
Ch. 8 Nonspherical Disturbances
(July 25, 2017)

1 Introduction

This chapter will assume that the full ideal conditions hold except that the covariance

matrix of the disturbances , i.e. E(εε′) = σ2Σ, where Σ is not the identity matrix. In

particular, Σ may be nondiagonal and/or have unequal diagonal elements.

Two cases we shall consider in details are heteroscedasticity and autocorrelation.

(a). Disturbances are heteroscedastic when they have different variance. Heteroscedas-

ticity usually arises in cross-section data where the scale of the dependent vari-

able and the explanatory power of the model tend to vary across observations.

The disturbances are still assumed to be uncorrelated across observation, so σ2Σ

would be1

σ2Σ = σ2


ω1 0 . . . 0
0 ω2 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . ωN

 =


σ2
1 0 . . . 0

0 σ2
2 . . . 0

. . . . . .

. . . . . .

. . . . . .
0 0 . . . σ2

N

 .

(b). Autocorrelation is usually found in time-series data. Economic time-series often

display a “memory” in that variation around the regression function is not inde-

1In most cases disturbances are heteroscedastic when we are dealing with cross-sectional sample,
so we use “sub-i” here.
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pendent from one period to the next. Time series data are usually homoscedas-

ticity, so σ2Σ would be

σ2Σ = σ2


1 ρ1 . . . ρT−1
ρ1 1 . . . ρT−2
. . . . . .
. . . . . .
. . . . . .

ρT−1 ρT−2 . . . 1

 .

Example .

See Figure 8.1 on p.159 (Ch. 8) and Figure 19.1 on p.627 (Ch. 19) of Greene 6th

edition. �

In recent studies, panel data sets, constituting of cross sections observed at several

points in time, have exhibited both characteristics. The next three chapter examines

in details specific types of generalized regression models.

Our earlier results for the classical mode will have to be modified. We first consider

the consequence of the more general model for the ordinary least squares estimators.
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2 Efficient Estimators

It is useful to begin with considering cases in which Σ is a known, symmetric and pos-

itive definite matrix. This assumption will occasionally be true, but in most models,

Σ will contain unknown parameters that must also be estimated.

Example.
Assume that the variance of disturbances in each sample (i = 1, 2, ..., N) is different

but is just the product of a unknown overall variance σ2 and the “second” explanatory

variable (say) X2, i.e. σ2
i = σ2X2i, then

σ2Σ =


σ2X21 0 . . . 0

0 σ2X22 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . σ2X2N

 = σ2


X21 0 . . . 0
0 X22 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . X2N

 ,

therefore, we have a “known” Σ,

Σ =


X21 0 . . . 0
0 X22 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . X2N


once upon we have this sample of size N . �

2.1 Generalized Least Square (GLS) Estimators

2.1.1 The Slopes and Variance Estimators

If Σ is a (known) positive symmetric matrix, it can be factored into

Σ = CΛC′,

where the column of C are the eigenvectors of Σ and the eigenvalues of Σ are arrayed

in the diagonal matrix Λ. Let Λ1/2 be the diagonal matrix with ith diagonal element
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√
λi. Also let P′ = CΛ−1/2, so

Σ−1 = CΛ−1C′ = CΛ−1/2Λ−1/2C′ = P′P.

Theorem .

Suppose that the regression model y = Xβ + ε satisfies the ideal conditions except

that Σ is not the identity matrix. Suppose that

lim
T→∞

X′Σ−1X

T

is finite and nonsingular. Then the transformed equation

Py = PXβ + Pε (8-1)

satisfies the full ideal condition.

Proof.
Since P is nonsingular and nonstochastic, PX is nonstochastic and of full rank if X is

(Condition 2 and 5). Also, for the consistency of OLS estimators

lim
T→∞

(PX)′(PX)

T
= lim

T→∞

X′Σ−1X

T

is finite and nonsingular by assumption. Therefore the transformed regressors matrix

satisfies the required conditions, and we need consider only the transformed disturbance

Pε.

Clearly, E(Pε) = 0 (Condition 3). Also

E(Pε)(Pε)′ = σ2PΣP′

= σ2(Λ−1/2C′)(CΛC′)(CΛ−1/2)

= σ2Λ−1/2ΛΛ−1/2

= σ2I (Condition 4).

Finally, the normality (Condition 6) of Pε follows immediately from the normality of

ε. �
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Theorem.
Suppose that the regression model y = Xβ + ε satisfies the ideal conditions except

that Σ is not the identity matrix. Then the BLUE of β is just

β̃ = (X′Σ−1X)−1X′Σ−1y.

Proof.
Since the transformed equation (8-1) satisfies the full ideal conditions, the BLUE of β

is just

β̃ = [(PX)′(PX)]
−1

(PX)′(PY)

= (X′Σ−1X)−1X′Σ−1y. �

Indeed, since β̃ is the OLS estimator of β in the transformed equation, and since the

transformed equation (8-1) satisfies the ideal conditions, β̃ has all the usual desirable

properties–it is unbiased, BLUE, efficient, consistent, and asymptotically efficient. β̃

is the OLS of the transformed equation, but it is a generalized least square (GLS)

estimator of the original regression model which take the OLS as a subcases when

Σ = I.

