
Ch. 6 Linear Regression Model
(July 4, 2017)

1 Introduction

The (multiple) linear model is used to study the relationship between a dependent

variable (Y ) and several independent variables (X1, X2, ..., Xk). That is1

Y = f(X1, X2, ..., Xk) + ε assume linear function

= β1X1 + β2X2 + ...+ βkXk + ε

= x′β + ε

where Y is the dependent or explained variable, x = [X1 X2.....;Xk]
′ are the indepen-

dent or the explanatory variables and β = [β1 β2..... βk]
′ are unknown coefficients that

we are interested in learning about, either through estimation or through hypothesis

testing. The term ε is an unobservable random disturbance.

Suppose we have a sample of size T observations2 on the scalar dependent variable

Yt and the vector of explanatory variables xt = (Xt1, Xt2, ..., Xtk)
′, i.e.

Yt = x′tβ + εt, t = 1, 2, ..., T,

then in matrix form, this relationship can be written as
Y1
Y2
.
.
.
YT

 =


X11 X12 . . . X1k

X21 X22 . . . X2k

. . . . . .

. . . . . .

. . . . . .
XT1 XT2 . . . XTk




β1
β2
.
.
.
βk

+


ε1
ε2
.
.
.
εT

 , or
1When it is common to include that an intercept in the regression, then we have X1 = 1 and then

Y = β1 + β2X2 + ...+ βkXk + ε.
2Recall from Chapter 2 that we cannot postulate the probability model Φ if the sample is non-

random. The probability model must be defined in terms of their sample joint distribution.
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y =


x′1
x′2
.
.
.

x′T

 · β + ε

= Xβ + ε,

where y is T × 1 vector, X is an T × k matrix with rows x′t,
3 β is k × 1 and ε is an

T × 1 vector with element εt.

Notation.
A linear regression model with k explanatory variables is

Y(1×1) = x′(1×k)β(k×1) + ε(1×1).

A sample of size T of the above linear regression model is

y(T×1) = X(T×k)β + ε(T×1). �

Our goal is to regard last equation as a parametric probability and sampling model,

and try to inference the unknown βi’s and the parameters contained in ε.

3When X1 = 1 for all t, then X =


1 X12 . . . X1k

1 X22 . . . X2k

. . . . . .

. . . . . .

. . . . . .
1 XT2 . . . XTk

.
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Figure (6-1). Population Regression Function.

1.1 The Probability Model: Gaussian Linear Model

Assume that ε ∼ N(0,Ω), if X are not stochastic, then by results from “functions of

random variables” (n ⇒ n transformation) we have y ∼ N(Xβ, Ω). That is, we have

specified a probability and sampling model for y to be

(Probability and Sampling Model)

y ∼ N




X11 X12 . . . X1k

X21 X22 . . . X2k

. . . . . .

. . . . . .

. . . . . .
XT1 XT2 . . . XTk




β1
β2
.
.
.
βk

 ,


σ2
1 σ12 . . . σ1T

σ21 σ2
2 . . . σ2T

. . . . . .

. . . . . .

. . . . . .
σT1 σT2 . . . σ2

T




≡ N(Xβ,Ω).

That is the sample joint density function is

f(y;θ) = (2π)−T/2|Ω|−1/2 exp(−1/2)(y −Xβ)′Ω−1(y −Xβ),
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where θ = (β1, β2, ..., βk, σ
2
1, σ12, ..., σ

2
T )′. It is easy to see that the number of parameters

in θ is large than the sample size, T . Therefore, some restrictions must be imposed

in the probability and sampling model for the purpose of estimation as we shall see in

the subsequence.

One kind of restriction on θ is that Ω is a scalar matrix, then maximize the like-

lihood of the sample model f(θ; x) (w.r.t. β) is equivalent to minimize the equation

(y −Xβ)′(y −Xβ) (=ε′ε =
∑T

t=1 ε
2
t , a sums of squared residuals), this constitutes

the foundation of ordinary least square estimation.

1.2 Assumptions of the Classical Model

The classical linear regression model consists of a set of assumptions about how a data

set will be produced by an underlying “data-generating process”. The theory will usu-

ally specify a precise, deterministic relationship between the dependent variable and

the independent variables.

Assumption 1. (Classical Ideal Conditions)

(a). The model y = Xβ + ε is correct; (no problem of model misspecification)

(b). Rank(X) = k; (for model identification)

(c). X is nonstochastic4 and limT→∞(X′X/T ) = Q, where Q is a finite and nonsingular

matrix.

(d). E(ε) = 0. (This condition can easily be satisfied by adding a constant in the

regression.)

(e). V ar(ε) = E(εε′) = σ2 · I. (Disturbance have same variance and are not autocor-

related)

(f). ε is normal distributed. �

The above six assumptions are usually called the classical ordinary least squares

assumption or the ideal conditions.

4Therefore, regression comes first from experimental science.
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2 Estimation: OLS Estimator

2.1 Population and Sample Regression Function
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Figure (6-2). Population and Sample Regression Function.

2.2 Estimation of β

Let us first consider the ordinary least square estimator (OLS) which is the value for

β that minimizes the sum of squared errors (or residuals)5 denoted as SSE which is

defined as

SSE(β) =
T∑
t=1

(yt − x′tβ)2

= (y −Xβ)′(y −Xβ)

= y′y − 2y′Xβ + β′X′Xβ.

5Remember the principal of estimation at Ch. 3.
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The first order conditions for a minimum are

∂SSE(β)

∂β
= −2X′y + 2X′Xβ = 0.

If X′X is nonsingular (in fact it is positive definite which is satisfied by the As-

sumption (1b) of ideal condition and p.41 of Ch.1 result (c)), the system of k equations

in k unknown can be uniquely solved for the ordinary least squares (OLS) estimator

β̂ = (X′X)−1X′y =

[
T∑
t=1

xtx
′
t

]−1 T∑
t=1

x′tyt. (6-1)

To ensure that β̂ is indeed a solution of minimization, we require that

∂2SSE(β)

∂β∂β′
= 2X′X

must be a positive definite matrix. This condition is satisfied by p.41 of Ch.1 result

(c).

Definition. (Residuals)

The OLS residuals are defined by the T × 1 vector e,

e = y −Xβ̂. �

It is obvious that

X′e = X′(y −Xβ̂) = X′y −X′X(X′X)−1X′y = 0, (6-2)

i.e., the regressors are orthogonal to the OLS residual. Therefore, if one of the regres-

sors is a constant term, the sum of the residuals is zero since the first element of X′e

would be

[
1 1 . . . 1

]

e1
e2
.
.
.
eT

 =
T∑
t=1

et = 0. (a scalar)
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Exexcise 1. 6

Reproduce the results on p.25 from the data in Table 3.1 (p.23) of Greene 6th edition.�

2.3 Estimation of σ2

At this moment, we arrive at the following notation:

y = Xβ + ε

= Xβ̂ + e.

