
Ch. 5 Hypothesis Testing
(May 30, 2016)

1 Introduction

Inference, so far as we have seen, often take the form of numerical estimates, either as

single points as confidence intervals. But not always. In many experimental situations

the conclusion to be drawn in not numerical and is more aptly phrased as a choice

between two conflicting theories, or hypotheses. Thus a court psychiatrist is called upon

to pronounce an accused murderer either “sane” or “insane”; a stockbroker “buy” or

“sell” a certain stock. In this chapter we examine the statistical methodology involved

in making decisions of this sort.

The current framework of hypothesis testing is largely due to the work of Neyman

and Pearson in the late 1920s, early 30s, complementing Fisher’s work on estimation.

As in estimation, we begin by postulating a statistical model but instead of seeking an

estimator of θ in Θ we consider the question whether θ ∈ Θ0 ⊂ Θ or θ ∈ Θ1 = Θ−Θ0

is most supported by the observed data. The discussion which follows will proceed in

a similar way, though less systematically and formally, to the discussion of estimation.

This is due to the complexity of the topic which arises mainly because one is asked to

assimilate too many concepts too quickly just to be able to define the problem properly.

This difficulty, however, is inherent in testing, if any proper understanding of the topic

is to be attempted, and thus unavoidable.
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2 Testing: Definition and Concepts

2.1 The Decision Rule

Let X be a random variables defined on the probability space (S,F ,P(·)) and consider

the statistical model associated with X:

(a) Φ = {f(x;θ),θ ∈ Θ};

(b) x = (X1, X2, ..., Xn)’ is a random sample from f(x;θ).

Definition.
The problem of hypothesis testing is one of deciding whether or not some conjectures

about θ of the form θ belongs to some subset Θ0 of Θ is supported1 by the data

x = (x1, x2, ..., xn)′. We call such a conjecture the null hypothesis and denoted it by

H0 : θ ∈ Θ0, Θ0 ⊆ Θ.

The null hypothesis is generally assumed to be true until evidence indicates otherwise.

Against the null hypothesis H0 we postulate the alternative H1 which take the form:

H1 : θ /∈ Θ0

or, equivalently

H1 : θ ∈ Θ1 = Θ−Θ0. �

It is important to note that H0 and H1 are in effect hypotheses about the distribu-

tion of the sample f(x;θ), i.e.

H0 : f(x;θ), θ ∈ Θ0, v.s. H1 : f(x;θ) θ ∈ Θ1.

1The description of testable implications suggests the subset of values in the null hypothesis is
contained within the unrestricted set, i.e. Θ0 ∈ Θ. In this way, the models are said to be nested.
Now consider an alternative pairs of models: H0 : f(x,θ) v.s. H1 : g(x,ϑ). These two models are
non-nested. we are concerned only with nested models in this chapter.
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Definition.
A hypothesis H0 or H1 is called simple if knowing θ ∈ Θ0 or θ ∈ Θ1 specifies f(x;θ)

completely, otherwise it is called a composite hypothesis. That is, if f(x;θ), θ ∈ Θ0

or f(x;θ) θ ∈ Θ1 contain only one density function we say that H0 or H1 are simple

hypothesis, respectively; otherwise they are said to be composite. �

In testing a null hypothesis H0 against an alternative H1 the issue is to decide

whether the sample realization x “support” H0 or H1. In the former case we say that

H0 is accepted, in the latter H0 is rejected. In order to be able to make such a decision

we need to formulate a mapping which related Θ0 to some subset of the observation

space X , say C0, we call an acceptance region, and its complement C1 (C0 ∪ C1 =

X , C0 ∩ C1 = ∅) we call the rejection region. If the sample realization x ∈ C0 we

accept H0, if x /∈ C0 we reject it.

Since the observation space X ∈ Rn, but both the acceptance region C0 ∈ R1 and

rejection region {R1 − C0}, we need a mapping from Rn to R1.

Definition. (The Test Statistics)

The mapping τ(·) which enables us to define C0 and C1 from observation space X is

called a test statistic, i.e.

τ(x) : X → R1. �

Example. (Simple Null against Composite Alternative)

Let X be the random variables representing the marks achieved by students in an

econometric theory paper and let the statistical model be:

(a). Φ =
{
f(x; θ) = 1

8
√

2π
exp

[
−1

2

(
x−θ

8

)2
]}

, θ ∈ Θ ≡ [0, 100];

(b). x = (X1, X2, ..., Xn)′, n=40, is random sample from Φ.

The hypothesis to be tested is

H0 : θ = 60 (i.e. X ∼ N(60, 64)), Θ0 = {60}

against

H1 : θ 6= 60 (i.e. X ∼ N(µ, 64), µ 6= 60), Θ1 = [0, 100]− {60}.
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Common sense suggests that if some “good” estimator of θ, say X̄n = (1/n)
∑n

i=1 xi

for the sample realization x takes a value “around” 60 then we will be inclined to accept

H0. Let us formalise this argument:

“The acceptance region takes the form: 60− ε ≤ X̄n ≤ 60 + ε, ε > 0, or

C0 = {x : |X̄n − 60| ≤ ε}

and

C1 = {x : |X̄n − 60| ≥ ε}, is the rejection region.′′ �

2.2 Type I and Type II Errors

In the above example, the next question is “how do we choose ε ?” If ε is too small

we run the risk of rejecting H0 when it is true; we call this type I error . On the other

hand, if ε is too large we run the risk of accepting H0 when it is false; we call this

type II error .

Definition.
Formally, if x ∈ C1 (reject H0) and θ ∈ Θ0 (H0 is true)–we call it type I error, α; if

x ∈ C0 (accept H0) and θ ∈ Θ1 (H0 is false)–we call it type II error, β. �

That is, if we were to choose ε too small we run a higher risk of committing a type

I error than of committing a type II error and vice versa. That is, there is a trade-off

between the probability of type I error, i.e.

