
Ch. 26 Autoregressive Conditional
Heteroscedasticity (ARCH)

1 Introduction

Traditional econometric models assume a constant one-period forecast variance.

To generalize this implausible assumption, a new stochastic processes called

autoregressive conditional heteroscedasticity (ARCH) are introduced by Engle

(1982). These are mean zero, serially uncorrelated processes with nonconstant

variances conditional on the past, but constant unconditional variances. For such

processes, the recent past gives information about the one-period forecast vari-

ance.

If a random variable ut is drawn from the conditional density function f(ut|ut−1),
the forecast of today’s value based upon the past information, under standard

assumptions, is simply E(ut|ut−1), which depends upon the value of the con-

ditioning variable ut−1. The variance of this one-period forecast is given by

V ar(ut|ut−1) = E{(ut − E[ut|ut−1])2|ut−1}. Such an expression recognizes that

the conditional forecast variance depends upon past information and may there-

fore be a random variable. For conventional econometric models, however, the

conditional variance does not depend upon ut−1. Engle (1982) propose a class of

models where the variance does depend upon the past and argue for their useful-

ness in economics.

Consider initially the first-order autoregression

ut = θut−1 + εt,

where εt is white noise with V ar(εt) = σ2.

The conditional mean of ut (= Ê(ut|ut−1)) is θut−1 while the unconditional

mean (= E(ut)) is zero. Clearly, the vast improvement in forecasts due to time-

series models stems from the use of the conditional mean. The conditional vari-

ance of ut (=E{(ut − E[ut|ut−1])2|ut−1} = E(ε2t )) is σ2 while the unconditional

variance is σ2/(1 − θ2). For real process one might expect better forecast inter-

vals if additional information from the past were allowed to affect the forecast

variance; a more general class of models seems desirable.
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The standard approach of heteroscedasticity is to introduce an exogenous

variable Xt which predicts the variance. With a known zero mean, the model

might be

ut = εtXt−1,

where again V ar(εt) = σ2. The variance of ut is simply σ2X2
t−1 and, therefore,

the forecast interval depends upon the evolution of an exogenous variable. This

standard solution to the problem seems unsatisfactory, as it requires a specifi-

cation of the causes of the changing variance, rather than recognizing that both

conditional means and variances may jointly evolve over time. Perhaps because

of this difficulty, heteroscedasticity corrections are rarely considered in time-series

data.

Figure (26-1). An Example of Volatility Clustering.
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2 ARCH(m) Model

A model which allows the conditional variance to depend on the past realization

of the series is considered in the following. Suppose that

ut =
√
htεt (1)

ht = α0 + α1u
2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m, (2)

with E(εt) = 0 and V ar(εt) = 1, then this is a example of what will be called an

autoregressive conditional heteroscedasticity (ARCH(m)) model.

2.1 Population’s Properties of ARCH Models

2.1.1 The Conditional Mean and Variance

Let Ft−1 denote the information set available at time t−1. The conditional mean

of ut is

E(ut|Ft−1) =
√
ht · E(εt|Ft−1) = 0. (3)

From (3) it implies that the conditional variance of ut is

σ2
t = V ar(ut|Ft−1)

= E{[ut − E(ut|Ft−1)]2|Ft−1}

= E(u2t |Ft−1) (since E(ut|Ft−1) = 0)

= E(htε
2
t |Ft−1)

= E(ε2t )E(α0 + α1u
2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m|Ft−1)

= α0 + α1u
2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m

= ht.

From the structure of the model, it is seen that large past squared shocked

shocks u2t−i, i = 1, ..,m imply a large conditional variance σ2
t (= V ar(ut|Ft−1)) for

this variable ut. Consequently, ut tends to assume a large value. This means

that, under the ARCH framework, large shocks tend to be followed by another

large chock. This feature is similar to the volatility clustering observed in asset

returns.
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2.1.2 The Conditional Density

By assuming that εt is a Gaussian variate, the condition density of ut given all

the information update to t− 1 is

f(ut|Ft−1) =
√
htf(εt|Ft−1) =

√
ht ·N(0, 1) ∼ N(0, ht).