Therefore, to estimate the variance of ε, i.e., σ2, a simple and intuitive idea is that

to use information obtained from sample such as e.7 To serve as a proxy for ε, we must

establish the relationship between e and ε.

Definition. (Residuals Maker Matrix)

The matrix MX = I−X(X′X)−1X′ is symmetric and idempotent. MX produces the

vector of least square residuals in the regression of y on X. Furthermore, MXX = 0

and MXe = e. �

Theorem.
e = MXy = MXε.

Proof.

6All the data can be downed from: http://pages.stern.nyu.edu/∼wgreene/Text/econometricanalysis.htm
7To estimate the variance of ε, we would use the estimator

∑
ε2t/T . However, εt is not observed

directly, hence we use the information from et.
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By definition,

e = y −Xβ̂

= y −X(X′X)−1X′y

= (I−X(X′X)−1X′)y

= MXy

= MXXβ + MXε

= MXε. �

Using the fact that MX is symmetric and idempotent we have the following relation

between e and ε.

Lemma.
e′e = ε′M′

XMXε = ε′MXε. �

Theorem. (The Expectation of the Sums of squared Residuals)

E(e′e) = σ2(T − k).

Proof.

E(e′e) = E(ε′MXε)

= E[trace (ε′MXε)] (since ε′MXε, is a scalar, equals its trace)

= E[trace (MXεε
′)]

= trace E(MXεε
′)] (Why ?)

= trace (MXσ
2IT )

= σ2 trace (MX),
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but

trace( MX) = trace (IT )− trace (X(X′X)−1X′)

= trace (IT )− trace ((X′X)−1X′X)

= trace (IT )− trace (Ik)

= T − k.

Hence E(e′e) = σ2(T − k). �

Result. (An Unbiased Estimator of σ2 from e)

An unbiased estimator of σ2 is therefore suggested as

s2 =
e′e

T − k
. �

The squared root of s2, i.e. s =
√
s2 is sometimes called the “standard error of the

regression.”

Definition. (Projection Matrix)

The matrix PX = X(X′X)−1X′ is symmetric and idempotent. PX produces the fitted

values in least square residuals in the regression of y on X.8 Furthermore, PXX = X

and PXe = 0. �

The vector Xβ is always in the column space of X, and y is unlikely to be in the

column space. So, we project y onto a vector p(= PXy) in the column space of X and

solve Xβ̂ = p.

Theorem.
PXMX = 0 and PX + MX = I.

Proof.

By definition

Xβ̂ = X
[
(X′X)−1X′y

]
=
[
X(X′X)−1X′

]
y = PXy.

8It creates the projection of the vector y into the column space of X.
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Hence

PXMX = X(X′X)−1X′
[
I−X(X′X)−1X′

]
= X(X′X)−1X′ −X(X′X)−1X′X(X′X)−1X′

= 0. �

y

𝐱𝟏
𝐱𝟏 𝛃𝟏

𝐱𝟐

𝐱𝟐 𝛃𝟐
𝐏𝐗𝐲=𝐱𝟏 𝛃𝟏 + 𝐱𝟐 𝛃𝟐

e=𝐌𝐗y

Figure (6-3). The orthogonal projection of y onto span(x1,x2).
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2.4 Partitioned Regression Estimation

It is common to specify a multiple regression model, when in fact, interest centers on

only one of a subset of the full set of variables.9 Let k1 + k2 = k we can express the

OLS result in isolation as

y = Xβ̂ + e

=
[

X1 X2

] [ β̂1

β̂2

]
+ e

= X1β̂1 + X2β̂2 + e,

where X1 and X2 are T × k1 and T × k2, respectively; β̂1 and β̂2 are k1× 1 and k2× 1,

respectively.

What is the algebraic solution for β̂2 ? Denote M1 = I−X1(X
′
1X1)

−1X′1, then

M1y = M1X1β̂1 + M1X2β̂2 + M1e

= M1X2β̂2 + e, (6-3)

where we have used the fact that M1X1 = 0 and M1e = e.

Multiplying X′2 on the above equation (6-3) and using the fact that

X′e =

[
X′1
X′2

]
e =

[
X′1e
X′2e

]
= 0,

we have

X′2M1y = X′2M1X2β̂2 + X′2e = X′2M1X2β̂2. (6-4)

Therefore β̂2 can be expressed in isolation as

β̂2 = (X′2M1X2)
−1X′2M1y

= (X∗
′

2 X∗2)
−1X∗

′

2 y∗,

where X∗2 = M1X2 and y∗ = M1y, are vectors of residual from the regression of X2

and y on X1, respectively.

9See for example, Pesaran (2007).
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Theorem. (Frisch-Waugh)

In a linear least squares regression of vector y on two sets of variables, X1 and X2, the

subvector β̂2 is the set of coefficients obtained when the residuals from a regression of

y on X1 alone are regressed on the set of residuals obtained when each column of X2

is regressed on X1. �

This process is common called partialing out or netting out the effects of X1. For

this reason, the coefficients in a multiple regression are often called the partial regres-

sion coefficients.

Example.
Consider a simple regression with a constant,

y = iβ̂1 + X2β̂2 + e,

where i = [1, ..., 1]′, i.e. a column of one’s, then the slope estimator β̂2 can also be

obtained from a data-demeaned regression without constant, i.e.

β̂2 = (X′2MiX2)
−1X′2Miy

= (X∗
′

2 X∗2)
−1X∗

′

2 y∗,

where Mi = I − i(i′i)−1i = M0 (the demeaned matrix earlier) and X∗2 = MiX2 and

y∗ = Miy, are vectors of demeaned data of X and y, respectively. �

Exexcise 2.

Reproduce the results β̂2, ..., β̂5 on p.25 from data in Table 3.1 (p.23) of Greene 6th

edition by the demeaned data. �

2.4.1 Partial Regression and Partial Correlation Coefficients

Consider the OLS estimation of the regression

yt = β̂1 + β̂1Xt + β̂2Zt + et, t = 1, 2, ..., T
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or

y = β̂0i + β̂1x + β̂2z + e.

It is the characteristic of the regression that is implied by the term partial regression

coefficients. The way we obtain β̂2, we have seen, is first to regression y and z on i and

x, and then to compute the residuals from this regression. By construction, x will not

have any power in explaining variation in these residuals. Therefore, any correlation

between y and z after this “purging” is independent of (or after removing the effect

of) x.

The same principle can be applied to the correlation between two variables. To

continue our example, to what extent can we assert that this correlation reflects a di-

rect relation rather than that both z and y tend, on average, to rise as x increases. To

find out, we use the partial correlation coefficient, which is computed along the same

line as the partial regression coefficient.

Definition. (Partial Correlation Coefficients)

The partial correlation coefficient between y and z, controlling for the effect of x, is

obtained as follows:

(a). y∗ =the residuals in a regression of y on a constant and x, i.e., y∗ = Mx̃y.