Pr(x ∈ C1;θ ∈ Θ0) = α,

and the probability β of type II error, i.e.

Pr(x ∈ C0;θ ∈ Θ1) = β.
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Figure (5-1a). Type I and Type II Error

Ideally we would like α = β = 0 for all θ ∈ Θ which is not possible for a fixed

n. Moreover we cannot control both simultaneously because of the trade-off between

them. The strategy adopted in hypothesis testing where a small value of α is chosen

and for a given α, β is minimized. Formally, this amounts to choose α∗ such that

Pr(x ∈ C1;θ ∈ Θ0) = α(θ) ≤ α∗ for θ ∈ Θ0,

and

Pr(x ∈ C0;θ ∈ Θ1) = β(θ), is minimized for θ ∈ Θ1

by choosing C1 or C0 appropriately.

In the case of the above example if we were to choose α, say α∗ = 0.05, then

Pr(|X̄n − 60| > ε; θ = 60) = 0.05.

“How do we determine ε, then ?” The only random variable involved in the state-

ment is X̄ and hence it has to be its sampling distribution. For the above probabilistic

statement to have any operational meaning to enable us to determine ε, the distribution

of X̄n must be known. In the present case we know that

X̄n ∼ N

(
θ,
σ2

n

)
where

σ2

n
=

64

40
= 1.6,
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Figure (5-1b). Type I and Type II Error

which implies that for θ = 60, (i.e. when H0 is true) we can “construct” a test statistic

τ(x) from sample x such that

τ(x) =

(
X̄n − θ√

1.6

)
=

(
X̄n − 60√

1.6

)
=

(
X̄n − 60

1.265

)
∼ N(0, 1),

and thus the distribution of τ(·) is known completely (no unknown parameters). When

this is the case this distribution can be used in conjunction with the above probabilistic

statement to determine ε. In order to do this we need to relate |X̄n − 60| to τ(x) (a

statistics) for which the distribution is known. The obvious way is to standardize the

former. This suggests changing the above probabilistic statement to the equivalent

statement

Pr

(
|X̄n − 60|

1.265
≥ cα; θ = 60

)
= 0.05 where cα =

ε

1.265
.

The value of cα given from the N(0, 1) table is cα = 1.96. This in turn implies that

the rejection region for the test is

C1 =

{
x :
|X̄n − 60|

1.265
≥ 1.96

}
= {x : |τ(x)| ≥ 1.96}

or

C1 = {x : |X̄n − 60| ≥ 2.48}.
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That is, for sample realization x which give rises to X̄n falling outside the interval

(57.52, 62.48) we reject H0.

Let us summarize the argument so far.

“We set out to construct a size-α test for H0 : θ = 60 against H1 : θ 6= 60

and intuition suggested the rejection region (|X̄n − 60| ≥ ε). In order to

determine ε we have to

(a). Choose an α; and then

(b). define the rejection region in term of some statistic τ(x).”

The latter is necessary to enable us to determine ε via some known distribution. This

is the distribution of the test statistic τ(x) under H0 (i.e. when H0 is true).

Definition.
A pivotal test statistics for τ(·) is a function of sample whose distribution does not

depend on θ under the null hypothesis. �

Example.
Assume a random sample of size 11 is drawn from a normal distribution N(µ, 400). In

particular, y1 = 62, y2 = 52, y3 = 68, y4 = 23, y5 = 34, y6 = 45, y7 = 27, y8 = 42, y9 =

83, y10 = 56 and y11 = 40. Test the null hypothesis that H0 : µ = 55 versus H1 : µ 6= 55.

Since σ2 is known, the sample mean will distributed as

Ȳ ∼ N(µ, σ2/n) ≡ N(µ, 400/11),

therefore under H0 : µ = 55,

Ȳ ∼ N(55, 36.36)

or

Ȳ − 55√
36.36

∼ N(0, 1) ≡ Z.

We accept H0 when the test statistics τ(x) = (Ȳ − 55)/
√

36.36 lying in the interval

C0 = [Z−.025, Z0.975] = [−1.96, 1.96] under the size of the test α = 0.05.
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We now have
11∑
i=1

yi = 532 and ȳ =
532

11
= 48.4.

Then

48.4− 55√
36.36

= −1.01

which is in the accept region. Therefore we accept the null hypothesis that H0 : µ =

55. �

Example.
Assume a random sample of size 11 is drawn from a normal distribution N(µ, σ2). In

particular, y1 = 62, y2 = 52, y3 = 68, y4 = 23, y5 = 34, y6 = 45, y7 = 27, y8 = 42, y9 =

83, y10 = 56 and y11 = 40. Test the null hypothesis that H0 : µ = 55 versus H1 : µ 6= 55.

Since σ2 is unknown, the sample mean distributed as

Ȳ ∼ N(µ, σ2/n),

therefore under H0 : µ = 55

Ȳ ∼ N(55, σ2/n)

or

Ȳ − 55√
σ2/n

∼ N(0, 1),

however, it is not a pivotal test statistics since an unknown parameter σ2.

From the fact that
∑

(Yi − Ȳ )2/σ2 ∼ χ2
n−1 or s2(n − 1)/σ2 ∼ χ2

n−1 where s2 =∑n
i=1(Yi − Ȳ )2/(n− 1) is an unbiased estimator of σ2,2 we have

(Ȳ − 55)/(
√
σ2/n)√

(n− 1)s2/(n− 1)σ2
=
Ȳ − 55√
s2/n

∼ tn−1.

We accept H0 when the test statistics τ(x) = Ȳ−55√
s2/n

lying in the interval C0 =

[t(10)0.025, t(10)0.975] = [−2.23, 2.23]. We now have

11∑
i=1

yi = 532,
11∑
i=1

y2
i = 29000 and

s2 =

∑
y2
i − nȳ2

10
=

29000− 11(48.4)2

10
= 323.19.