The generalized least squares estimator β̃ can also be obtained by minimizing the

GLS criterion function

(y −Xβ)′Σ−1((y −Xβ),

which is just the sum of squared residuals from the transformed regression. The cri-

terion function can be thought of as a generalization of the SSE function in which

the squares and cross products of the disturbances are weighted by the inverse of the

matrix Σ.

Much attention has been devoted in the literature to the search of conditions for

which the ordinary least squares estimator β̂ is equivalent to the GLS estimator β̃, and

thus it is BLUE. Anderson was the first who faced this problem, stating (1948, p. 48)

and proving (1971, pp. 19 and 560) that equality between β̂ and β̃, holds if and only

if the matrix X contains k eigenvectors of Σ which are normalized to unit length.2

2Because ΣX = XΛ, therefore Σ−1 = XΛ−1X′. Substitute this equation to β̃ we obtain this
result.
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Theorem .

The variance-covariance of the GLS estimator β̃ is σ2(X′Σ−1X)−1.

Proof.
Viewing β̃ as the OLS estimator in the transformed equation, it is clearly has covariance

matrix

V ar(β̃) = σ2[(PX)′(PX)]−1 = σ2(X′Σ−1X)−1. �

Theorem.
An unbiased, consistent, efficient, and asymptotically efficient estimator of σ2 is

s̃2 =
ẽ′Σ−1ẽ

T − k
,

where ẽ = y −Xβ̃.

Proof.
Since the transformed equation satisfies the ideal conditions, the desired estimator of

σ2 is

1

T − k
(Py −PXβ̃)′(Py −PXβ̃) =

1

T − k
[P(y −Xβ̃)]′[P(y −Xβ̃)]

=
1

T − k
(y −Xβ̃)′P′P(y −Xβ̃)

=
1

T − k
(y −Xβ̃)′Σ−1(y −Xβ̃)

=
1

T − k
ẽ′Σ−1ẽ. �

2.1.2 Hypothesis Tests

Finally, for testing hypothesis we can apply the full set of results in Chapter 6 to the

transformed equation (8-1). For the testing the m restrictions Rβ = q, the appropriate
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(one of) statistics is

(Rβ̃ − q)′[s̃2R(PX)′(PX)−1R′]−1(Rβ̃ − q)

m

=
(Rβ̃ − q)′[s̃2R(X′Σ−1X)−1R′]−1(Rβ̃ − q)

m
∼ Fm,T−k.

Exercise 1 .

Derive the other three test statistics (in Chapter 6) of the F −Ratio test statistics to

test the hypothesis Rβ = q when Σ 6= I. �

2.2 Maximum Likelihood Estimators

Assume that ε ∼ N(0, σ2Σ), if X are not stochastic, then by results from “functions

of random variables” (n ⇒ n transformation) we have y ∼ N(Xβ, σ2Σ). That is, the

log-likelihood function is

L(θ; y) = ln f(θ; y)

= −T
2

ln(2π)− 1

2
ln |σ2Σ| − 1

2
(y −Xβ)′(σ2Σ)−1(y −Xβ)

= −T
2

ln(2π)− T

2
lnσ2 − 1

2
ln |Σ| − 1

2σ2
(y −Xβ)′Σ−1(y −Xβ),

where θ = (β1, β2, ..., βk, σ
2)′ since by assumption Σ is known.

The necessary conditions for maximizing L are

∂L

∂β
=

1

σ2
X′Σ−1(y −Xβ) = 0

and

∂L

∂σ2
= − T

2σ2
+

1

2σ4
(y −Xβ)′Σ−1(y −Xβ) = 0
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The solution are

β̃ML = (X′Σ−1X)−1X′Σ−1y,

and

σ̃2
ML =

1

T
(y −Xβ̃ML)′Σ−1(y −Xβ̃ML),

which implies that with normally distributed disturbances, generalized least squares are

also MLE. As is the classical regression model, the MLE of σ2 is biased. An unbiased

estimator is

s̃2 =
1

T − k
(y −Xβ̃ML)′Σ−1(y −Xβ̃ML).
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3 Estimation When Σ is Unknown

If Σ contains unknown parameters that must be estimated, then GLS is not feasible.

But with an unrestricted Σ, then beside β there are T (T + 1)/2 additional parameters

in σ2Σ. This number is far too many to estimate with T observations. Obviously,

some structures must be imposed on the model if we are to proceed.

3.1 Feasible Generalized Least Squares

The typical problem involves a small set of parameters θ such that Σ = Σ(θ). For

example, we may assume autocorrelated disturbances in the beginning of this chapter

as

σ2Σ = σ2


1 ρ1 . . . ρT−1
ρ1 1 . . . ρT−2
. . . . . .
. . . . . .
. . . . . .

ρT−1 ρT−2 . . . 1

 = σ2


1 ρ1 . . . ρT−1

ρ1 1 . . . ρT−2

. . . . . .

. . . . . .

. . . . . .
ρT−1 ρT−2 . . . 1

 ,

then Σ has only one additional unknown parameter, ρ. A model of heteroscedasticity

that also has only one new parameter, α, is

σ2
i = σ2Xα

2i,

where α is an unknown parameter.