(b). z∗ =the residuals in a regression of z on a constant and x, i.e., z∗ = Mx̃z, where

X̃ = (i,X).

(c). The partial correlation r∗yz is the simple correlation between y∗ and z∗, calculated

as

r∗yz =
z∗
′
y∗√

z∗′z∗
√

y∗′y∗
=

z′Mx̃y√
z′Mx̃z

√
y′Mx̃y

. �

It is noted here that in this linear regression y = β̂0i + β̂1x + β̂2z + e,

β̂2 =
z∗
′
y∗√

z∗′z∗
√

z∗′z∗
,
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so r∗yz and β̂2 will have the same signs. However, the simple correlation between y and

z is obtained as

ryz =
z′Miy√

z′Miz
√

y′Miy
,

there is no necessary relation between the simple and partial correlation coefficients.

Exexcise 3.
Reproduce the results in Table 3.2 (p.31) of Greene 6th edition. �

2.5 The Linearly Restricted Least Squares Estimators

Suppose that we explicitly imposes the linear restrictions of the hypothesis in the

regression (take the example of LM test). The restricted least square estimator is

obtained as the solution to

Minimizeβ SSE(β) = (y −Xβ)′(y −Xβ) subject to Rβ = q,

where R is a known J × k matrix and q is known values of these linear restrictions.

A Lagrangian function for this problem can be written as

L∗(β, λ) = (y −Xβ)′(y −Xβ) + 2λ′(Rβ − q), where λ is J × 1.

The solutions β̂∗ and λ̂ will satisfy the necessary conditions

∂L∗

∂β̂∗
= −2X′(y −Xβ̂∗) + 2R′λ̂ = 0,

∂L∗

∂λ̂
= 2(Rβ̂∗ − q) = 0. (remember

∂a′x

∂x
= a)

Dividing through by 2 and expanding terms produces the partitioned matrix equa-

tion [
X′X R′

R 0

] [
β̂∗

λ̂

]
=

[
X′y
q

]
,

or expressed by the simple notation that

Wd̂∗ = v.
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Assuming that the partitioned matrix in brackets is nonsingular, then

d̂∗ = W−1v.

Using the partition inverse rule of[
A11 A12

A21 A22

]−1
=

[
A−111 (I + A12F2A21A

−1
11 ) −A−111 A12F2

−F2A21A
−1
11 F2

]
,

where F2 = (A22 −A21A
−1
11 A12)

−1, we have the restricted least squared estimator

β̂∗ = β̂ − (X′X)−1R′[R(X′X)−1R′]−1(Rβ̂ − q), (6-5)

and

λ̂ = [R(X′X)−1R′]−1(Rβ̂ − q).

Exexcise 4.

Show that V ar(β̂∗)− V ar(β̂) is a nonpositive definite matrix. �

The above result of exercise holds whether or not the restriction are true. One way

to interpret this reduction in variance is as the value of the information contained in

the restriction.

Let

e∗ = y −Xβ̂∗, (6-6)

i.e., the residuals vector from the restricted least square estimator, then using the

familiar device,

e∗ = y −Xβ̂ −X(β̂∗ − β̂) = e−X(β̂∗ − β̂),

the “restricted” sums of squared residuals is

e′
∗
e∗ = e′e + (β̂∗ − β̂)′X′X(β̂∗ − β̂). (6-7)

Because X′X is a positive definite matrix,

e′
∗
e∗ ≥ e′e. (6-8)
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2.6 Measurement of Goodness of Fit

Denote the dependent variable’s “fitted value” from independent variables and OLS

estimator, ŷ, to be ŷ = Xβ̂, that is

y = ŷ + e.

Writing y as its fitted values, plus its residual, provided another way to interpret an

OLS regression.

Lemma.
y′y = ŷ′ŷ + e′e.

Proof.
Using the fact that X′y = X′(Xβ̂ + e) = X′Xβ̂, we have

e′e = y′y − 2β̂′X′y + β̂′X′Xβ̂

= y′y − ŷ′ŷ. �

There are three measurements of variation which are defined as following:

(a). SST (Sums of Squared Total variation)=
∑T

t=1(Yt − Ȳ )2 = y′M0y,

(b). SSR (Sums of Squared Regression variation)=
∑T

t=1(Ŷt −
¯̂
Y )2 = ŷ′M0ŷ,

(c). SSE (Sums of Squared Error variation)=
∑T

t=1(Yt − Ŷt)2 = e′e,

where Ȳ = 1
T

∑T
t=1 Yt and

¯̂
Y = 1

T

∑T
t=1 Ŷt.

Lemma.
If one of the regressor is a constant, then Ȳ =

¯̂
Y .

Proof.
Writing y = ŷ + e, and using the fact that i′e = 0 we obtain the results, where i is a

column of 1s. �
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Lemma.
If one of the regressor is a constant, then SST = SSR + SSE.

Proof.
Multiplying M0 (or call it as Mi) on y = ŷ + e we have

M0y = M0ŷ + M0e = M0ŷ + e, since M0e = e (why ?).

Therefore,

y′M0y = ŷ′M′
0ŷ + 2ŷ′M′

0e + e′e

= ŷ′M′
0ŷ + e′e

= SSR + SSE,

using the fact that ŷ′M′
0e = β̂′X′e = 0. �

Definition. (R2)

If one of the regressor is a constant, the coefficient of determination is defined as

R2 =
SSR

SST
= 1− SSE

SST
. �

One kind of restriction is of the “exclusion restrictions” form that

Rβ = 0,

where for example R = (0, 1, 0, ..., 0). It is to say that a particular explanatory variable

has no partial effect on the dependent variable or we may think it as a model with fewer

regressors (without X2, but with the same dependent variable). Because e′∗e∗ ≥ e′e

from Eq. (6-8), it is apparent that the coefficient of determination from this restricted

model, say R2∗ is smaller. (Thus the R2 in the longer regression cannot be smaller.) It

is tempting to exploit this result by just adding variables to the model; R2 will continue

to rise to its limit. In view of this result, we sometimes report an adjusted R2, which

is computed as follow.
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Definition. (Adjusted R2)

R̄2 = 1− e′e/(T − k)

y′M0y/(T − 1)
.

Exexcise 5.
Reproduce the results of R2 in Table 3.4 (p.35) of Greene 6th edition. �
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3 Statistical Properties of OLS

We now investigate the statistical properties of the estimator of parameters, β̂ and s2

from OLS.

3.1 Finite Sample Properties

3.1.1 Unbiasedness

Based on the six classical assumptions, the expected value of β̂ and s2 are

E(β̂) = E[(X′X)−1(X′y)] = E[(X′X)−1(X′(Xβ+ ε))] = E[β + (X′X)−1X′ε]

= β + (X′X)−1X′E(ε) = β, (using Assumption (b) and (c).)

and by construction

E(s2) =
E(e′e)

T − k
=

(T − k)σ2

T − k
= σ2.