2See p. 27 of Chapter 3.
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Then

48.4− 55√
323.19/11

= −1.2

which is also in the accept region C0. Therefore we accept the null hypothesis that

H0 : µ = 55. �

The next question which naturally arises is: “What do we need the probability of

type II error β for ?” The answer is that we need β to decide whether the test defined

in terms of C1(of course C0) is a “good” or a “bad” test. As we mentioned at the

outset, the way we decided to solve the problem of the trade-off between α and β was

to choose a given small value of α and define C1 so as to minimize β. At this stage we

do not know whether the test defined above is a “good” test or not. Let us consider

setting up the apparatus to enable us to consider the question of optimality.
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3 Optimal Tests

In the last section, we developed (1 − α) confidence intervals and size-α tests using

pivotal quantities. However, there may be many pivotal test statistic, each leading to

its own confidence intervals and test. In choosing which of many size α test to use,

in this section we try to find size-α procedures which have small probability of falsely

accepting an untrue hull hypothesis, .i.e. minimizing of Pr(x ∈ C0) for all θ ∈ Θ1 or

maximizing Pr(x ∈ C1) for all θ ∈ Θ1.

Definition. (Power of the Test)

The probability of reject H0 when false at some point θ1 ∈ Θ1, i.e. Pr(x ∈ C1;θ = Θ1)

is called the power of the test at θ = θ1. �

Note that

Pr(x ∈ C1;θ = θ1) = 1− Pr(x ∈ C0;θ = θ1) = 1− β(θ1).

Example.
In the last example we can define the power of the test at some θ1 ∈ Θ1, say θ = 54,

to be Pr[(|X̄n − 60|)/1.265 ≥ 1.96; θ = 54].

Under the alternative hypothesis that θ = 54, then it is true that X̄n−54
1.265

∼ N(0, 1).

We would like to know that the probability of the statistics constructed under the null

hypothesis that X̄n−60
1.265

would fall in the rejection region; that is, the power of the test

at θ = 54 to be

Pr

(
|X̄n − 60|

1.265
≥ 1.96; θ = 54

)
= Pr

(
|X̄n − 54|

1.265
≤ −1.96− (54− 60)

1.265

)
+Pr

(
|X̄n − 54|

1.265
≥ 1.96− (54− 60)

1.265

)
= 0.993.

Hence, the power of the test defined by C1 above is indeed very high for θ = 54. From

this we know that to calculate the power of a test we need to know the distribution of the

test statistics τ(x) under the alternative hypothesis. In this case it is the distribution

of X̄n−54
1.265

.3

3In the example above, the test statistic τ(x) have a standard normal distribution under both the
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Following the same procedure the power of the test defined by C1 is as following

for all θ ∈ Θ1:

Pr(|τ(x)| ≥ 1.96; θ = 56) = 0.8849;

Pr(|τ(x)| ≥ 1.96; θ = 58) = 0.3520;

Pr(|τ(x)| ≥ 1.96; θ = 60) = 0.0500;

Pr(|τ(x)| ≥ 1.96; θ = 62) = 0.3520;

Pr(|τ(x)| ≥ 1.96; θ = 64) = 0.8849;

Pr(|τ(x)| ≥ 1.96; θ = 66) = 0.9973.

As we can see, the power of the test increases as we go further away from θ = 60

(i.e. the null hypothesis H0) and the power at θ = 60 equals the probability of type I

error. This prompts us to define the power function as follows.

Definition. (Power Function)

P(θ) = Pr(x ∈ C1), θ ∈ Θ is called the power function of the test defined by the

rejection region C1. �

Definition. (Size of a Test)

α = maxθ∈Θ0P(θ) is defined to be the size (or the significance level) of the test.4 In

the case where H0 is simple, say θ = θ0, then α = P(θ0). �

These definitions enable us to define a criterion for a “best” test of a given α to be

the one whose power function P(θ), θ ∈ Θ1 is maximum at every θ.

Definition. (Uniformly Most Powerful Test)

A test of H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 as defined by some rejection region C1 is

said to be uniformly most powerful (UMP) test of size α if

null and the alternative hypothesis. However, it is quite often the case when it happen that a test
statistics have a different distribution under the null and the alternative hypotheses. For example,
the unit root test. See Chapter 21.

4That, the probability that Pr(x ∈ C1), but H0 is correct, i.e. θ ∈ Θ0.
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(a). maxθ∈Θ0P(θ) = α;

(b). P(θ) ≥ P∗(θ) for all θ ∈ Θ1, where P∗(θ) is the power function of any other test

of size α. �

Example.
Suppose we observe X ∼ N(θ, 1), independent. We assume for simplicity that n = 1.

Then

τ(x) = τ(X1) = Q ∼ N(θ, 1).

The 0.05 one-side test for testing that θ = 0 against θ > 0 reject the null hypothesis

if (Q− 0)/1 = Q > 1.645. To find the power of the test, we calculate

P∗(θ) = Pr(Q > 1.645; θ) = Pr((Q− θ + θ) > 1.645)

= Pr(Z > 1.645− θ)

= 1−N(1.645− θ).

Now the 0.05 one-side test one the other side is to testing that θ = 0 against θ < 0.

We reject the null hypothesis if (Q − 0)/1 < 1.645. To find the power of the test, we

calculate

P∗(θ) = Pr(Q < 1.645; θ) = Pr((Q− θ + θ) < 1.645)

= Pr(Z < 1.645− θ)

= N(1.645− θ).