2.1.3 The Unconditional Mean and Variance

The unconditional mean of ut is E[E(ut|Ft−1)] = E(0) = 0. While ut is condi-

tional heteroscedastic, the unconditional variance of ut is

V ar(ut) = V ar[E(ut|Ft−1)] + E[V ar(ut|Ft−1)]

= 0 + α0 + α1E(u2t−1) + α2E(u2t−2) + · · ·+ αmE(u2t−m)

= α0 + α1V ar(ut−1) + α2V ar(ut−2) + · · ·+ αmV ar(ut−m),

Here, we have used the fact that E(ut|Ft−1) = 0. If the process generating u2t is

covariance stationary, i.e. all the roots of

1− α1z − α2z
2 − ...− αmzm = 0

lie outside the unit circle, then the unconditional variance is not changing over

time so

V ar(ut) = V ar(ut−1) = V ar(ut−2) = · · ·V ar(ut−m) =
α0

1− α1 − · · · − αm
.

For this ratio to be finite and positive, we require that α0 > 0 and α1 +α2 + · · ·+
αm < 1. Moreover, since E(ut|Ft−1) = 0, so E(utut−j) = 0, that is, ut is a white

noise process.

2.1.4 Coefficients Constraint in an Conditional Gaussian ARCH(1)
model

For an ARCH(1) model:

ut =
√
htεt (4)

ht = α0 + α1u
2
t−1, (5)
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with εt ∼ N(0, 1). Because the variance of ut must be positive, we need 0 ≤ α1 <

1. In some applications, we need higher order moments of ut to exist and, hence,

α1 must also satisfy some additional constrains. For instance, to study its tail

behavior, we require that the fourth moment of ut is finite. Under the normality

assumption of εt, we have1

E(u4t |Ft−1) = 3[E(u2t |Ft−1)]2 = 3(α0 + α1u
2
t−1)

2.

Therefore,

E(u4t ) = E[E(u4t |Ft−1)] = 3E(α0 + α1u
2
t−1)

2 = 3E(α2
0 + 2α0α1u

2
t−1 + α2

1u
4
t−1).

If ut is fourth-order stationary with m4 = E(u4t ), then we have

m4 = 3(α2
0 + 2α0α1V ar(ut) + α2

1m4)

= 3α2
0

(
1 + 2

α1

1− α1

)
+ 3α2

1m4.

Consequently,

m4 =
3α2

0(1 + α1)

(1− α1)(1− 3α2
1)
.

This result has two important implications:

(a). since the fourth moment of ut is positive, we see that α1 must also satisfy

the condition 1− 3α2
1 > 0; that is 0 ≤ α2

1 < 1/3;

(b). the unconditional kurtosis of ut is

E(u4t )

[V ar(ut)]2
=

3α2
0(1 + α1)

(1− α1)(1− 3α2
1)
× (1− α1)

2

α2
0

= 3
1− α2

1

1− 3α2
1

> 3.

Thus, the excess kurtosis of ut is positive and the tail distribution of ut is heavier2

than that of a normal distribution. In other words, the shock ut of a conditional

1The skewness, S(X) and kurtosis, K(X) of a random variable X are defined as

S(X) =
E(X − µX)3

σ3
X

, K(X) =
E(X − µX)4

σ4
X

,

where σ2
X = E(X−µX)2. The quantity K(X)−3 is called the excess kurtosis because K(X) = 3

for a normal distribution. Here, f(ut|Ft−1) ∼ N(0, ht), so the conditional density of f(ut|Ft−1)

is normal. Therefore
E(u4

t |Ft−1)

[E(u2
t |Ft−1)]2

= 3.
2So the unconditional distribution f(ut) is not normal.
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Gaussian ARCH(1) model is more likely than a Gaussian white noise series to

produce ”outliers.” This is in agreement with the empirical finding that ”outliers”

appear more often in asset returns than that implied by an iid sequence of normal

random variates.

2.1.5 An Alternative Representation

It is often convenient to use an alternative representation for an ARCH(m) pro-

cess that imposes slightly weaker assumptions about the serial dependence of ut.

One approach is to describe the square of ut as itself following an AR(m) process:

u2t = α0 + α1u
2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m + wt, (6)

where wt is a new white noise process:

E(wt) = 0

E(wtwτ ) =

{
λ2 for t = τ
0 otherwise.

Expression (6) implies that

E(u2t |Ft−1) = α0 + α1u
2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m. (7)

Since ut is random and u2t cannot be negative, this can be a sensible representation

only if (7) is positive and (6) is nonnegative for all realization of ut. This can

be ensured if wt is bounded from below by −α0 with α0 > 0 and if αi ≥ 0 for

j = 1, 2, ...,m. In order for u2t to be covariance-stationary, we further require that

the roots of

1− α1z − α2z
2 − · · · − αmzm = 0

lie outside the unit circle. If the αi are all nonnegative, this is equivalent to the

requirement that

α1 + α2 + · · ·+ αm < 1.