Therefore both β̂ and s2 are unbiased estimators.

3.1.2 Efficiency

To investigate the efficiency of these two estimators, we first show their variance-

covariance. The variance-covariance matrix of β̂ is

V ar(β̂) = E[(β̂ − β)(β̂ − β)′]

= E[(X′X)−1X′εε′X(X′X)−1]

= (X′X)−1X′E[εε′]X(X′X)−1

= (X′X)−1X′(σ2I)X(X′X)−1

= σ2(X′X)−1. (using Assumption (1b) and (1d).)

With Assumption (1f) and using properties of idempotent quadratic form, we have

(T − k)s2

σ2
=

e′e

σ2
=
ε′MXε

σ2
∼ χ2

(T−k), (6-9)
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that is

V ar

(
e′e

σ2

)
= 2(T − k)

or V ar(e′e) = 2(T − k)σ4. The variance of s2 (= e′e
T−k ) is therefore

V ar(s2) = V ar

(
e′e

T − k

)
=

2σ4

T − k
.

It is time to show the efficiency of OLS estimators.

Theorem. (Gauss-Markov)

The OLS estimator β̂ is the best linear unbiased estimator (BLUE) of β.

Proof.
Consider any estimator linear in y, say β̃ = Cy. Let C = (X′X)−1X′ + D. Then

E(β̃) = E[((X′X)−1X′ + D)(Xβ + ε)]

= β + DXβ,

so that for β̃ to be unbiased we require DX = 0. Then the covariance matrix of β̃ is

E[(β̃ − β)(β̃ − β)′] = E[(X′X)−1X′ + D]εε′[X(X′X)−1 + D′]

= σ2[(X′X)−1X′IX(X′X)−1 + DIX(X′X)−1

+(X′X)−1X′ID′ + DID′]

= σ2(X′X)−1 + σ2DD′, since DX = 0.

Since DD′ is a positive semidefinite matrix (see Ch1, p.40), which shows that the

covariance matrix of β̃ equals the covariance matrix of β̂ plus a positive semidefinite

matrix. Hence β̂ is efficient relative to any other linear unbiased estimator of β. �

In fact we can go a step further in the discussion of the efficiency of OLS estimators

even it is compared with any other estimator both linear and nonlinear.

Theorem. (Cramér-Rao Bounds of OLS Estimators)

Let the linear regression y = Xβ + ε satisfy classical assumptions, then the Cramér-

Rao lower bounds for the unbiased estimator of β and σ2 are σ2(X′X)−1 and 2σ4/T ,
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respectively.

Proof.
The log-likelihood is

lnL(β, σ2; y) = −T
2

ln(2πσ2)− 1

2σ2
(y −Xβ)′(y −Xβ).

Therefore,

∂L

∂β
=

1

σ2
(X′y −X′Xβ) =

1

σ2
X′(y −Xβ),

∂L

∂σ2
=

T

2σ2
+

1

2σ4
(y −Xβ)′(y −Xβ),

∂2L

∂β∂β′
= − 1

σ2
X′X; −E

[
∂2L

∂β∂β′

]
=

X′X

σ2
;

∂2L

∂(σ2)2
=

T

2σ4
− 1

σ6
(y −Xβ)′(y −Xβ); −E

[
∂2L

∂(σ2)2

]
=

T

2σ4
(how ?);

∂2L

∂β∂σ2
= − 1

σ4
X′(y −Xβ); −E

[
∂2L

∂β∂σ2

]
= 0.

Hence, the information matrix is

IT (β, σ2) =

[
X′X
σ2 0
0 T

2σ4

]
,

in turn, the Cramér-Rao lower bounds for the unbiased estimator of β and σ2 are

σ2(X′X)−1 and 2σ4/T , respectively. �

From above theorem, the OLS β̂ is an absolutely efficient estimator while s2 is

not. However, it can be shown that s2 is indeed minimum variance unbiased efficient

through the alternative approach of complete, sufficient statistics. See for example,

Schmidt (1976), p.14.

3.1.3 Distribution (Exact) of β̂ and s2

We now investigate the finite sample distribution of the OLS estimators.
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Theorem. (Finite Sample’s Distribution of β̂)

β̂ has a multivariate normal distribution with mean β and covariance matrix σ2(X′X)−1.

Proof.
By Assumption (1c),(1d) and (1f), we know that ε ∼ N(0, σ2I). Therefore by the

results from linear function of a normal vector (Ch 2, p.62) we have10

β + (X′X)−1X′ε ∼ N(β, (X′X)−1X′σ2IX(X′X)−1),

or

β̂ ∼ N(β, σ2(X′X)−1). �

Theorem. (Finite Sample’s Distribution of s2)

s2 is distributed as a χ2 distribution multiplied by a constant,

s2 ∼ σ2

(T − k)
· χ2

T−k.

Proof.
As we have shown that e′e

σ2 ∼ χ2
(T−k), this result follows immediately. �

Theorem. (Independence of β̂ and s2)

β̂ and s2 are independent.

Proof.
s2 = ε′MXε/(T − k) and β̂ − β = (X′X)−1X′ε. Since (X′X)−1X′MX = 0, it implies

that β̂ and s2 are independent from the results on p.65 of Ch.2. �

10Here, it should be noted that (X′X) =
∑

xtx
′
t is a infinite series, it is quite possible that (X′X)→

∞, and so (X′X)
−1 → 0 (indeed this is he requirement for the consistency of β̂.). So the distribution

here is only true for a finite sample. For a infinity sample, the distribution of β̂ degenerate to a point.
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3.2 Asymptotic Properties

We now investigate the properties of the OLS estimators when the sample goes to

infinity T →∞.

3.2.1 Consistency

Theorem.

The OLS estimator β̂ is consistent.

Proof.
Denote limT→∞(X′X/T ) = limT→∞(

∑T
t=1 x′txt)/T by Q and assume that Q is finite

and nonsingular.11 (What does it mean ?) Then limT→∞(X′X/T )−1 is also finite.

Therefore for large sample, the variance of β̂

lim
T→∞

σ2(X′X)−1 = lim
T→∞

σ2

T

(
X′X

T

)−1
= lim

T→∞

σ2

T
Q−1

= 0.

Since β̂ is unbiased and its covariance matrix, σ2(X′X)−1, vanishes asymptotically, it

converges in mean-squared error to β, which implies β̂ converges in probability to β.

Therefore, β̂ is consistent.

Alternative Proof.
Note that

β̂ = (X′X)−1X′y = β + (X′X)−1X′ε = β +

(
X′X

T

)−1
X′ε

T
.

Since E(X′ε
T

) = 0. Also V ar(X′ε
T

) = E(X′ε
T

)(X′ε
T

)′ = σ2

T
(X′X

T
), so that

lim
T→∞

V ar

(
X′ε

T

)
= lim

T→∞

σ2

T
Q = 0.