Finally, the two side size-0.05 test which reject the null hypothesis if Q > 1.96 or

Q < −1.96. Then the power function is given by

P(θ) = 1− Pr(−1.96 < Q < 1.96; θ) = 1− Pr(−1.96 < (Q− θ) + θ < 1.96)

= 1− Pr(−1.96− θ < Z < 1.96− θ)

= 1−N(1.96− θ) +N(−1.96− θ). �

The three power functions are drawn in the following.
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Figure (5-2). Power functions of P(θ), P∗(θ), and P∗(θ)

As will be seen in the example above, no UMP tests exists in most situations of

interest in practice. The procedure adopted in such cases is to reduce the class of all

tests to some subclass by imposing some more criteria and consider the question of

UMP tests within the subclass.

Definition.
A test of H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 is said to be unbiased if

maxθ∈Θ0P(θ) ≤ maxθ∈Θ1P(θ).

In other word, a test is unbiased if it reject H0 more often when it is false than when

it is true. �

Collecting all the above concepts together we say that a test has been defined when

the following components have been specified:

(a). a test statistic τ(x);

(b). the size of the test α;

(c). the distribution of τ(x) under H0 and H1;

(d). the rejection region C1 (or, equivalently, C0).
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4 Asymptotic Test Procedures

As discussed in the last section, the main problem in hypothesis testing is to construct

a test statistics τ(x) whose distribution we know under both the null hypothesis H0

and the alternative H1 and it does not depend on the unknown parameters θ. The

first part of the problem, that of constructing τ(x), can be handled relatively easy

using various methods (Neyman-Pearson likelihood ratio) when certain condition are

satisfied. The second part of the problem, that of determining the distribution of τ(x)

under both H0 and H1, is much more difficult to solve and often we have to resort to

asymptotic theory. This amount to deriving the asymptotic distribution of τ(x) and

using that to determine the rejection region C1 (or C0) and associated probabilities.

4.1 Asymptotic Properties

For a given sample size n, if the distribution of τn(x) is not known (otherwise we use

that), we do not know how “good” the asymptotic distribution of τn(x) is an accurate

approximation of its finite sample distribution. This suggest that when asymptotic

results are used we should be aware of their limitations and the inaccuracies they can

lead to.

Consider the test defined by the rejection region

Cn
1 = {x : |τn(x)| ≥ cn},

and whose power function is

Pn(θ) = Pr(x ∈ Cn
1 ), θ ∈ Θ.

Since the distribution of τn(x) is not known we cannot determine cn or Pn. If the

asymptotic distribution of τn(x) is available, however we can use that instead to define

cn from some fixed α and the asymptotic power function

lim
n→∞

πn(θ) = Pr(x ∈ C∞1 ), θ ∈ Θ.

In this sense we can think of {τn(x), n ≥ 1} as a sequence of test statistics defining

a sequence of rejection region {Cn
1 , n ≥ 1} with power function {Pn(θ), n ≥ 1, θ ∈ Θ}.
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Definition. (Consistence of a Test)

The sequence of tests for H0 : θ ∈ Θ0 against H1 : θ ∈ Θ1 defined by {Cn
1 , n ≥ 1} is

said to be consistent of size α if

max
θ∈Θ0

π(θ) = α

and

π(θ) = 1, θ ∈ Θ1. �

It is often happened that use of conventional asymptotic critical asymptotic critical

values ( C∞1 ) for many tests may cause size distortions in a finite sample, however.

Definition. (Finite Sample Size Distortion)

The size distortion of a test is defined as∣∣∣∣max
θ∈Θ0

πn(θ)− α
∣∣∣∣ for finite n. �

Definition. (Unbias of a Test):

A sequence of test as defined above is said to be asymptotically unbiased of size α if

max
θ∈Θ0

π(θ) = α

and

α < π(θ) < 1, θ ∈ Θ1. �
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4.2 Three Asymptotically Equivalent Test Procedures

The use of increasingly complex statistical models has led to heavy reliance on maxi-

mum likelihood methods for both estimation and testing. In such a setting only asymp-

totic properties can be expected for estimators or tests. In this section three general

test procedures–“Holy Trinity”–which gives rise to asymptotically optimal tests will

be considered: the likelihood ratio, Wald and Lagrange multiplier test. All three test

procedures can be interpreted as utilizing the information incorporated in the log like-

lihood function in different but asymptotically equivalent ways.

For expositional purpose the test procedures will be considered in the context of

the simplest statistical model where

(a). Φ = {f(x;θ), θ ∈ Θ} is the probability model; and

(b). x ≡ (X1, X2, ..., Xn)′ is a random sample.

We consider maximum likelihood estimation of parameters θ and a test of the sim-

ple null hypothesis that H0 : θ = θ0, θ ∈ Θ ≡ Rm against H1 : θ 6= θ0.

4.2.1 The Likelihood Ratio Test

We first discuss the likelihood ratio test which is a test statistics calculated under both

the null and the alternative hypothesis.

Definition. (Likelihood Ratio Test)

If the restriction θ = θ0 is valid, then imposing it should not lead to a large reduction in

the log-likelihood function. Therefore, we base the test on the difference, lnL− lnLR,

where L is the value of the likelihood function at the unrestricted value of θ and LR is

the value of the likelihood function at the restricted estimate. �

The likelihood ratio test statistics takes the form

λ(x) =
L(θ0; x)

maxθ∈Θ L(θ; x)
=
L(θ0; x)

L(θ̂; x)
,

where θ̂ is the MLE of θ.
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Under certain regularity conditions which include RC1-RC3 (see Chapter 3), logL(θ; x)

can be expanded in a Taylor series at θ = θ̂:

logL(θ; x) ' logL(θ̂; x) +
∂ logL

∂θ′

∣∣∣∣
θ̂

(θ − θ̂) +
1

2
(θ − θ̂)′

∂2 logL

∂θ∂θ′

∣∣∣∣
θ̂

(θ − θ̂) + o(1).