Definition.
If Σ depends on a finite number of parameters, θ1, θ2, ..., θp, and if Σ̂ depends on con-

sistent estimators, θ̂1, θ̂2, ..., θ̂p, the Σ̂ is called a consistent estimator of Σ. �

Definition.
Let Σ̂ be a consistent estimator of Σ. Then the feasible generalized least squares

estimator (FGLS) of β is

β̌ = (X′Σ̂−1X)−1X′Σ̂−1y. �
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Conditions that imply that β̌ is asymptotically equivalent to β̃ are

plim

[(
1

T
X′Σ̂−1X

)
−
(

1

T
X′Σ−1X

)]
= 0

and

plim

[(
1√
T

X′Σ̂−1ε

)
−
(

1√
T

X′Σ−1ε

)]
= 0.

Theorem.
An asymptotically efficient FGLS does not require that we have an efficient estimator

of θ; only a consistent one is required to achieve full efficiency for the FGLS estimator.�
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4 Consequences for OLS Estimation

4.1 Properties of the Least Squares Estimators

We now consider the statistical properties of the OLS estimator β̂ = (X′X)−1X′y (If

you insist to use it !) when the variance-covariance matrix of disturbance in the linear

model is now assumed to be E(εε′) = σ2Σ, which had violated the ideal conditions.

4.1.1 Finite Sample Properties

To reiterate, the OLS estimator is

β̂ = (X′X)−1X′y

= β + (X′X)
−1

X′ε.

(a). Unbiasedness ?

The OLS slope estimator remains unbiased,

E(β̂) = β + (X′X)−1X′E(ε) = β,

but the variance estimator s2, is not, since

E(e′e) = E(ε′Mε)

= trace E(Mεε′)

= σ2 trace MΣ

6= σ2(T − k).

(b). Efficiency ?

In the classical linear regression model, assume that E(εε′) = σ2Σ, the covariance

matrix of OLS estimator β̂ is σ2(X′X)−1X′ΣX(X′X)−1. (Instead of σ2(X′X)−1.)

To see this,

V ar(β̂OLS) = E(β̂ − β)(β̂ − β)′ = E(X′X)−1X′εε′X(X′X)−1

= σ2(X′X)−1X′ΣX(X′X)−1. (8-2)
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Note that the covariance matrix of β̂ is no longer equal to σ2(X′X)−1. It may

be either “larger” or “smaller”, in the sense that

(X′X)−1X′ΣX(X′X)−1 − (X′X)−1

can be either positive semidefinite, negative semidefinite, or neither. However,

any inference based on s2(X′X)−1 is likely to be misleading. That is, the famil-

iar inference procedures based on the t and F test statistics will no longer be

appropriate.

(c). Exact distribution:

In the classical linear regression model, assume that E(εε′) = σ2Σ. Because β̂

is a linear function of ε, therefore if ε is normally distributed, then

β̂ ∼ N(β, σ2(X′X)−1X′ΣX(X′X)−1). (8-3)

4.1.2 Asymptotic Properties of OLS

(a). Consistency ?:

(i.) Theorem . (Consistency of OLS)

In the classical linear regression model, assume that E(εε′) = σ2Σ, Fur-

thermore, if limT→∞(X′X/T ) and limT→∞(X′ΣX/T ) is finite, then the OLS

estimator β̂ is consistent.

Proof.

plim β̂ = β + lim
T→∞

(
X′X

T

)−1
plim

X′ε

T
.

But X′ε
T

has zero mean and covariance matrix

σ2

T

X′ΣX

T
.

If limT→∞(X′ΣX/T ) is finite, then σ2

T
X′ΣX
T

= 0. Hence X′ε
T

has zero mean

and its covariance matrix vanishes asymptotically, which implies plim X′ε
T

=

0. Combining with the assumption that limT→∞(X′X/T ) is finite, therefore

we have the result that plim β̂ = β. �
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(ii.) Since E(s2) 6= σ2, it is hard to see that it is a consistent estimator of σ2

from convergence in mean square error.

(b). Asymptotic Normality:

Since by assumption, X′X is O(T ), therefore (X′X)−1 → 0. The exact distribu-

tion of β̂, i.e., β̂ ∼ N(β, σ2(X′X)−1X′ΣX(X′X)−1) will degenerate to a point

in large sample. To express the limiting distribution of β̂, we need the following

theorem.

Theorem . (Limiting Distribution of β̂)

Denote limT→∞(X′ΣX/T ) = Q∗. The asymptotic distribution of
√
T (β̂−β) can

be expressed as

√
T (β̂ − β)

d−→ N(0, σ2Q−1Q∗Q
−1) ≡ N(0,V), (8-4)

where Q = limT→∞(X′X
T

).

Proof.

For any sample size T , the distribution of
√
T (β̂ − β) is

N
(
0, σ2

(
X′X
T

)−1 (X′ΣX
T

) (
X′X
T

)−1)
. The above limiting results are therefore

trivial. �

This asymptotic normality result can be used to test hypotheses about β. To con-

struct standard tests that are asymptotically invariant to nuisance parameters,

an estimate of V is required.