But the fact that E(X′ε
T

) = 0 and limT→∞ V ar(
X′ε
T

) = 0 imply that plimX′ε
T

= 0.

Therefore

plim β̂ = β + Q−1plim
X′ε

T
= β. �

11That is, we say that X′X is O(T ).
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Theorem.
The OLS estimator s2 is consistent.

Proof.
Since E(s2) = σ2 and limT→∞ V ar(s

2) = limT→∞
2σ4

T−k = 0, the result is trivial. �

Example.
The following is the code to generate the linear regression

Yt = 2 + 3Xt + εt, t = 1, 2, ..., T,

where Xt ∼ i.i.d. N(3, 2) and εt ∼ i.i.d.N(0, 1).

It can see that the OLS is unbiased and consistent from a repeat of 1000 trials.

(a). Plot T = 100 for unbiasedness.

(b). Plot, T = 30, 50, 100, 200, 500 for consistency. �
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Distribution of  𝛽1 Distribution of  𝛽2

Figure (6-4a). Unbiasedness of β̂1 and β̂2 when regressors x are

exogenous.

Distribution of  𝛽1 Distribution of  𝛽2

Figure (6-4b). Consistency of β̂1 and β̂2 when x are exogenous.
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The Gauss Code for the generating the figures above is:

new; /*Open the operation of Gauss program*/

for T (100, 500, 100); /*setting number of periods T are 100, 200,300,400,500*/

a1 = ones(T, 1); /*setting a1 is a matrix of T × 1 which all of elements

are equal to one */

ahat1 = zeros(1000, 1); /*setting ahat1 is a zero matrix of 1000× 1*/

bhat11 = zeros(1000, 1); /*setting bhat11 is a zero matrix of 1000× 1*/

yt1 = zeros(T, 1);/*setting yt1 is a matrix of T × 1 which all of elements

are equal to zero*/

for j(1, 1000, 1); /*Loop 1000 times*/

xt1 = 3 + (20.5) ∗ rndn(T, 1); /* setting xt1 is a N(3, 2) matrix of T × 1*/

e1 = rndn(T, 1);

for k(1, T, 1); /* Loop T times*/

yt1[k] = 2 + 3 ∗ xt1[k] + e1[k]; /* setting model of yt1*/

endfor; /* end of loop*/

x1 = a1∼xt1[1 : T, 1]; /* setting x1 is a matrix which a1 and xt1 array horizontally*/

bhat1 = (inv(x1′ ∗ x1)) ∗ x1′ ∗ yt1[1 : T, 1]; /* setting bhat1 is coefficient of

estimate*/

ahat1[j] = bhat1[1,1]; /* List all of alpha */

bhat11[j] = bhat1[2,1]; /* List all of beta */

endfor; /* end of loop*/

print "-----------------alpha---------------";

print ahat1; /* calculate alpha */

print "-----------------beta----------------";

print bhat11; /* calculate beta*/

endfor; /* end of loop */ �
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3.2.2 Asymptotically Normality

Since by assumption, X′X is O(T ), therefore (X′X)−1 → 0. The exact distribution of

β̂, i.e., β̂ ∼ N(β, σ2(X′X)−1) will degenerate to a point in large sample. To express

the limiting distribution of β̂, we need the following theorem.

Theorem . (Limiting Distribution of β̂)

The asymptotic distribution of
√
T (β̂ − β) is N(0, σ2Q−1), where Q = limT→∞(X′X

T
).

Proof.

For any sample size T , the distribution of
√
T (β̂−β) is N

(
0, σ2

(
X′X
T

)−1)
. The above

limiting results is therefore trivial. �

Theorem. (Limiting Distribution of s2)

The asymptotic distribution of
√
T (s2 − σ2) is N(0, 2σ4).

Proof.
Since the distribution of e′e/σ2 is χ2 with (T − k) degree of freedom. Therefore

e′e

σ2
=

T−k∑
t=1

v2t ,

where the v2t are i.i.d. χ2 with one degree of freedom. But this is a sum of i.i.d. with

mean 1 and variance 2. According to the Lindberg-Levy central limit theorem it follows

that

1√
T − k

T−k∑
t=1

(
v2t − 1√

2

)
L−→ N(0, 1).

But this is equivalent to saying that

1√
T − k

(
e′e

σ2
− (T − k)

)
L−→ N(0, 2),

or that
√
T − k(s2 − σ2)

L−→ N(0, 2σ4),

or that
√
T (s2 − σ2)

L−→ N(0, 2σ4). �
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From above results, we find that although variance of s2 does not attains Cramér-

Rao lower bound in finite sample, however it does in large sample.

Theorem.
s2 is asymptotically efficient.

Proof.
The asymptotic variance of s2 is 2σ4/T , which equals the Cramér-Rao lower bound.�
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4 Hypothesis Testing in Finite Sample

4.1 Tests of a Single Linear Combination on β: Tests based on t
Distribution

This section covers the very important topic of testing hypothesis about any single

linear restriction in the population regression function.

Lemma.
Let R be a 1× k vector, and define s∗ by

s∗ =
√
s2R(X′X)−1R′,

then R(β̂ − β)/s∗ has a t distribution with (T − k) degrees of freedom.

Proof.
As we have seen in an early result that in finite sample,

β̂ ∼ N(β, σ2(X′X)−1).

ClearlyR(β̂−β) is a scalar random variable with zero mean and variance σ2R(X′X)−1R′;

call this variance σ2∗. Then R(β̂−β)
σ∗

∼ N(0, 1), but this test statistics is not a pivot sine

it contains the unknown parameter σ. We need some transformation of this statistics

to remove the parameter.

We know that in Eq. (6-9), (T − k)s2/σ2 ∼ χ2
T−k, therefore,

s2∗

σ2∗ =
s2

σ2
∼ χ2

T−k/(T − k).

Finally, then,

R(β̂ − β)

s∗
=
R(β̂ − β)/σ∗√

s2∗/σ2∗
=

N(0, 1)√
χ2
T−k/(T − k)

∼ tT−k. (6-10)

The above results is established upon the numerator and denominator being indepen-

dent. This condition is shown to be true at section 3.1.3. of this Chapter. �
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Theorem. (Test of a Single Linear Combination on β)

Let R be a known 1×k vector, and r be a known scalar. Then under the null hypothesis

that H0 : Rβ = r, the test statistics

Rβ̂ − r
s∗

∼ tT−k.

Proof.
Under the null hypothesis,

Rβ̂ − r
s∗

=
Rβ̂ −Rβ

s∗
∼ tT−k. �

Corollary. (Test of Significance of βi)

Let βi be the i-th elements of β, and denote

sβ̂i =

√
s2(X′X)−1ii ,

which is called the “standard error of the coefficients estimated”, then under the null

hypothesis that H0 : βi = 0, the test statistics

t-ratio =
β̂i
sβ̂i
∼ tT−k.