Since

∂ logL

∂θ′

∣∣∣∣
θ̂

= 0,

being the FOC of the MLE, and

1

n

(
∂2

∂θ∂θ′
logL(θ̂; x)

)
p−→ I(θ),

the above expansion can be simplified to

logL(θ; x) = logL(θ̂; x) +
1

2
n(θ̂ − θ)′I(θ)(θ̂ − θ) + o(1).

This implies that under the null hypothesis that H0 : θ = θ0

−2 log λ(x) = 2[logL(θ̂; x)− L(θ0; x)] = n(θ̂ − θ0)′I(θ)(θ̂ − θ0) + o(1).

From the asymptotic properties of the MLE’s it is known5 that under certain reg-

ularity conditions

√
n(θ̂ − θ0) ∼ N(0, I−1(θ)).

Using this we can deduce that

LR = −2 log λ(x) = 2[logL(θ̂; x)− L(θ0; x)]

' n(θ̂ − θ0)′I(θ)(θ̂ − θ0) (5-1)
H0∼ χ2(m),

being a quadratic form in asymptotically normal random variables.

5See equation (3-9) of Chapter 3
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4.2.2 Wald test

To compute the LR test statistics, both likelihood function under he null and the

alternative hypotheses needed to be calculated. Wald (1943), using the above approx-

imation of −2 log λ(x) in (1), proposed an alternative test that is computed under H1

only.

Definition. (Wald Test)

Replacing I(θ) with I(θ̂) in the above approximation of −2 log λ(x) in (5-1), we obtain

that

W = n(θ̂ − θ0)′I(θ̂)(θ̂ − θ0)
H0∼ χ2(m),

given that I(θ̂)
p−→ I(θ).6

4.2.3 The Lagrange Multiplier Test

Rao (1947) using the asymptotic distribution of the score function to propose the LM

test which is computed under H0 only.

Definition. (The LM Test)

Under the null hypothesis, the test statistics

LM =
1

n

(
∂ logL(θ0; x)

∂θ

)′
I−1(θ0)

(
∂ logL(θ0; x)

∂θ

)
H0∼ χ2(m).

Proof.
Expanding score function of logL(θ; x) (i.e. ∂ logL(θ;x)

∂θ
) around θ̂ we have:

∂ logL(θ; x)

∂θ
' ∂ logL(θ̂; x)

∂θ
+
∂2 logL(θ̂; x)

∂θ∂θ′
(θ − θ̂).

As in the LR test, ∂ logL(θ̂;x)
∂θ

= 0, and the above equation reduces to

∂ logL(θ; x)

∂θ
' ∂2 logL(θ̂; x)

∂θ∂θ′
(θ − θ̂).

6I(θ̂) can be anyone of the three estimators which estimate the asymptotic variance of the MLE.
See section 3.3.6 of Chapter 3.
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Now we consider the test statistics under the null hypothesis H0 : θ = θ0

LM =
1

n

(
∂ logL(θ0; x)

∂θ

)′
I−1(θ0)

(
∂ logL(θ0; x)

∂θ

)
,

which is equivalent to

LM =
1

n
(θ0 − θ̂)′

∂2 logL(θ̂; x)

∂θ∂θ′
I−1(θ0)

∂2 logL(θ̂; x)

∂θ∂θ′
(θ0 − θ̂).

Given that 1
n

(
∂2 logL(θ̂;x)

∂θ∂θ′

)
p−→ I(θ) = I(θ0) (under H0), we have

LM =
1

n

(
∂ logL(θ0; x)

∂θ

)′
I−1(θ0)

(
∂ logL(θ0; x)

∂θ

)
= n(θ̂ − θ0)′I(θ0)(θ̂ − θ0) ∼ χ2(m)

as in the proof of LR test. �

Example.
To test the hypothesis H0 : c(θ) = 0 from these three tests. The logic of these tests

can be seen in the following figure. The figure plot the log-likelihood function ln(θ),

its derivative with respect to θ, d ln(θ)/dθ, and the constrain c(θ).

Figure (5-3). The Holy Trinity in asymptotic test statistics

�

r 2016 by Prof. Chingnun Lee 19 Ins.of Economics,NSYSU,Taiwan



Ch.5 Hypothesis Testing 4 ASYMPTOTIC TEST PROCEDURES

Example.
Consider a set of T i.i.d. observations on a Bernoulli random variable which takes on

the value:

yt =

{
1, with probability θ,
0, with probability 1− θ.

We wish to test θ = θ0 against θ 6= θ0 for θ ∈ (0, 1).

The log-likelihood function is given by:

lnL(θ,y) =
∑
t

[yt ln θ + (1− yt) ln(1− θ)],

with the MLE, θ̂ = ȳ. The first derivative (score) is

s(θ,y) =
1

θ(1− θ)
∑
t

(yt − θ).

The information is

I(θ) = E

[
Tθ(1− θ) + (1− 2θ)

∑
(yy − θ)

θ2(1− θ)2

]/
T

=
1

θ(1− θ)
.

The Wald test is given by

W = T (ȳ − θ0)′
1

ȳ(1− ȳ)
(ȳ − θ0)

= T (ȳ − θ0)2/ȳ(1− ȳ).

The LM test is

LM =
1

T

∑
(yt − θ0)

θ0(1− θ0)

[
1

θ0(1− θ0)

]−1 ∑
(yt − θ0)

θ0(1− θ0)

=

[∑
(yt − θ0)

θ0(1− θ0)

]2
θ0(1− θ0)

T

= T (ȳ − θ0)2/θ0(1− θ0).