4.2 Robust Estimation of Asymptotic Covariance Matrices of OLS
Estimator

All the testing procedures we have made use of standard errors or estimated covariance

matrices for performing statistical inference. When we have assumed that E(εε′) =

σ2Σ, the variance of β̂ is

V ar(β̂OLS) = σ2(X′X)−1(X′ΣX)(X′X)−1

= (X′X)−1(X′ΩX)(X′X)−1, (8-5)
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as is seen in Eq. (8-2), where Ω = σ2Σ. This form of covariance matrix is often

called a sandwich covariance matrix, for the obvious reason that the matrix X′ΩX is

sandwiched between the two instances of the matrix (X′X)−1. The covariance of an

inefficient estimator very often takes this sandwich form.

For the purpose of asymptotic theory, we wish to consider the covariance matrix of,

not β̂OLS, but rather
√
T (β̂ − β). The asymptotic covariance matrix of

√
T (β̂ − β) is(

lim
1

T
X′X

)−1(
lim

1

T
X′ΩX

)(
lim

1

T
X′X

)−1
, (8-6)

as is seen is Eq. (8-4). To estimate the factor
[
lim
(
1
T
X′X

)−1]
, we can simply use

the matrix
(
1
T
X′X

)−1
itself. What is not so trivial is to estimate the middle factor[

lim
(
1
T
X′ΩX

)]
.

It might seem that to estimate
[
lim
(
1
T
X′ΩX

)]
using

[(
1
T
X′Ω̂X

)]
. However as

estimator of Ω, Ω̂, contains T (T + 1) unknown parameters which make this method

hopeless with only T observations. But fortunately what is required is an estimator Q̂

of the T (T + 1) unknown elements in the matrix3

plim Q̂ = plim

(
1

T
X′ΩX

)
= plim

1

T

T∑
i=1

T∑
j=1

σijxix
′
j.

The OLS estimator β̂ is consistent estimator of β, which implies that the OLS

residuals et are “pointwise” consistent estimators of their population counterparts εt.

The general approach, then, will be to use X and e to devise the estimator Q̂.

In the heteroscedastic case, White (1980) showed that under certain conditions, the

estimator

Q̂0 =
1

T

T∑
t=1

e2txtx
′
t

has

plim Q̂0 = plim

(
1

T
X′ΩX

)
= plim

1

T

T∑
i=1

σ2
i xix

′
i.

3To see this, X′ΩX =
[

x1 x2 · · · xT

]

σ11 σ12 · · · σ1T
σ21 σ22 · · · σ2T
...

...
...

...
σT1 σT2 · · · σTT




x′1
x′2
...

x′T

 =

∑T
i=1

∑T
j=1 σijxix

′
j .
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The extension of White’s result to the more general case of autocorrelation is much

more difficult. The natural counterpart for estimating

1

T

T∑
i=1

T∑
j=1

σijxix
′
j (8-7)

is

Q̂1 =
1

T

T∑
i=1

T∑
j=1

eiejxix
′
j.

Unlike the heteroscedasticity case, the matrix in Eq. (8-7) is 1/T times a sum of T 2

terms, so it is difficult to conclude yet it will converge to anything at all. To obtain

convergence, it is necessary to assume that the terms involving unequal subscripts in

(8-7) diminish importance as T grows. A sufficient condition is that the terms with

subscript pairs |i − j| grow smaller as the distance between them grows large. In

practical terms, observation pairs are progressively less correlated as their separation

in time grows.4 Thus we achieve convergence of 1
T

∑T
i=1

∑T
j=1 σijxix

′
j by assuming that

the rows of X are well behaved and that the correlations diminish with increasing

separation in time.

The practical problem is that Q̂1 need not to be positive definite. Newey and West

(1987) have devised an estimator that overcomes this difficulty:

Q̂ = Q̂0 +
1

T

L∑
l=1

T∑
t=l+1

wletet−l(xtx
′
t−l + xt−lx

′
t)

=
1

T

T∑
t=1

e2txtx
′
t +

1

T

L∑
l=1

T∑
t=l+1

wletet−l(xtx
′
t−l + xt−lx

′
t)

=
1

T

(
T∑
t=1

e2txtx
′
t +

L∑
l=1

T∑
t=l+1

wletet−l(xtx
′
t−l + xt−lx

′
t)

)
, (8-8)

where wl = 1− l
L+1

.

Consequently we use the matrix(
1

T
X′X

)−1
Q̂

(
1

T
X′X

)−1
(8-9)

to estimate expression (8-4), i.e. Var(
√
T (β̂ − β))

V̂ ≡
(

lim
1

T
X′X

)−1(
lim

1

T
X′ΩX

)(
lim

1

T
X′X

)−1
,

4In time series analysis term, it is ergodicity. If the autocovariance of a stationary process Yt satisfy∑∞
j=0 |γj | <∞, then Yt is ergodic.
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consistently.

Of course, in practice, we ignore the factor of T−1 and use the matrix

V̂ ar(β̂)HAC

= (X′X)
−1

(
T∑
t=1

e2txtx
′
t +

L∑
l=1

T∑
t=l+1

wletet−l(xtx
′
t−l + xt−lx

′
t)

)
(X′X)

−1

(8-10)

directly to estimate the covariance of β̂. The matrix V̂ ar(β̂)HAC is called Heteroscedas-

ticity and Autocorrelation Consistent Covariance (HAC) estimator. By taking square

roots of the diagonal elements of (8-10), we can obtain standard errors that are asymp-

totically valid in the presence of heteroscedasticity and autocorrelation of unknown

form.