Proof.
This is a special case of last Theorem, with r = 0 and R being a vector of zeros except

for a one in the i-th position. �

Exexcise 6.
Reproduce the results in Table 4.2 (p.54) of Greene 6th edition. �
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4.2 Tests of Several Linear Restrictions on β: Tests based on F
Distribution

Frequently, we wish to test multiple hypotheses about the underlying parameters β.

We now consider a set of J linear restrictions of the form

H0 : Rβ = q,

against the alternative hypothesis,

H1 : Rβ 6= q.

Each row of R is the coefficients in a linear restriction on the coefficient vector. Hy-

pothesis testing of the sort suggested in the preceding section can be approached from

two viewpoints. First, having computed a set of parameter estimates, we can ask

whether the estimates come reasonably close to satisfying the restrictions implied by

the hypothesis. An alternative approach might proceed as follows. Suppose that we

impose the restrictions implied by the theory. Since unrestricted least squares is, by

definition, “least squares,” this imposition must lead to a loss of fit. We can then

ascertain whether this loss of fit results merely from sampling error or whether it is

so large as to cast doubt on the validity of the restrictions. The two approaches are

equivalent.

4.2.1 Test of Multiple Linear Combination on β from Wald Test

We first consider the tests constructed from the unrestricted OLS estimators.

Theorem. (Test of Multiple Linear Combination on β, Wald Test)

Let R be a known matrix of dimension m × k and rank m, q a known m × 1 vector.

Then under the null hypothesis that H0 : Rβ = q, the statistics

F -ratio =
(Rβ̂ − q)′[R(X′X)−1R′]−1(Rβ̂ − q)/m

e′e/(T − k)

=
(Rβ̂ − q)′[s2R(X′X)−1R′]−1(Rβ̂ − q)

m
∼ Fm,T−k.

Proof.
From the liner function of a normal vector, we have

Rβ̂ ∼ N(Rβ, σ2R(X′X)−1R′).
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Further by the quadratic form of normal vector (Sec. 6.2.2 of Ch. 2) we have

(Rβ̂ −Rβ)′[σ2R(X′X)−1R′]−1(Rβ̂ −Rβ) ∼ χ2
m.

Then under the null hypothesis that Rβ = q, the test statistics

(Rβ̂ − q)′[σ2R(X′X)−1R′]−1(Rβ̂ − q) ∼ χ2
m. (6-11)

However, this test statistics in (6-11) is not a pivot sine it contains the unknown

parameter σ2. We need some transformation of this statistics to remove the parameter

as in the single test.

Recall that (T−k)s2/σ2 = e′e/σ2 ∼ χ2
T−k, therefore the numerator and the denom-

inator of the statistics in the following are trying to remove out the unknown parameter

σ2 from (6-11) such that

(Rβ̂ − q)′[σ2R(X′X)−1R′]−1(Rβ̂ − q)/m

(T − k)s2/σ2(T − k)

=
(Rβ̂ − q)′[s2R(X′X)−1R′]−1(Rβ̂ − q)

m
(6-12)

or

(Rβ̂ − q)′[σ2R(X′X)−1R′]−1(Rβ̂ − q)/m

e′e/σ2(T − k)

=
(Rβ̂ − q)′[R(X′X)−1R′]−1(Rβ̂ − q)/m

e′e/(T − k)
, (6-13)

the numerator and denominator of (6-12) and (6-13) are distributed as χ2
m/m and

χ2
T−k/(T − k), respectively. This statistics in (6-12) and (6-13) are distributed as a

Fm,T−k if this two χ2 are independent. Indeed, it is the case as can be proven in the

same line as the single test. �

Clearly the appropriate rejection region is the upper tail of the F distribution. That

is, rejection should be based on large deviation of Rβ̂ from q, and hence on large values

of the test statistics.

Exexcise 7.
Show the two χ2 are independent in the last Theorem. �
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4.2.2 Test of Multiple Linear Combination on β from Loss of Fit

A different type of hypothesis test statistics focused on the fit of the regression. Re-

calling that β̂∗ = β̂ − (X′X)−1R′[R(X′X)−1R′]−1(Rβ̂ − q) and e′∗e∗ = e′e + (β̂∗ −
β̂)′X′X(β̂∗− β̂), where β̂∗ and e∗ are estimators and residuals from the restricted least

squares errors. We find that

e′
∗
e∗ − e′e = (β̂∗ − β̂)′X′X(β̂∗ − β̂)

= (Rβ̂ − q)′[R(X′X)−1R′]−1R(X′X)−1X′X(X′X)−1R′[R(X′X)−1R′]−1(Rβ̂ − q)

= (Rβ̂ − q)′[R(X′X)−1R′]−1(Rβ̂ − q).

Result.
Under the null hypothesis that H0 : Rβ = q we will have the third F -ratio statistics

from (6-13) that would also distributed as Fm,T−k, that is

(e′∗e∗ − e′e)/m

e′e/(T − k)
(6-14)

=
(Rβ̂ − q)′[R(X′X)−1R′]−1(Rβ̂ − q)/m

e′e/(T − k)
∼ Fm,T−k.

Finally, by dividing the numerator and denominator of (6-14) by
∑

t(Yi−ȳ)2, we obtain

the fourth F -ratio statistics from (6-14)

(R2 −R2∗)/m

(1−R2)/(T − k)
=

( e′∗e∗

y′M0y
− e′e

y′M0y
)/m

( e′e
y′M0y

)/(T − k)
∼ Fm,T−k, (6-15)

where R2∗ is the R-square under the restriction estimation. �

A special set of exclusion restrictions is routinely tested by most regression packages.

In a model with constant (i.e. X1 = 1) and k − 1 independent variables, we can write

the null hypothesis as

H0 : X2, ..., Xk do not help to explain Y.

This null hypothesis is, in a way, very pessimistic. It states that none of the explanatory

variables has an effect on Y . Stated in terms of the parameters, the null is that all

slope parameters are zero:

H0 : β2 = β3 = · · · = βk = 0,
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and the alternative is that at least one of the βi is different from zero. This is a special

case of Eq.(6-15) with m = k − 1) and R2∗ = 0.

Corollary. (Test of the Significance of a Regression)

If all the slope’s coefficients (except for constant term) are zero, then R is (k − 1)× k
(m = k − 1), q = 0. Under this circumstance, R2∗ = 0. The test statistics to test the

significance of the regression that H0 : Rβ = 0 is therefore from (6-15) that under the

null hypothesis

R2/(k − 1)

(1−R2)/(T − k)
∼ Fk−1,T−k. �

Exexcise 8.

(a). Reproduce the results in Table 5.2 (p.91) of Greene 6th edition.

(b). Using the above four F -ratio statistics to compute the test statistics results F3,21 =

1.768 at the same page. �
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5 Prediction

In the context of a regression model, a prediction is an estimate of a future value of

the dependent variable made conditional on the corresponding future values of the

independent variables.

