄2
= α0 + z′iα+ vi,

where êi represents the i− th OLS residual and σ̄2 =
∑N

i=1 ê
2
i /N . The null hypothesis

α1 = 0 can be tested if the εi are normally distributed. Let SSR denote the sum of

squares obtained in an OLS estimation of

ê2
i

σ̄2
= α̂0 + z′iα̂+ v̂i.

Denote Wi =
ê2i
σ̄2 , W̄ =

∑N
i=1Wi/N , and Ŵi = α̂0 + z′iα̂1. Then SSR =

∑N
i=1(Ŵi −

W̄ )2. Breush and Pagan show, if α = 0, then

1

2
SSR ∼ χ2

p.
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Exercise 1 .

Reproduce the results of Example 11.3 at p.224 of Greene 5th edition. �
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3 OLS Estimation

We showed in Section 8.2 that in the presence of heteroscedasticity, the OLS estimator

β̂ is unbiased and consistent. However it is inefficient relative to the GLS estimator.

3.1 Estimating the Appropriate Covariance Matrix for OLS Estimators

If the type of heteroscedasticity is known with certainty, then the OLS estimator is

undesirable; we should use the GLS instead. The precise form of the heteroscedasticity

is usually unknown, however. In that case, GLS is not usable, and we may need to

salvage what we can from the results of OLS estimators.

The conventional estimated covariance matrix for the OLS estimator σ2(X′X)−1 is

inappropriate; the appropriate matrix is σ2(X′X)−1X′ΣX(X′X)−1. White (1980) has

shown that it is still possible to obtain an appropriate covariance estimator of the OLS

estimators even the form of heteroscedasticity is unknown. What is actually required

is an estimate of

Ω =
1

N
σ2X′ΣX =

1

N

N∑
i=1

σ2
i xix

′
i.

White (1980) shows that under very general conditions, the matrix

S0 =
1

N

N∑
i=1

e2
ixix

′
i,

where ei is the i − th OLS residual, is a consistent estimator of Ω. Therefore, the

White estimator,

V̂ ar(β̂) = N(X′X)
−1

S0(X′X)
−1
, (9-2)

can be used as an estimator of the true variance of the OLS estimator. Inference con-

cerning β is still possible by means of OLS estimator even when the specific structure

of Σ is not specified as β̂ is normally distributed asymptotically.

More generally, White shows that tests of the general linear hypothesis Rβ = q,

under the null hypothesis, the statistics

(Rβ̂ − q)′[R(X′X)
−1
NS0(X′X)

−1
R′]−1(Rβ̂ − q)

L−→ χ2
m,
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where m denote the number of restrictions imposed.

Exercise 2 .

Reproduce the results at Table 11.1 on p. 221 of Greene 5th edition. �
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4 GLS (Weighted Least Squares)

Having tested for and found evidence of heteroscedasticity, the logical next is to revise

the estimation technique to account for it if Σ is known. The GLS estimator is

β̃ = (X′Σ−1X)−1X′Σ−1y. (9-3)

Consider the most general case, σ2
i = σ2ωi. Then Σ−1 is a diagonal matrix whose

i− th diagonal element is 1/ωi (See Eq. (9-1)), that is

Σ−1 =



1
ω1

0 . . . 0

0 1
ω2

. . . 0

. . . . . .

. . . . . .

. . . . . .
0 0 . . . 1

ωN

 =



1√
ω1

0 . . . 0

0 1√
ω2

. . . 0

. . . . . .

. . . . . .

. . . . . .
0 0 . . . 1√

ωN


×



1√
ω1

0 . . . 0

0 1√
ω2

. . . 0

. . . . . .

. . . . . .

. . . . . .
0 0 . . . 1√

ωN


= P′P.

The GLS is obtained by regressing (See Eq (8-18))

Py =


Y1/
√
ω1

Y2/
√
ω2

.

.

.
YN/
√
ωN

 on PX =


x′1/
√
ω1

x′2/
√
ω2

.

.

.
x′N/
√
ωN

 .

Applying OLS to the transformed model, we obtain the GLS estimator, which is

also called weighted least squares (WLS) estimator,

β̃ =

[
N∑
i=1

wixix
′
i

]−1 [ N∑
i=1

wixiYi

]
,

where wi = 1/ωi.

The logic of the computation is that observations with smaller variances receive a

large weight in the computations of the sums and therefore have greater influence in
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the estimate obtained.

Example.
A common specification in linear regression model with heteroscedasticity is that the

variance of the disturbances is proportional to one of the regressors or its square. For

example, if the model is

Yi = β1Xi1 + β2Xi2 + · · ·+ βkXik + εi, i = 1, 2, ..., N,

where

σ2
i = σ2X2

il,

then

Σ−1 =



1
X2

1l
0 . . . 0

0 1
X2

2l
. . . 0

. . . . . .

. . . . . .

. . . . . .
0 0 . . . 1

X2
Nl


,

and

P =



1
X1l

0 . . . 0

0 1
X2l

. . . 0

. . . . . .

. . . . . .

. . . . . .
0 0 . . . 1

XNl

 .