The null hypothesis H0 : Rβ = q, where Rm×k has full rank. Under the null

hypothesis, it follows from (8-4) that

√
T (Rβ̂ − q)

d−→ N(0, σ2RQ−1Q∗Q
−1R′) = N(0,RVR′),

and therefore from Theorem at p.62 of Ch. 2 that

(RV̂R′)−1/2
√
T (Rβ̂ − q)

d−→ N(0, Im),

The Wald test statistic is

T (Rβ̂ − q)′(RV̂R′)−1(Rβ̂ − q)
d−→ χ2

m. (8-11)

If the true form of serial correlation/heteroskedasticity are known, then general-

ized least squares (GLS) provides efficient estimates and standard inference can be

conducted on the GLS transformed model. But, in practice the form of serial cor-

relation/heteroskedasticity is often unknown, and this has led to the development of

techniques that permit valid asymptotic inference without having to specify a model

of the serial correlation or heteroscedasticity. The most common approach is to es-

timate the variance-covariance matrix of the OLS estimate semi-parametrically using

spectral methods (heteroscedasticity and autocorrelation consistent (HAC) estimators)

and construct standard tests using the asymptotic normality of the OLS estimate.

There is a final problem to be solved. It must be determined in advance how large L

is to be. Unfortunately, there is little theoretical guidance. The use of a HAC estimator

involves the specification of a kernel (wj) and a truncation lag or bandwidth. The band-

width choice determines the fraction of the available covariance information that goes
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into the calculation of the long run variances. Kiefer et al. (2000) showed that even if

a data-dependent method is used to choose the truncation lag (bandwidth), arbitrary

choices of the truncation lag are inevitable. Furthermore, HAC has a poor finite sample

performance, (see, for example, Kiefer et al., 2000; Kiefer and Vogelsang, 2005). Kiefer

et al. (2000) proposed an alternative method of constructing robust test statistics; in

this method, estimates of the variance covariance matrix are not explicitly required

to construct the test. This approach requires a nonsingular data-dependent stochastic

transformation to the OLS estimates. Therefore, arbitrary choices of the truncation

lags in HAC can be avoided, and the test based on KVB approach is asymptotically

invariant to serial correlation/heteroskedasticity nuisance parameters.

Example .

See the paper by Peter Boswijk, Philip Hans Franses and Dick van Dijk (2010),“Coin-

tegration in a historical perspective”, Journal of Econometrics, 158, pp.156-159.

4.3 KVB estimator

Kiefer, Vogelsang, and Bunzel (2000) propose an alternative method of constructing

robust test statistics. They apply a nonsingular data dependent stochastic transforma-

tion to the OLS estimates. The asymptotic distribution of the transformed estimates

does not depend on nuisance parameters. Then, test statistics that are asymptotically

invariant to nuisance parameters (asymptotic pivotal statistics) are constructed. The

resulting test statistics have nonstandard asymptotic distributions that only depend on

the number of restrictions being tested, and critical values are easy to simulate using

standard techniques.

Define ŝt =
∑t

j=1 xjej, and consider Ĉ = T−2
∑T

t=1 sts
′
t, KVB (2000) show that

Ĉ = T−2
T∑
t=1

sts
′
t

d−→ ΛPkΛ
′ ≡ ΛZkZ

′
kΛ
′ ≡ C1/2C′1/2, (8-12)

where ΛΛ′ = σ2Q∗ and

Pk =

∫ 1

0

[
(Wk(r)− rWk(1)) (Wk(r)− rWk(1))′

]
dr = ZkZ

′
k,
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here, Wk(r) denote a k-vector of independent standard Wiener processes.5 While the

kerenl HAC estimator Q̂ in (8-8) has a nonstochastic limit, Ĉ in (8-12) has a random

limit depending on Λ and a functional of the Brownian bridge Pk.

Define M̂ =
(
1
T
X′X

)−1
Ĉ1/2, where Ĉ1/2Ĉ′1/2 = Ĉ. It follows from (8-4) that

√
T (β̂ − β)

d−→ N(0, σ2Q−1Q∗Q
−1) ≡ N(0,Q−1ΛΛ′Q−1), (8-13)

therefore

M̂−1
√
T (β̂ − β)

d−→ N(0,M−1Q−1ΛΛ′Q−1M′−1)

≡ N(0, (C−1/2Q)Q−1ΛΛ′Q−1(QC′−1/2))

= N(0,C−1/2ΛΛ′C′−1/2)

= N(0,Z−1k Λ−1ΛΛ′Λ′−1Z′−1k )

= Z−1k N(0, I).

This transformation results in a limiting distribution that does not depend on the nui-

sance parameters.

4.3.1 Tests of Several Linear Restrictions on β: the F -ratio Test Statistic

Suppose we are interested in testing a general linear hypothesis of the formH0 : Rβ = q

against H1 : Rβ 6= q, where R is a known m × k matrix. KVB (2000) suggest using

the B̂ = ( 1
T
X′X)−1Ĉ( 1

T
X′X)−1 to replace V̂ as in (8-9). The Wald test statistic they

propose is

W ∗ = T (Rβ̂ − q)′(RB̂R′)−1(Rβ̂ − q). (8-14)

The asymptotic distribution of F ∗ is stated in the following theorem.

Theorem .