When these conditions are satisfied, the unconditional variance of ut is given by

σ2 = E(u2t ) =
α0

(1− α1 − α2 − · · · − αm)
.
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2.1.6 The Intuition Behind ARCH Model

Elementary statistics tell us that E(Y |X) and V ar(Y |X) should be a function

X. But for the ”classical” white noise process εt, we have the problematic results

that

E(εt|Ωt−1) = 0

V ar(εt|Ωt−1) = σ2
ε ,

that both are all not function of Ωt−1. Consider the classical linear model (For

example AR) by adding a lagged variable to εt, i.e. φYt−1 + εt = Yt then3

E(Yt|Ωt−1) = E(φYt−1 + εt|Ωt−1) = φYt−1 (a function of Ωt−1)

V ar(Yt|Ωt−1) = E(φYt−1 + εt − φYt−1|Ωt−1)
2 = σ2

ε . (still not a function of Ωt−1)

To conquer this problem, we can include the lag variable to the white noise

nonlinearly by the following two methods.4 The first one is the nonlinear time

series model. For example φYt−1 + Yt−1εt = Yt, then

E(Yt|Ωt−1) = E(φYt−1 + Yt−1εt|Ωt−1) = φYt−1 + Yt−1E(εt|Ωt−1) = φYt−1

V ar(Yt|Ωt−1) = E(φYt−1 + Yt−1εt − φYt−1|Ωt−1)
2 = Y 2

t−1σ
2
ε ,

both are function of Ωt−1 at the cost of nonlinearity of the time series model Yt.

The second one is the ARCH model that define a new white noise that5

ut =
√
htεt, ht = α0 + α1u

2
t−1,

3This results can be expected since E(X + a) = νx but V ar(x+ a) = σ2
x.

4This results can be expected since E(aX) = aνx and V ar(ax) = a2σ2
x.

5Check ut is white noise: E(ut) = E[E(ut|Ωt−1)] = E(0) = 0 and

V ar(ut) = V ar[E(ut|Ωt−1)] + E[V ar(ut|Ωt−1)]

= α0 + α1V ar(ut−1).

If the process generating u2t is covariance stationary, i.e. all the roots of 1 − α1z = 0 lie
outside the unit circle, then the unconditional variance is not changing over time so V ar(ut) =
V ar(ut−1) = α0

1−α1
. Moreover, since E(ut|Ωt−1) = 0, so E(utut−j) = 0, that is, ut is a white

noise process.
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such that

E(ut|Ωt−1) =
√
ht · E(εt|Ωt−1) = 0, (not a function of Ωt−1)

V ar(ut|Ωt−1) = E{[ut − E(ut|Ft−1)]2|Ft−1}

= α0 + α1u
2
t−1

= ht. (a function of Ωt−1)

The conditional mean is not a function of the past can be easily be remedy by

adding a lag variable to the new white noise ut linearly. For example φYt−1+ut =

Yt, then

E(Yt|Ωt−1) = E(φYt−1 + ut|Ωt−1) = φYt−1,

V ar(Yt|Ωt−1) = E(φYt−1 + ut − φYt−1|Ωt−1)
2 = α0 + α1u

2
t−1.

Both are function of Ωt−1.

 
 

Linearity  Nonlinearity 

Non‐Linear Process 
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Traditional White Noise 
Linear Process   
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Figure 1: Summary of Intuition Behind ARCH Model
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2.2 Properties of AR model with ARCH(m) Disturbance

An AR(p) process for an observed variable Yt, takes the form

Yt = c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + ut, (8)

where c, φ1, φ2,..., and φp are constants and ut is an ARCH-free white-noise

process with variance σ2.

The process is covariance-stationary provided that the roots of

(1− φ1L− φ2L
2 − ...− φpLp) = 0

lies outside the unit circle. The optimal linear forecast of the level of Yt for an

AR(p) process is

E(Yt|Yt−1, Yt−2, ...) = Ê(Yt|Yt−1, Yt−2, ...)

= c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p, (9)

where Ê(Yt|Yt−1, Yt−2, ...) denotes the linear projection of Yt on a constant and

(Yt−1, Yt−2, ...). While the unconditional mean of Yt is constant:

E(Yt) = c/(1− φ1 − φ2 − · · · − φp),

the conditional mean of Yt changes over time according to (9), provided that

the process is covariance-stationary. However, both the unconditional and the

conditional variance of Yt is constant under this model:6

V ar(Yt) = γ0 = φ1γ1 + φ2γ2 + +...+ φpγp + σ2,

and

V ar(Yt|Yt−1, Yt−2, ...) = E{[Yt − Ê(Yt|Yt−1, Yt−2, ...)]2|Yt−1, Yt−2, ...} = σ2.