Let us consider a set of T0 observations not included in the original sample of T

observations. Specifically, Let X0 denote these T0 observations on the regressors, and

y0 these observations on y. If the model obeys the classical assumptions, the OLS

estimator β̂T is BLUE for β. An obvious predictor for y0 is therefore

ŷ0 = X0β̂T ,

where β̂T = (X′X)−1X′y is the OLS estimator based on the original T observations.

Definition. (Prediction Error).

The prediction error of y0 is defined by

v0 = y0 −X0β̂T

= X0(β− β̂T ) + ε0. �

Theorem. (Mean and Variance of Prediction Error)

E(v0) = 0 and V ar(v0) = σ2(I + X0(X
′X)−1X′0).

Proof.

E(v0) = E(y0 −X0β̂) = E[X0(β− β̂T ) + ε0] = 0,

and

V ar(v0) = E(v0v
′
0)

= E{[X0(β− β̂) + ε0][X0(β− β̂) + ε0]
′}

= E{[X0((X
′X)−1X′ε) + ε0][((X

′X)−1X′ε)′X′0 + ε′0]}

= σ2(X0(X
′X)−1X′0) + σ2IT0 since E(εε′0 = 0),

= σ2(IT0 + X0(X
′X)−1X′0). �
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Corollary.
When T0 = 1,

V ar(v0) = σ2(1 + x′0(X
′X)−1x0),

where x′0 is 1× k.12 �

The prediction error variance can be estimated by using s2 in place of σ2.

Theorem.
Suppose that we wish to predict a single value of Y0 (T0 = 1) associated with a regressor

X0(1×k)
= x′0, then

v0
s2(1 + x′0(X

′X)−1x0)
∼ tT−k,

where v0 = Y0 − x′0β̂.

Proof.
Because v0 is a linear function of normal vector, v0 is also normally distributed,

v0 ∼ N(0, σ2(I + X0(X
′X)−1X′0),

and

v0 ∼ N(0, σ2(1 + x′0(X
′X)−1x0).

Then as the proof in the t-ratio statistics we have

v0/[σ
2(1 + x′0(X

′X)−1x0)]

(T − k)s2/σ2(T − k)
=

v0
s2(1 + x′0(X

′X)−1x0)
∼ tT−k. �

12Since by assumption that X′X is O(T ), then (X′X)−1 → 0. The forecast error variance become
progressive smaller as we accumulate more data.
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Corollary.
The forecast interval for Y0 would be formed using

forecast interval = Ŷ0 ± tα/2 · s2(1 + x′0(X
′X)−1x0). �

Example.
See Example 5.4 (p.99) of Greene 6th edition. �

5.1 Measuring the Accuracy of Forecasts

Various measures have been proposed for assessing the predictive accuracy of forecast

models. Two that are based on the residuals from the forecasts are the root mean

squared error

RMSE =

√
1

T0

∑
i

(Yi − Ŷi)2

and the mean absolute error

MAE =
1

T0

∑
i

|Yi − Ŷi|,

where T0 is the number of periods being forecasted.

It is needed to keep in mind that however the RMSE and MAE are also random

variables. To compare predictive accuracy we need a test statistics to test “equality of

forecast accuracy”. See for example Diebold and Mariano (1995, JBES, p. 253).

r 2016 by Prof. Chingnun Lee 37 Ins.of Economics,NSYSU,Taiwan



Ch.6 Linear Regression 6 TESTS OF STRUCTURAL CHANGE

6 Tests of Structural Change

6.1 Chow Test

One of the more common applications of the F -ratio tests is in tests of structural

change. In specifying a regression model, we assume that its assumptions apply to all

the observations in our sample. It is straightforward, however, to test the hypothesis

that some or all of the regression coefficients are different in different subsets of the

data.

Theorem. (Different Parameter Vectors; Chow Test)

Suppose that one has T1 observations on a regression equation

y1 = X1β1 + ε1, (6-16)

and T2 observations on another regression equation

y2 = X2β2 + ε2. (6-17)

Suppose that X1 and X2 are made up of k regressors. Let SSE1 denotes the sum of

squared errors in the regression of y1 on X1 and SSE2 denotes the sum of squared

errors in the regression of y2 on X2. Finally let the “joint regression” equation be[
y1

y2

]
=

[
X1

X2

]
β +

[
ε1
ε2

]
(6-18)

and SSE be the sum of squared errors in the joint regression.13 Then under the null

hypothesis that β1 = β2 and assume that ε =

[
ε1
ε2

]
is distributed as N(0, σ2IT ), the

statistics

(SSE − SSE1 − SSE2)/k

(SSE1 + SSE2)/(T − 2k)

is distributed as Fk,T−2k.

Proof.
The “separated regression” model in (6-16) and (6-17) can be written together as[

y1

y2

]
=

[
X1 0
0 X2

] [
β1

β2

]
+

[
ε1
ε2

]
= Xβ∗ + ε. (6-19)

13We think the model to be Yt = x′tβ + εt, t = 1, 2, ..., T1, T1 + 1, ..., T︸ ︷︷ ︸
T2

.
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Formally, the joint regression model (6-18) can be regarded as a restriction β1 = β2

is Rβ∗ = q, where R = [Ik | −Ik] and q = 0 on the “separated ” model in (6-19). The

general result given earlier can be applied directly.

The OLS of the separated model is therefore[
β̂1

β̂2

]
= β̂∗ = (X′X)−1X′y =

[
X′1X1 0

0 X′2X
′
2

]−1 [
X′1 0
0 X′2

] [
y1

y2

]
=

[
(X′1X1)

−1X′1y1

(X′2X
′
2)
−1X′2y2

]
,

and the residual is

e =

[
y1

y2

]
−
[

X1 0
0 X2

] [
β̂1

β̂2

]
=

[
y1 −X1β̂1

y2 −X2β̂2

]
=

[
e1

e2

]
.

The sum of squared residual of the separate regression is e′e = e′1e1 + e′2e2 =

SSE1 + SSE2, which is the sums of squared residuals from the addition of the “sepa-

rated regression” and can be regarded as “errors from unrestricted model” relative to

the joint regression (6-18). The results is apparent from (6-14). �

Example.
See Example 7.6 (p.136) of Greene 5th edition. �

6.2 Alternative Tests of Model Stability

The Chow test described in last section assumes that the process underlying the data

is stable up to a known transition point, at which it makes a discrete change to a new,

but rather thereafter stable, structure. However, the change to a new regime might be

more gradual and less obvious. Brown, Durbin and Evans (1975) proposed a test for

model stability based on recursive residuals.