Hence, the transformed regression model for the GLS is

Yi
Xil

= β1

(
Xi1

Xil

)
+ β2

(
Xi2

Xil

)
+ ...+ βl

(
Xil

Xil

)
+ ...+ βk

(
Xik

Xil

)
+

εi
Xil

= βl + β1

(
Xi1

Xil

)
+ β2

(
Xi2

Xil

)
+ ...+ βk

(
Xik

Xil

)
+

εi
Xil

,

where E
(
εi
Xil

)2

=
σ2X2

il

X2
il

= σ2, ∀i.
If the variance σ2

i is proportional to Xil instead of X2
il, then the weight applied to

each observation is 1/
√
Xil instead of 1/Xil. �
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5 Estimation When Σ is Unknown

The general form of the heteroscedastic regression model has too many parameters

to estimate by ordinary method as shown in Section 8.4. Typically, the model is re-

stricted by formulating σ2Σ as a function of a few parameters, such as σ2
i = σ2Xα

il or

σ2
i = σ2[z′iα]2. Write this as Σ(α), FGLS based on a consistent estimator of Σ(α) is

asymptotically equivalent to GLS. The new problem is that we must first find consis-

tent estimators of the unknown parameters in Σ(α). Two methods are typically used,

two step GLS and maximum likelihood.

5.1 FGLS, Two-Step Estimation

For the heteroscedastic model, the GLS estimator is

β̃ =

[
N∑
i=1

(
1

σ2
i

)
xix

′
i

]−1 [ N∑
i=1

(
1

σ2
i

)
xiYi

]
.

The two step estimators are computed by first obtaining estimators σ̂2
i , usually

using some function of the OLS residuals, then the FGLS will be

β̌ =

[
N∑
i=1

(
1

σ̂2
i

)
xix

′
i

]−1 [ N∑
i=1

(
1

σ̂2
i

)
xiYi

]
. (9-4)

The OLS estimator β̂, although inefficient, is still consistent. As such, statistics

computed using the OLS residual, ei = (Yi − x′iβ̂), will have the same asymptotic

properties as those computed using the true disturbance, εi = (Yi − x′iβ)

Let

ε2
i = σ2

i + vi,

where vi is just the difference between the random variable ε2
i and its expectation.

Since εi is unobservable, we would use the OLS residual, for which

ei = εi − x′i(β̂− β) = εi + ui.

But in large sample, as β̂
p−→ β, terms in ui will become negligible, so that at least

approximately,

e2
i = σ2

i + v∗i .
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The procedure suggested is to treat the variance function as a regression and use

the squares of the OLS residual as the dependent variable. For example, if σ2
i = z′iα,

then a consistent estimator of α will be the OLS in the model2

e2
i = z′iα+ v∗i , i = 1, 2, ..., N. (9-5)

Having obtained the estimated α̂ in the first step from (9-6), then we substitute

σ̂2
i = z′iα̂ into Eq. (9-5), we finish the second step and the FGLS estimator is thus

obtained.

The two-step estimator may be iterated by recomputing the residuals after com-

puting the FGLS estimate and then reentering the computation

OLS → β̂ → e
Eq.(9−6)−→ α̂(1) Eq.(9−5)−→ β̌(1) → ě(1) Eq.(9−6)−→ α̂(2) Eq.(9−5)−→ β̌(2) →

→ ě(2) → .....,

where

ě(1) = y −Xβ̌(1).

5.2 Maximum Likelihood Estimation

The log-likelihood function for a sample of normally distributed observations with

heteroscedastic variance is

lnL = −N
2

ln(2π)− 1

2

N∑
i=1

[
lnσ2

i +
1

σ2
i

(Yi − x′iβ)2

]
.

For simplicity, let

σ2
i = σ2fi(α),

where α is the vector of unknown parameters in Σ(α) and fi(α) is indexed by i to

indicate that is a function of zi. Assume as well that no elements of β appear in α.

The log-likelihood function is

lnL = −N
2

[ln(2π) + lnσ2]− 1

2

N∑
i=1

[
ln fi(α) +

1

σ2

(
1

fi(α)

)
(Yi − x′iβ)2

]
.

2In this model, v∗i may be both heteroscedastic and autocorrelated, so α̂ is consistent but inefficient.
But, consistency is all that is required for asymptotically efficient estimation of β using Σ(α̂).
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For convenience in what follows, substitute εi for (Yi − x′iβ), denote fi(α) as simply

fi, and denote the vector of derivatives ∂fi(α)/∂α as gi. Then the derivatives of the

log-likelihood functions are

∂ lnL

∂β
=

N∑
i=1

xi
εi
σ2fi

,

∂ lnL

∂σ2
= − N

2σ2
+

1

2σ4

N∑
i=1

ε2
i

fi
=

N∑
i=1

(
1

2σ2

)(
ε2
i

σ2fi
− 1

)
,

∂ lnL

∂α
=

N∑
i=1

(
1

2

)(
ε2
i

σ2fi
− 1

)(
1

fi

)
gi.