If we assume that the white noise process ut in (8) now is a ARCH(m)

process as that in (1) and (2), then the conditional, unconditional mean, and the

unconditional variance of Yt are the same, they are constant over time. However

the conditional variance of Yt now would be

V ar(Yt|Yt−1, Yt−2, ...) = E{[Yt − Ê(Yt|Yt−1, Yt−2, ...)]2|Yt−1, Yt−2, ...}

= E(u2t |Yt−1, Yt−2, ...)

= α0 + α1u
2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m,

which change over time.

6For example, p = 2, γ0 = (1−φ2)σ
2

(1+φ2)[(1−φ2)2−φ2
1]

.
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2.3 Estimation

2.3.1 Pure ARCH(m) Model

Under the normality assumption, the likelihood function of an ARCH(m) model,

given a sample of size T is

f(uT , uT−1, ..., u1) = f(uT |ΩT−1)f(uT−1|ΩT−2) · · · f(um+1|Ωm)f(um, um−1, ..., u1)

=
T∏

t=m+1

1√
2πσ2

t

exp

(
−(ut − 0)2

2σ2
t

)
× f(um, um−1, ..., u1),

where Ωt the vector of observations obtained through date t:

Ωt = (ut, ut−1, ..., u1),

and we have used the fact the conditional mean and variance of ut, i.e. E(ut|Ωt−1) =

0 and V ar(ut|Ωt−1) = σ2
t . Since the exact form of f(um, um−1, ..., u1) is compli-

cated, it is commonly dropped from the likelihood function, especially when the

sample size is sufficiently large. This results in using the conditional likelihood

function

f(uT , uT−1, ..., um+1|um, um−1, ..., u1) =
T∏

t=m+1

1√
2πσ2

t

exp

(
− u2t

2σ2
t

)
, (10)

where σ2
t = α0 + α1u

2
t−1 + α2u

2
t−2 + · · · + αmu

2
t−m can be evaluated recursively.

We refer to estimates obtained by maximizing the likelihood function as the con-

ditional maximum likelihood estimates under normality.

Maximizing the conditional likelihood function is equivalent to maximizing its

logarithm, which is easier to handle. The conditional log likelihood function is

l(uT , uT−1, ..., um+1|um, um−1, ..., u1)

= ln f(uT , uT−1, ..., um+1|um, um−1, ..., u1)

=
T∑

t=m+1

[
−1

2
ln(2π)− 1

2
ln(σ2

t )−
1

2

u2t
σ2
t

]
. (11)

In some applications, it is more appropriate to assume that εt follows a ”heavy-

tailed” distribution such as a standardized Student-t distribution. Let xv be a
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Student-t distribution with v degree of freedom. Then V ar(xv) = v/(v − 2) for

v > 2, and we use εt = xv/
√

(v/v − 2). The probability density of εt is

f(εt; v) =
Γ((v + 1)/2)

Γ(v/2)
√

(v − 2)π

(
1 +

ε2t
v − 2

)−(v+1)/2

, v > 2.

Using ut = σtεt, we obtain the conditional likelihood function of uts as

f(uT , uT−1, ..., um+1|um, um−1, ..., u1)

=
T∏

t=m+1

Γ((v + 1)/2)

Γ(v/2)
√

(v − 2)π

1

σt

(
1 +

u2t
(v − 2)σ2

t

)−(v+1)/2

, v > 2. (12)

We refer to the estimate that maximize the prior likelihood function as the con-

ditional MLE under t-distribution. The degrees of freedom of the t-distribution

can be specified a prior or estimated jointly with other parameters. A value be-

tween 3 and 6 is often used if it is prespecified.

2.3.2 Linear Regression With ARCH(m) Disturbance

Suppose that we are interested in estimating the parameter of a regression model

with ARCH disturbance. Let the regression equation be

Yt = x′tβ + ut.