The likelihood Ratio test statistics is given by

LR = 2T [ȳ ln ȳ/θ0 + (1− ȳ) ln(1− ȳ)/(1− θ0)] . �
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Example.
Of particular interest in practice is the case where θ ≡ (θ′1,θ

′
2)′ and H0 : θ1 = θ0

1

against H1 : θ1 6= θ0
1, θ1 is r× 1 with θ2 (m− r)× 1 left unrestricted. In this case the

three test statistics take the form

LR = 2(lnL(θ̂; x)− lnL(θ̃; x));

W = n(θ̂1 − θ0
1)′[I11(θ̂)− I12(θ̂)I−1

22 (θ̂)I21(θ̂)](θ̂1 − θ0
1)

LM =
1

n
µ(θ̃)′[I11(θ̃)− I12(θ̃)I−1

22 (θ̃)I21(θ̃)]−1µ(θ̃),

where

θ̂ ≡ (θ̂′1, θ̂
′
2)′, θ̃′ ≡ (θ0

1
′
, θ̃2
′
)′, I(θ) =

[
I11(θ) I12(θ)
I21(θ) I22(θ)

]
,

and θ̃2 is the solution to

∂ ln(θ; x)

∂θ2

∣∣∣∣
θ1=θ0

1

= 0, and µ(θ̃) =
∂ ln(θ; x)

∂θ1

∣∣∣∣
θ1=θ0

1

.

Proof.
Since

√
n(θ̂ − θ) ∼ N (0, I−1(θ)),

under H0 : θ1 = θ0
1, and the fact that I(θ̂) − I(θ̂)

p−→ 0, we have the results from

partitioned inverse rule7

√
n(θ̂1 − θ0

1) ∼ N(0, [I11(θ̂)− I12(θ̂)I−1
22 (θ̂)I21(θ̂)]−1)

The Wald test statistics therefore is

W = (θ̂1 − θ0
1)′[I11(θ̂)− I12(θ̂)I−1

22 (θ̂)I21(θ̂)](θ̂1 − θ0
1).

By definition the LM test statistics is

LM =
1

n

(
∂ logL(θ̃; x)

∂θ

)′
I−1(θ̃)

(
∂ logL(θ̃; x)

∂θ

)
,

7Reminder: For a general 2 × 2 partitioned matrix,

[
A11 A12

A21 A22

]−1

=[
F1 −F1A12A

−1
22

−A−1
22 A21F1 A−1

22 (I + A21F1A12A
−1
22 )

]
, where F1 = (A11 −A12A

−1
22 A21)−1.
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but (
∂ logL(θ̃; x)

∂θ

)
=

 ∂ logL
∂θ1

∣∣∣
θ1=θ0

1

∂ logL
∂θ2

∣∣∣
θ2=θ̃2

 =

(
µ(θ̃)

0

)
,

Using partitioned inverse rule we have

LM = µ(θ̃)′[I11(θ̃)− I12(θ̃)I−1
22 (θ̃)I21(θ̃)]−1µ(θ̃).

The proof of LR test statistics is straightforward. �

Exercise 1.
Reproduce the results of Table 17.1 on p.490 of Greene 5th edition. �
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5 Monte Carlo Simulation in Statistics

Monte Carlo methods (or Monte Carlo experiments) are a broad class of computational

algorithms that rely on repeated random sampling to obtain numerical results. In

applied statistics, Monte Carlo methods are generally used for two purposes:

(a). To provide implementations of hypothesis tests such as when the critical values

for the asymptotic distribution are often impossible or hard to compute.

(b). To compare the finite small properties for competing test statistics under realistic

data conditions. Although Type I error and power properties of statistics can be

calculated for data drawn from classical theoretical distributions for asymptotic

conditions, real finite sample data often do not have such distributions.

5.1 With Data Generated from Pseudo-Random Number

5.1.1 Simulation of Critical Values

Nowadays, modern Econometrics-Package (such as Gauss) has built-in Pseudo-Random

Number generator. The critical value of the statistics we are interested in (always the

test statistics τ(x)) can be easily obtained with precision by the Monte-Carlo simula-

tion rather by the integration of the probability density.

Example.
The distribution of a standard Cauchy random variable Y , that is the ratio of two

independent standard normal variables and has the probability density function

f(y; 0, 1) =
1

π(1 + y2)
.

If under certain null hypothesis that the test statistics τ(x, θ0) ∼ Y . Under one right

one-side alternative hypothesis, we reject the null hypothesis when the realization of

the sample is such that τ(x) > FY0.95(y). We can obtain the “critical value a∗” either

by theoretical integration:∫ a∗

∞

1

π(1 + y2)
dy = 0.95,
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or simply by the 95% quantile of (sorting) repeated independent draws from

Y(i) =
Z(i)

1

Z(i)
2

, i = 1, ...,m,

where Z1 and Z2 are independent standard normal distributions. The larger the m,

the more precise the Monte-Carlo experiment. �

Example.
In many applications, we may need a non-random (univariate) normal sample of size

T . We can view this sample as a one draw from a multivariate normal distribution,

x ∼ N(µ, Σ), where the Σ is to take into account of serial correlations. It can be

generated as follow. We begin with a draw, z, from the T -variate standard normal dis-

tribution just by stacking T independent draws from the univariate standard normal

distribution. Let P be the square root of Σ such that PP′ = Σ. The desired draw is

then just x = µ+ Pz. �

5.1.2 Finite Sample Size Distortion and Power Performance

The following example is taken from Lee et al. (2014) to illustrate use of Monte-Carlo

simulation in comparisons of finite sample size distortion and power performance of a

test statistic.

“Lee at al. (2012) used multivariate Beveridge-Nelson decomposition to

show that these two cointegrating relations α′xxt ∼ I(0) and α′yyt ∼ I(0)

can be represented by

STW,t − βxS1t − µx − δxt = νt ∼ I(0),
STW,t − βyS2t − µy − δyt = ςt ∼ I(0),

(5-2)

where µx, δx, µy, and δy are constants and νt and ςt are de-meaned and

de-trended stationary cointegrating equilibrium errors.