Under the null hypothesis H0 : Rβ = q,

W ∗ d−→Wm(1)′P−1m Wm(1). (8-15)

5See Chapter 21 for a detailed introduction in Wiener Process.
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Proof.
Under the null hypothesis, it follows from (8-13) and (8-14) that

W ∗ = T (R(β̂ − β))′
[
RB̂R′

]−1
(R(β̂ − β))

= (RT 1/2(β̂ − β))′
[
RB̂R′

]−1
(RT 1/2(β̂ − β))

d−→ (RQ−1ΛWk(1))′
[
RQ−1ΛPkΛ

′Q−1R′
]−1

(RQ−1ΛWk(1)).

Denote

RQ−1ΛWk(1) ≡ Λ∗Wm(1), (8-16)

where Λ∗ is the (m×m) matrix square root of RQ−1ΛΛ′Q−1R′ and hence it is easy

to see that6

RQ−1ΛPkΛ
′Q−1R′ ≡ Λ∗PmΛ′∗ (8-17)

Substitute (8-16) and (8-17) into (8-15), we complete the proof. �

Compared with (8-10), W ∗ does not have a limiting χ2 distribution, yet it is asymp-

totically pivotal because the null limit in (8-14) does not depend on the matrix of

nuisance parameters, Λ. Although the asymptotic distribution of W ∗, it can be easily

simulated.

Construction of the W ∗ statistic amounts to replacing the HAC estimator, Q̂ with

Ĉ and using the scaling matrix B̂ in place of the usual scaling matrix V̂. The scaling

matrix B̂ converges to a random matrix rather than the fixed variance-covariance

matrix.

6See the proof at p.713 of KVB (2000).
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5 An Example of GLS: SURE model

The seemingly unrelated regression model or SURE model, is a multivariate linear

regression model investigated by Zellner (1962). Consider the following two classical

linear regression models:

y1 = X1β1 + ε1, E(ε1ε
′
1) = σ11IT ,

and

y2 = X2β2 + ε2, E(ε1ε
′
1) = σ22IT .

where

yi


Yi1
Yi2
.
.
.
YiT


T×1

, and Xi =


x′i1
x′i2
.
.
.

x′iT


T×ki

.

The reason for the label “seemingly” unrelated regression should now be clear.

Though initially it may appear that the first equation is not in any way related to

the second equation, in fact there may be random disturbances which are pertinent to

both. The common effect of the random disturbances is reflected in the covariance of

the two equation’s disturbance term. If the disturbances of the above two equations

are assumed to be contemporaneously correlated in that

E(εitεjt) = σij, i, j = 1, 2; t = 1, 2, ..., T,

then the variance covariance in the combined equation

y = Xβ + ε, (8-18)

is

E(εε′) = E

[
ε1
ε2

] [
ε′1 ε′2

]
= E

[
ε1ε

′
1 ε1ε

′
2

ε2ε
′
1 ε2ε

′
2

]
=

[
σ11IT σ12IT
σ21IT σ22IT

]
= Σ⊗ IT , (8-19)

where

y =

[
y1

y2

]
, X =

[
X1 0
0 X2

]
, β =

[
β1

β2

]
, ε =

[
ε1
ε2

]
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and

Σ =

[
σ11 σ12
σ21 σ22

]
.

Clearly, this combined equation does not satisfy the classical assumption since its

disturbance variance-covariance, Σ⊗IT in (8-20) is heteroscedastic and autocorrelated.

To estimate β efficiently, GLS or FGLS is called for.

Let us now generalize the seemingly unrelated regression model to m equations

rather than just two and define the standard conditions for the seemingly unrelated re-

gression. These conditions are sufficient to ensure that the seemingly unrelated regres-

sion model meets the requirements of generalized least squares estimation. Consider

the m regression equations

y1 = X1β1 + ε1,

y2 = X2β2 + ε2,

.

.

.

ym = Xmβm + εm,

where yi is of dimension T × 1 and Xi is T × ki. We also write them as

yi = Xiβi + εi, i = 1, 2, ...,m. (8-20)

These m equations can be further written in the combined form

y = Xβ + ε, (8-21)

where

y =


y1

y2

.

.

.
ym

 , X =



X1 0 . . . 0
0 X2 0 . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . 0 XM


, β =


β1

β2

.

.

.
βm

 , ε =


ε1
ε2
.
.
.
εm

 .

We assume the SURE model satisfies the following assumptions,

r 2016 by Prof. Chingnun Lee 21 Ins.of Economics,NSYSU,Taiwan



Ch.8 Disturbances not i.i.d. 5 AN EXAMPLE OF GLS: SURE MODEL

Assumptions
Assume that the seemingly unrelated regression system (8-22) satisfies the conditions:

(a). E(ε) = 0,

(b). E(εε′) = Ω, where Ω = Σ⊗ IT and Σ = [σij], i, j = 1, 2, ...,m.

(c). The matrix X is nonstochastic and limT→∞
X′Ω−1X

T
is finite and nonsingular. �

These assumptions are called the standard conditions for seemingly unrelated re-

gression.

5.1 The GLS Estimator

For the present, let us examine the estimation of SURE in the instance where Ω is

assumed known. The most efficient estimator of slope parameters are the GLS.

Theorem.
The BLUE of β is just

β̃ = (X′Ω−1X)−1X′Ω−1y, (8-22)

with covariance matrix (X′Ω−1X)−1.