Suppose that the sample contains a total of T observations. The tth recursive

residual is the ex post prediction error for Yt when the regression is estimated using

only the first t− 1 observation:

et = Yt − x′tβ̂t−1,
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where xt is vector of regressors associated with observation Yt and β̂t−1 is the OLS

computed using the first t− 1 observation. The forecast error variance of this residual

is

σ2
ft = σ2(1 + x′t(X

′
t−1Xt−1)

−1xt),

Let the rth scaled residual be

wr =
er√

1 + x′r(X
′
r−1Xr−1)−1xr

.

Under the hypothesis that the coefficient (β) remain constant during the full sample

period, wr ∼ N(0, σ2) and is independent of ws for s 6= r.14 Evidence that the distri-

bution of wr is changing over time against the hypothesis of model stability. Brown et

al. (1975) suggest two test based on wr.

Theorem. (CUSUM Test)

The CUSUM test is based on the cumulated sums of the recursive residuals:

Wt =
r=t∑

r=k+1

wr
σ̂
,

where15

σ̂2 =

∑T
r=k+1(wr − w̄)2

T − k + 1
, and w̄ =

∑T
r=k+1wr

T − k
.

Under the null hypothesis, Wt has a mean zero and a variance of approximately the

number of residuals being summed (because each term has variance 1 and they are

independent. The test is performed by plotting Wt against t. �

Theorem. (CUSUMSQ Test)

An alternative similar test is based on the squares of the recursive residuals. The

CUSUM of squares (CUSUMSQ) test used

St =

∑t
r=k+1w

2
r∑T

r=k+1w
2
r

.

14For detailed proof, please refers to p. 54 of Harvey’s book (1990).
15It is because the variance of w is σ2. Hence to estimate the variance of w, we use its sample

moments.
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Under the null hypothesis St has a beta distribution with a mean (t− k)/(T − k). �

Example.
See Figures 7.6 (p.138) of Greene 5th edition. �
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7 Mixed-Frequency Regression Model

Macroeconomic data is typically sampled at monthly or quarterly frequencies while

financial time series are sampled at almost arbitrarily higher frequencies. Despite the

fact that most economic time series are not sampled at the same frequency the typi-

cal practice of estimating econometric models involves aggregating all variables to the

same (low) frequency using an equal weighting scheme. However, there is no a priori

reason why one should (i) ignore the fact that the variables involved in empirical mod-

els are in fact generated from processes of different/mixed frequencies and (ii) estimate

econometric models based on an aggregation scheme of equal weights. In fact one

would expect that for most time series declining weights would be a more appropriate

aggregation scheme and that an equal weighting scheme may lead to information loss

and thereby to inefficient and/or biased estimates.

7.1 Unrestricted Mixed-Frequency Model

A mixed-frequency regression model is described by

Yt = β

(
m−1∑
k=0

πk+1X
(m)
t−(k/m)

)
+ εt,

= β
(
π1X

(m)
t−(0/m) + π2X

(m)
t−(1/m) + ...+ πmX

(m)
t−((m−1)/m)

)
+ εt; t = 1, 2, ..., T,

(6-20)

where β is a scalar. The index t represent the low frequency and runs from 1 to T .

The superscript (m) denotes that the series are observed at the higher frequency. For

example, if the regressor are observed m = 12 months per year, then k/m lags k

months from December of each year. Hence Yt = Y
(m)
t−(0/m) is the annul data observed

at December.

The weights parameters π’s assigned weight to each high-frequency regressors within

the low-frequency period. For example, an annual average of each month (simple av-

erage or flat sampling) has weights of 1/m for each of these high-frequency regressors.

End-of-period sampling (a special case of selective of skip sampling), provides another

example, in which the first weight π1 is a unit, while the remaining weights are zeros.
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7.2 MIDAS and CO-MIDAS Model

As the sampling rate m, increase, equation (6-20) leads to parameter proliferation. For

example, for data sampled at a daily frequency (working day) for use in a monthly

model, then m = 20. To solve the problem of parameter proliferation while preserving

the time information from the high-frequency data, Ghysels, Santa-Clare, and Valkanov

(2004) propose using a parsimonious nonlinear specification MIDAS (MIxed DAta

Sampling) model:

Yt = β

(
m−1∑
k=0

πk+1(γ)X
(m)
t−(k/m)

)
+ ηt,

= β
(
π1(γ)X

(m)
t−(0/m) + π2(γ)X

(m)
t−(1/m) + ...+ πm(γ)X

(m)
t−((m−1)/m)

)
+ ηt,(6-21)

where the function πk(γ) is a polynomial that determines the weights for temporal

aggregation. Ghysels et al. (2005) suggest an exponential Almon specification:

πs(γ) = πs(γ1, γ2) =
exp(γ1s+ γ2s

2)∑m
j=1 exp(γ1j + γ2j2)

. (6-22)

In this case, simple average is obtained when γ1 = γ2 = 0. Figure 7 show s various

parameterizations of exponential Almon polynomial weighting function .

.0
2

.0
4

.0
6

.0
8

.1
.1

2
w

ei
gh

t o
f l

ag

0 5 10 15 20
lag(day)

gamma 1=0.01, gamma 2=−0.0025
gamma 1=0.01, gamma 2=−0.0099

gamma 1=0.099, gamma 2=−0.0099

1

Figure 7. Exponential Almon Polynomial Weighting Function
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If Yt ∼ I(0) and X
(m)
t−(k/m) ∼ I(0),∀k = 0, 1, ...,m− 1, and ηt ∼ I(0), it is the MIDAS

model of Ghysels et al. (2004, 2006). While Yt ∼ I(1) and X
(m)
t−(k/m) ∼ I(1),∀k =

0, 1, ...,m− 1, and ηt ∼ I(0), Miller (2014) call (6-21) a cointegration MIDAS (CoMI-

DAS). That is (Yt,xt) are mixed frequency cointegrated with equilibrium error ηt.

7.2.1 Estimation of Parameters

In order to analyze the statistical properties of a nonlinear least square (NLS) estimator

from the (Co)MIDAS regression in (6-21), the linear model in (6-20) may be written

as very simply as

Yt = α′xt + εt, t = 1, 2, ..., T, (6-23)

where α = [βπ1, βπ2, ..., βπm]′ and xt = [X
(m)
t−(0/m), X

(m)
t−(1/m), ..., X

(m)
t−((m−1)/m)]

′. The

(Co)MIDAS model therefore can also be rewritten as

Yt = g′(θ)xt + ηt, (6-24)

where g(θ) = [βπ1(γ), βπ2(γ), ..., βπm(γ)]′ and θ = [β, γ1, γ2]
′.

To estimate the parameters of the CoMIDAS model in (6-24), Miller (2014) consider

the NLS estimator. The NLS objective function may be written as

QT (θ) =
1

2

∑
t

(εt − (g(θ)−α)′xt)
2
,

and the NLS estimator is defined to be θ̂NLS = argminθ∈ΘQT (θ). Of course, numerical

optimization is used to find θ̂NLS in practice.

NSYSU from a Hill Overlooking.

End of this Chapter
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