Given that xt and yt are conintegrated, we are interested in discriminating

the closer relationship from the cointegrating relationships. To this end, we

compare the magnitude of the variances of cointegrating equilibrium errors

by developing the equal variance test of the null hypothesis,

H0 : σ2
ν = σ2

ς , v.s. H1 : σ2
ν ≷ σ2

ς ,
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in which a smaller variance of cointegrating equilibrium error is associated

with a closer linkage between the variables in the cointegrating regression

model. Hence, the rejection of the null hypothesis can discriminate the

closer relationship from the cointegrating relationships.

To derive the asymptotic distributions of the proposed equal variance test,

we need the following assumptions on the cointegrating equilibrium errors

and their squared processes.

Assumption 1: The cointegrating equilibrium error process ut = (νt, ςt)
′ is

stationary and ergodic with E(νt, ςt)
′ = (0, 0)′, E(ν2

t , ς
2
t )′ = (σ2

ν , σ
2
ς )
′.

Assumption 2: The squared cointegrating equilibrium error process zt =

(ν2
t − σ2

ν , ς
2
t − σ2

ς )
′ is L2-NED of size−1

2
on a process {et}∞t=−∞, where

es is an α-mixing of size −r/(r − 2) for r > 2 or φ-mixing of size

−r/(2r − 2) for r ≥ 2. In addition, supt ‖zt‖r <∞.

Theorem 3: Under the null hypothesis of equal variance, H0 : σ2
ν = σ2

ς ,

the test statistic Z = M̂−1T 1/2
(
σ̂2
ν − σ̂2

ς

)
is asymptotically distributed as

functionals of Brownian motion:

Z = M̂−1T 1/2
(
σ̂2
ν − σ̂2

ς

) d−→ W (1){∫ 1

0
[W (r)− rW (1)]2dr

}1/2
.

The cointegrating equilibrium errors processes must be stationary and the

aim of the proposed variance test is to determine the degree of cointegra-

tion by comparing the variances of the cointegrating equilibrium errors.

Here for simplicity, we restrict our experiment to examine the finite sample

performance of the new variance test and the test of Lee et al. (2012) by

assuming that the cointegrating equilibrium errors are known in the simula-

tion. In fact, the cointegrating equilibrium errors are unknown and must be

estimated. However, the simulations in this setup are helpful and insightful

to understand the performance of the variance tests. We assume that the

data generating processes (DGP) of cointegrating equilibrium errors follow

a stationary AR(1) process with an exogenous common factor:

νt = aft + bνt−1 + ε1t, (5-3)

ςt = cft + dςt−1 + ε2t, (5-4)
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and we employ the variance tests to the hypothesis,

H0 : σ2
ν = σ2

ς , against H1 : σ2
ν < σ2

ς ,

where ft, ε1t and ε2t are mutually independent and assumed to be i.i.d.N(0, 1).

ft is the common effect of the process νt and ςt. To compare the finite

sample properties of the variance tests, we focus on two scenarios: the

cross-sectionally independent and the cross-sectionally dependent case. In

this setup, a and c in Eqs. (5-3) and Eq. (5-4) are used to control the

cross-sectionally dependence, and if a = c = 0, the DGP degenerates to the

cross-sectionally independent, but serially correlated case. b and d in Eqs.

(5-3) and (5-4) are used to describe the serial correlation, where b, d ∈ [0, 1).

It is also worthy to note that, for other sample size, the finite sample prop-

erties of the tests are generally similar although they are not reported here

to save space. The finite sample properties for T = 100 are reported in

Table 7.

Table 7: Size and power of the variance tests 

  Cross-sectional independent case: size Cross-sectional independent case: power 

(b,d) (0.1,0.1) (0.5,0.5) (0.75,0.75) (0.9,0.9) (0.95,0.95) (0.98,98) (0.1,0.2) (0.1,0.4) (0.1,0.5) (0.1,0.6) (0.1,0.7) (0.1,0.9) 

Lee 0.000 0.004 0.018 0.079 0.137 0.229 0.001 0.007 0.037 0.109 0.329 0.955 

New 0.049 0.056 0.051 0.064 0.059 0.096 0.076 0.152 0.246 0.361 0.525 0.708 

  Cross-sectional dependent case: size 

(a,b) (1,0.1) (1,0.75) (1,0.9) (1,0.95) (1,0.975) (1,0.99) (5,0.1) (5,0.75) (5,0.9) (5,0.95) (5,0.975) (5,0.99) 

(c,d) (1,0.1) (1,0.75) (1,0.9) (1,0.95) (1,0.975) (1,0.99) (5,0.1) (5,0.75) (5,0.9) (5,0.95) (5,0.975) (5,0.99) 

Lee 0.000 0.012 0.048 0.101 0.167 0.210 0.000 0.000 0.001 0.003 0.008 0.010 

New 0.047 0.048 0.056 0.084 0.098 0.118 0.055 0.051 0.048 0.078 0.085 0.096 

  Cross-sectional dependent case: power 

(a,b) (1,0.1) (1,0.1) (1,0.1) (1,0.1) (1,0.1) (1,0.1) (5,0.1) (5,0.1) (5,0.1) (10,0.1) (10,0.1) (10,0.1) 

(c,d) (1,0.2) (1,0.4) (1,0.6) (1,0.7) (1,0.8) (1,0.98) (5,0.3) (5,0.5) (5,0.7) (10,0.3) (10,0.5) (10,0.7) 

Lee 0.000 0.002 0.088 0.343 0.951 0.995 0.000 0.000 0.261 0.000 0.000 0.259 

New 0.061 0.161 0.398 0.581 0.681 0.701 0.237 0.561 0.766 0.306 0.646 0.738 

 Notes: The tests were one-sided with the nominal size set at 5%, and were conducted for sample size
T = 100 using 1000 replications. “Lee” denotes the test of Lee et al. (2012), and “New” denotes the
variance test proposed in this paper.