Proof.
The SURE estimator β̃ satisfies the conditions required in generalized least squares es-

timation. Therefore these results follow directly from the development in Section 8.3.�

This estimator is obviously different from ordinary least squares. The GLS estima-

tor β̃ is more efficient, in general, than the OLS estimator. To see this, using partitioned

matrix multiplication and the Kronecker product property (A⊗B)−1 = (A−1⊗B−1),
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the GLS’s estimator of SURE model can be written as

β̃ = (X′Ω−1X)−1X′Ω−1y

=





X′1 0 . . 0
0 X′2 0 . 0
. . . . .
. . . . .
. . . . .
. . . . .
0 . . 0 X′m





σ11IT σ12IT . . . σ1mIT
σ21IT σ22IT . . . σ2mIT
. . . . . .
. . . . . .
. . . . . .
. . . . . .

σm1IT . . . . σmmIT


·



X1 0 . . 0
0 X2 0 . 0
. . . . .
. . . . .
. . . . .
. . . . .
0 . . 0 Xm





−1

×



X′1 0 . . 0
0 X′2 0 . 0
. . . . .
. . . . .
. . . . .
. . . . .
0 . . 0 X′m


·



σ11IT σ12IT . . . σ1mIT
σ21IT σ22IT . . . σ2mIT
. . . . . .
. . . . . .
. . . . . .
. . . . . .

σm1IT . . . . σmmIT





y1

y2

.

.

.

.
ym



=



σ11X′1X1 . . . . σ1mX′1Xm

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .
σm1X′mX1 . . . . σmmX′mXm



−1 

∑m
j=1 σ

1jX′1yj
.
.
.
.
.∑m

j=1 σ
mjX′myj


, (8-23)

where σij represents the (i, j)− th elements of Σ−1.

The OLS estimators of SURE model (8-22) is

r 2016 by Prof. Chingnun Lee 23 Ins.of Economics,NSYSU,Taiwan



Ch.8 Disturbances not i.i.d. 5 AN EXAMPLE OF GLS: SURE MODEL

β̂ = (X′X)−1X′y =



X′1X1 0 . . . 0
0 X′2X2 0 . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . 0 X′mXm



−1 
X′1y1

X′2y2

.

.

.
X′mym



=


(X′1X1)

−1X′1y1

(X′2X2)
−1X′2y2

.

.

.
(X′mXm)−1X′mym

 =



β̂1

β̂2

.

.

.

β̂m

 , (8-24)

where β̂i = (X′iXi)
−1X′iyi, i = 1, 2, ...,m. While The GLS estimator (8-24) links

equations by their disturbance, the OLS estimator ignores this linkage since (8-25)

represents the individual OLS estimator for the i− th equation from (8-21).

There are, however, two cases in which the GLS and OLS estimators are identical.

(a). If the equations are actually unrelated, that is, if σij = 0 for i 6= j. Then there is

obviously no payoff to GLS. Indeed, GLS is OLS.

(b). If the equations have identical explanatory variables, that is, if Xi = Xj, then

OLS and GLS are identical.7 �

These two cases are shown clearly in the following theorems.

Theorem .

If σjk = 0 for j 6= k then β̃ = β̂, and OLS is fully efficient.

Proof.
Set σij = 0 to (8-24), we obtain the results identical to (8-25). �

7A vector autoregressive model (VAR) in Time Series Analysis is an example of this case. See
Chapter 18.
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Therefore under the situation that σij = 0, the equations of the SURE system are

“truly” unrelated when the disturbances of the various equations are uncorrelated and

nothing is lost by using an estimator which ignores the possibility of contemporaneously

correlated disturbance terms.

The other case where the GLS estimator β̃ and OLS estimator β̂ are numerically

equivalent and equally efficient when the regressor Xi, i = 1, 2, ...,m are numerically

identical. This result is stated formally in the following theorem.

Theorem .

Consider the set of SURE equations that Xi = X∗, ∀i = 1, 2, ...,m,

y1 = X∗β1 + ε1

y2 = X∗β2 + ε2

.

.

.

ym = X∗βm + εm.

In this case the OLS estimator is fully efficient in that β̃ = β̂.

Proof.
In this case, X in (8-22) can be expressed as

X =



X1 0 . . . 0
0 X2 0 . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . 0 Xm


=



X∗ 0 . . . 0
0 X∗ 0 . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . 0 X∗


= Im ⊗X∗,

and therefore

X′Ω−1X = (Im ⊗X∗)′(Σ⊗ IT )−1(Im ⊗X∗)

= (IM ⊗X′∗)(Σ−1 ⊗ IT )(Im ⊗X∗)

= (Σ−1 ⊗X′∗)(Im ⊗X∗)

= Σ−1 ⊗ (X′∗X∗),
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and

X′Ω−1y = (Im ⊗X∗)′(Σ⊗ IT )−1y

= (Im ⊗X′∗)(Σ−1 ⊗ IT )y

= (Σ−1 ⊗X′∗)y.