The maximum likelihood estimators are those values of β, σ2, and α that simultane-

ously equate these derivatives to zero. The likelihood equations are generally highly

nonlinear and will usually require an iteration solution.

Exercise 3
Reproduce the results at Table 11.2 on p.231 of Greene 5th edition. �
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6 ARCH Model

Heteroscedasticity is often associated with cross-sectional data, whereas time series are

usually studied in the context of homoscedastic processes. In analyses of macroeco-

nomic data, Engle (1982, 1983) and Cragg (1982) found evidence that for some kinds

of data, the disturbance variances in time-series models were less stable than usually

assumed.

With time-series data, it is not uncommon to see that the OLS residuals to be quite

small in absolute value for a number of successive periods of time, then much larger for

a while, then smaller again, and so on. This phenomenon of time-varying volatility (or

disturbances occur in clusters) is often encountered in models for stock returns, foreign

exchange rates, and other series that are determined in financial markets. Numerous

models for dealing with this phenomenon have been proposed. One very popular

approach is based on the concept of autoregressive, conditionally heteroscedastic, or

ARCH, that was introduced by Engle (1982). The basic idea of ARCH models is that

the variance of the disturbance at time t depends on the realized values of squared

disturbances in previous time periods.

A model which allows the conditional variance to depend on the past realization of

the series is considered in the following. Suppose that

ut =
√
htεt (9-6)

ht = α0 + α1u
2
t−1, (9-7)

with E(εt) = 0 and V ar(εt) = 1, then this is an example of what will be called an

autoregressive conditional heteroscedasticity (ARCH(1)) model.

Example.
See Figure 11.3 on p.239 of Greene 5th edition. �
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Figure (9-1). An Example of Volatility Clustering.

6.1 Population’s Properties of ARCH Models

6.1.1 The Conditional Mean and Variance

Let Ft−1 denote the information set available at time t − 1. The conditional mean of

ut is

E(ut|Ft−1) =
√
ht · E(εt|Ft−1) = 0. (9-8)

From (9-9) it implies that the conditional variance of ut is

σ2
t = V ar(ut|Ft−1)

= E{[ut − E(ut|Ft−1)]2|Ft−1}

= E(u2
t |Ft−1) (since E(ut|Ft−1) = 0)

= E(htε
2
t |Ft−1)

= E(ε2
t )E(α0 + α1u

2
t−1|Ft−1)

= α0 + α1u
2
t−1

= ht,

so ut is conditionally heteroscedastic. From the structure of the model, it is seen that

large past squared shocked shocks u2
t−i, i = 1, ..,m imply a large conditional variance

σ2
t (= V ar(ut|Ft−1)) for this variable ut. Consequently, ut tends to assume a large value.

This means that, under the ARCH framework, large shocks tend to be followed by

another large chock. This feature is similar to the volatility clustering observed in asset
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returns.

6.1.2 The Conditional Density

By assuming that εt is a Gaussian variate, the condition density of ut given all the

information update to t− 1 is

f(ut|Ft−1) =
√
htf(εt|Ft−1) =

√
ht ·N(0, 1) ∼ N(0, ht).

6.1.3 The Unconditional Mean and Variance

The unconditional mean of ut is

E(ut) = E[E(ut|Ft−1)] = E(0) = 0. (9-9)

While ut is conditional heteroscedastic, the unconditional variance of ut is

V ar(ut) = V ar[E(ut|Ft−1)] + E[V ar(ut|Ft−1)]

= 0 + α0 + α1E(u2
t−1)

= α0 + α1V ar(ut−1).

If the process generating the disturbance ut is weakly stationary, then

V ar(ut) = V ar(ut−1)

= α0α1V ar(ut−1)

=
α0

1− α1

. (9-10)

For this ratio to be finite and positive, we require that α0 > 0 and |α1| < 1.

Moreover, since E(ut|Ft−j) = 0, so

E(utut−j|Ft−j) = ut−jE(ut|Ft−j) = 0.

Hence

E(utut−j) = E[E(utut−j|Ft−j)] = 0. (9-11)

Based on (9-10)–(9-12), ut follows ideal conditions.
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6.2 Linear Regression Model With ARCH(1) Disturbance

Suppose that we are interested in estimating the parameter of a regression model with

ARCH disturbances. Let the regression equation be

Yt = x′tβ + ut.

Here xt denote a vector of predetermined explanatory variables, which could include

lagged value of Y . The disturbance term ut is assumed to satisfy (9-7) and (9-8).

Because as is shown in last section that ut is satisfied the classical assumptions,

the OLS estimator of β is most efficient linear estimator according to Gauss-Markov

theorem.

But there is a more efficient nonlinear estimator. If εt
i.i.d.∼ N(0, 1), then conditioned

on starting value, the sample conditional log likelihood function is then
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= α0 + α1(Yt−1 − x′t−1β)2, (9-13)

and the vector of parameters to be estimated θ = (β′, α0, α1)′. For a given numerical

value for the parameter vector θ, the sequence of conditional variances can be calculated

from (9-14) and used to evaluate the log likelihood function (9-13). This can then be

maximized numerically using the methods described in Chapter 3.
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