The simulations indicate that: (a) the size control of the variance test of Lee

et al. (2012) depends strongly on the serial correlation, thus a strong serial

correlation can induce a spurious rejection of the null, while the proposed

variance test has relatively good size; (b) a violation of the cross-sectionally
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uncorrelated squared cointegrating errors can invalidate the variance test

of Lee et al. (2012), especially in the cases where the squared cointegrat-

ing errors are strongly cross-sectionally dependent. However, the proposed

variance test can be used to achieve satisfactory performance.”

�

5.2 With Data Generated from the Real Data, Bootstrapping

When we are doing quantitative research such as testing and estimation, it is required

to have information about the population distribution. However, if the usual assump-

tions of the population cannot be made (normality assumptions, or small samples), then

the traditional approach does not work The bootstrap technique developed by Efron

(1979) is to estimates the population distribution by using the information based on

a number of resamples from the sample. The basic idea of bootstrapping is that in-

ference about a population from sample data (sample → population) can be modeled

by resampling the sample data and performing inference on (resample → sample). As

the population is unknown, the true error in a sample statistic against its population

value is unknowable. In bootstrap-resamples, the “population” is in fact the sample,

and this is known; hence the quality of inference from resample data → “true” sample

is measurable

5.2.1 Bootstrap Sample

For a univariate random variable, suppose a random sample of size n, x = (X1, X2, ..., Xn)′

is observed, x = (x1, x2, ..., xn)′ from which we compute a statistic (an estimate) of in-

terest θ̂(x) traditionally.

Definition. (Bootstrap Sample)

A bootstrap sample x∗ = (x∗1, x
∗
2, ..., x

∗
m) is obtained by randomly sampling m times,

with replacement, from the original observed data point x1, x2, ..., xn. (The bootstrap

sample size, m, may be larger or smaller than n.) For instance, with n = 7,m = 8
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we might obtain x∗ = (x5, x7, x5, x4, x1, x2, x1, x3). The bootstrap algorithm begins

by generating a large number (i.e. B times) of independent bootstrap samples x∗(1),

x∗(2),...,x
∗
(B). �

After a total of B times, the desired sampling characteristic the statistic θ̂(x) can

be computed from the sampling distribution of θ̂(xb), (w.r.t. all possible bootstrap

samples θ̂(x∗(1)),θ̂(x
∗
(2)),...,θ̂(x

∗
(B)). Bickel and Freedman (1981) and Singh (1981) pro-

vided large sample answers for most of the commonly used statistics. In limit, as (

n → ∞ ), the sampling distribution of θ̂(x∗) is also bell shaped with θ̂(x) . Thus,

bootstrap distribution (after suitable standardization) of (θ̂(x∗)− θ̂(x)) approximates

(fairly well) the sampling distribution of (θ̂(x)− θ).

5.2.2 Method of Bootstrapping

(a). Independent Data:

One can resample an observation from the discrete uniform distribution [1, 2, ..., n]

by multiplying n by a draw from the continuous U [0, 1]. distribution.

(b). Dependent Data: Block bootstrap methods.

It divides the quantities that are being resampled, [x1, x2, x3, x4︸ ︷︷ ︸
1st block

, x5, x6, x7, x8︸ ︷︷ ︸
2nd block

, · · · , xn]

into blocks of b consecutive observations.8 We then resample the blocks. Blocks

may be either overlapping or nonoverlapping; overlapping seems to be better.

5.2.3 Primary Applications of Bootstrap

(a). Approximating standard error of a sample estimate.

If θ̂(x) is consistent, then one might approximate the variance of the estimator

θ̂(x) by using

Est V ar
(
θ̂(x)

)
=

1

B

B∑
b=1

(
θ̂(x∗(b))− θ̂(x)

)2

. (5-5)

8This is an example of nonoverlapping blocks.
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(b). Bootstrap percentile method.

Suppose one settles for 1, 000 bootstrap replications of θ̂(x∗), denoted by θ̂(x∗(1)),

θ̂(x∗(2)),..., θ̂(x
∗
(1000)). After ranking from bottom to top, let us denote these boot-

strap values as θ̂(x∗(1)), θ̂(x
∗
(2)),..., θ̂(x

∗
(1000)). Then the bootstrap percentile confi-

dence interval for
(
θ̂(x)

)
at 95% level of confidence would be

[
θ̂(x∗(25)), θ̂(x

∗
(975))

]
.

Turning to the theoretical aspects of this method, it should be pointed out that

the method requires the symmetry of the sampling distribution of θ̂(x) around θ.

(c). Bootstrap-t Methods.

Suppose we form a standard t-statistics to test the null hypothesis H0 : θ = theta0

from tθ̂ = θ̂(x)−θ
SE

, where SE is a sample estimate of the standard error of θ̂(x). The

distribution of tθ̂ depends on the probability model and sample assumptions on x.

This distribution may sometimes hard to derive. However, we can approximate

the distribution of tθ̂ by bootstrap. The bootstrap counterpart of such a function

t is tθ̂b ,

tθ̂b =
θ̂(x∗(b))− θ̂(x)

SEb
,

where SEb is exactly like SE but computed on a bootstrap sample as the square

root of eq. (5-5). Denote the 100s − th bootstrap percentile of tθ̂b by tθ̂b,s and

consider the statement: tθ̂ lies within (tθ̂b,0.025 , tθ̂b,0.975). After the substitution

tθ̂ = θ̂(x)−θ
SE

, the above statement translates to θ lies within(
θ̂ − SE · tθ̂b,0.975 , θ̂ − SE · tθ̂b,0.025

)
.

This range for θ is called bootstrap-t based confidence interval for θ at coverage

level 95%.

Marshall-Adams Hall, MSU. (Economics Department).

End of this Chapter
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