The GLS estimator is therefore

β̃ = (X′Ω−1X)−1X′Ω−1y

=
[
Σ−1 ⊗ (X′∗X∗)

]−1 [
(Σ−1 ⊗X′∗)y

]
=

[
Σ⊗ (X′∗X∗)−1

] [
Σ−1 ⊗X′∗

]
· y

= (Im ⊗ (X′∗X∗)−1X′∗) · y

=



(X′∗X∗)−1X′∗ 0 . . . 0
0 (X′∗X∗)−1X′∗ 0 . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . 0 (X′∗X∗)−1X′∗




y1

y2

.

.

.
ym



=


(X′∗X∗)−1X′∗y1

(X′∗X∗)−1X′∗y2

.

.

.
(X′∗X∗)−1X′∗ym

 =



β̂1

β̂2

.

.

.

β̂m

 = β̂. �

Note that when the numerical values of the m design matrices are identical, i.e.,

X1 = X2 = ... = Xm, this theorem holds regardless of the degree of contemporaneous

correlation among the disturbance terms. This result is particular important in the

estimation of the Vector Autoregressive Model (VAR) where each individual equation

is just the case here to have the same numerical value of regressors.
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5.2 The FGLS Estimators

The preceding discussion assumes that Σ is known, which, as usual, is rarely the case.

FGLS estimators have been devised. The OLS squared residuals of individual equations

residuals may be used to estimated consistently the elements of Σ with

σ̂ij =
e′iej
T

,

where

ei = yi −Xiβ̂i,

is the residual from OLS estimation of (8-21). A degree of freedom correction in the

divisor is suggested:

σ̃ij =
e′iej

[(T − ki)(T − kj)]
.

5.3 An Alternative Formulation of the SURE Model

An alternative way of developing the SURE estimator–which does not involve Kro-

necker products – is to write the m equations together as8

ÿt = Ẍtβ + ε̈t, t = 1, 2, ..., T, (8-25)

where

ÿt =


Y1t
Y2t
.
.
.
Ymt

 , Ẍt =



x′1t 0 . . . 0
0 x′2t 0 . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . 0 x′mt


, β =


β1

β2

.

.

.
βm

 ,

8This is equivalent to equation (8-21).
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and

ε̈t =


ε1t
ε2t
.
.
.
εmt

 .
Here,

E(ε̈tε̈
′
t) = E


ε1t
ε2t
.
.
.
εmt


[
ε1t ε2t . . . εmt

]
=



σ11 σ12 . . . σ1M
σ21 σ22 . . . σ2M
. . . . . .
. . . . . .
. . . . . .
. . . . . .

σm1 . . . . σmm


= Σ.

If the T equations in (8-26) are stacked in the usual way, we have9

ÿ = Ẍβ + ε̈, (8-26)

where

ÿ =


ÿ1

ÿ2

.

.

.
ÿT

 , Ẍ =


Ẍ1

.

.

.

ẌT

 , and ε̈ =


ε̈1
ε̈2
.
.
.
ε̈T

 .

The covariance matrix of the disturbances in the stacked equation is

E(ε̈ε̈′) = E


ε̈1
ε̈2
.
.
.
ε̈T


[
ε̈′1 ε̈′2 . . . ε̈′T

]

=



Σ 0 . . . 0
0 Σ . . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . . Σ


= IT ⊗Σ ≡ Λ.

9This is equivalent to equation (8-22).
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The GLS of β in this form (8-27) is

˜̈
β = (Ẍ′Λ−1Ẍ)−1Ẍ′Λ−1ÿ

=


[

Ẍ′1 . . . . Ẍ′T
]


Σ−1 0 . . . 0
0 Σ−1 . . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . . Σ−1





Ẍ1

.

.

.

.

.

ẌT





−1

·


[

Ẍ′1 . . . . Ẍ′T
]


Σ−1 0 . . . 0
0 Σ−1 . . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . . Σ−1





ÿ1

.

.

.

.

.
ÿT





=

(
T∑
t=1

Ẍ′tΣ
−1Ẍt

)−1( T∑
t=1

Ẍ′tΣ
−1ÿt

)
. (8-27)

It is easy to show that ˜̈
β in (8-28) is equal to β̃ in (8-24). To show this result, it is

easy to see that the first bracket in (8-28) can be written as

T∑
t=1

Ẍ′tΣ
−1Ẍt

=
T∑
t=1





x1t 0 . . . 0
0 x2t 0 . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . 0 xmt





σ11 σ12 . . . σ1m

σ21 σ22 . . . σ2m

. . . . . .

. . . . . .

. . . . . .

. . . . . .
σm1 . . . . σmm


·
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

x′1t 0 . . . 0
0 x′2t 0 . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . 0 x′mt





=


σ11
∑T

t=1 x1tx
′
1t . . . . σ1m

∑T
t=1 x1tx

′
mt

. . . . . .

. . . . . .

. . . . . .

. . . . . .

σm1
∑T

t=1 xmtx
′
1t . . . . σmm

∑T
t=1 xmtx

′
mt



=



σ11X′1X1 . . . . σ1mX′1Xm

. . . . . .

. . . . . .

. . . . . .

. . . . . .

. . . . . .
σm1X′mX1 . . . . σmmX′mXm


= (X′Ω−1X) i.e. the first bracket in (8-24),

using the fact that

X′iXj =
[

xi1 . . . . xiT
]


x′j1
.
.
.
.

x′jT

 =
T∑
t=1

xitx
′
jt.
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A Monkey at the Window of Student’s Dorm, NSYSU.

End of this Chapter
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