Here xt denote a vector of predetermined explanatory variables, which could

include lagged value of Y . The disturbance term ut is assumed to satisfy (1)

and (2). If εt
i.i.d.∼ N(0, 1), then from (11) the sample conditional log likelihood

function is then

l(θ) = −T −m
2

ln(2π)− 1

2

T∑
t=m+1

ln(σ2
t )−

1

2

T∑
t=m+1

(Yt − x′tβ)2

σ2
t

, (13)

where

σ2
t = α0 + α1u

2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m

= α0 + α1(Yt−1 − x′t−1β)2 + α2(Yt−2 − x′t−2β)2 + · · ·+ αm(Yt−m − x′t−mβ)2

(14)

and the vector of parameters to be estimated θ′ = (β, α0, α1, α2, · · · , αm)′. For

a given numerical value for the parameter vector θ, the sequence of conditional
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variances can be calculated from (14) and used to evaluate the log likelihood func-

tion (13). This can then be maximized numerically using the methods described

in Chapter 3.7

The preceding formulation of the likelihood function assumed that εt has a

Gaussian distribution. However, the unconditional distribution of many financial

time series seems to have flatter tails than allowed by the Gaussian family. Some

of this can be explained by the presence of ARCH; that is, even if εt in (1) has a

Gaussian distribution, the unconditional distribution of ut is non-Gaussian with

heavier tails than a Gaussian distribution.

The same basic approach can be used with non-Gaussian distribution. For

example, Bollerselv (1987) proposed that εt might be drawn from a t distribution

with v degree of freedom, where v is regarded as a parameter to be estimated

by maximum likelihood. The sample log likelihood conditional on the first m

observations from (13) then become

T∑
m+1

ln f(Yt|xt,Ωt−1;θ)

= (T −m) ln

{
Γ[(v + 1)/2]

π1/2Γ(v/2)
(v − 2)−1/2

}
− (1/2)

T∑
t=m+1

ln(σ2
t )

−[(v + 1)/2]
T∑

t=m+1

ln

[
1 +

(Yt − x′tβ)2

σ2
t (v − 2)

]
,

where

σ2
t = α0 + α1u

2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m

= α0 + α1(Yt−1 − x′t−1β)2 + α2(Yt−2 − x′t−2β)2 + · · ·+ αm(Yt−m − x′t−mβ)2

and the vector of parameters to be estimated θ′ = (v,β, α0, α1, α2, · · · , αm)′.

7Imposing the stationarity condition (
∑m
j=1 αj < 1) and the nonnegativity conditions (αj ≥

0,∀j) can be difficult in practice. Typically, either the value of m is very small or else some ad
hoc structure is imposed on the sequence {αj}mj=1 as in Engle (1982, eq. (38)).
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2.4 Testing for ARCH(m) Disturbance in a Linear Regres-
sion Model

2.4.1 Engle’s LM type χ2-Test

In the linear regression model, OLS is the appropriate procedure if the distur-

bance are not conditional heteroscedastic. Because the ARCH model requires

iterative procedure, it may be desirable to test whether it is appropriate before

going to the effort to estimate it. The Lagrange multiplier test procedure is ideal

for this as in many cases. See for example, Breusch and Pagan (1979, 1980),

Godfrey (1978) and Engle (1979).

Consider the following linear regression model

Yt = x′tβ + ut,

ut =
√
htεt,

ht = α0 + α1u
2
t−1 + α2u

2
t−2 + · · ·+ αmu

2
t−m = α′ut, .

where α = [α0, ..., αm]′ and ut = [1, ut−1, ..., ut−m]′. Under the null hypothesis,

α1 = ... = αm = 0. The test is based upon the score under the null and the

information matrix under the null. The likelihood function, omitting the revelent

constants, can be written as

l(θ) = −1

2

T∑
t=m+1

ln(ht)−
1

2

T∑
t=m+1

u2t
ht
. (15)

The first derivative of (15) is

∂l

∂α
=

T∑
t=m+1

(
1

2ht

∂ht
∂α

[
u2t
ht
− 1

])
.

Under the null hypothesis that α1 = ...αm = 0, then the estimation of β is simply

the OLS estimator β̂. And therefore

ht = α0,
∂ht
∂α

= [1, e2t−1, ..., e
2
t−m]′ = z′t,

where et = Yt − x′tβ̂. So under the null hypothesis(
∂l

∂α

)
H0

=
T∑

t=m+1

(
1

2α0

z′t

[
e2t
α0

− 1

])
=

1

2α0

Z′g,
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where Z′ = [z′m+1 z′m+2 ... z
′
T ], g =

[
(
e2m+1

α0
− 1) (

e2m+2

α0
− 1) ... (

e2T
α0
− 1)

]′
.

The second derivative of (15) is

∂2l

∂α∂α′
=

T∑
t=m+1

(
− 1

2h2t

∂ht
∂α

∂ht
∂α′

[
u2t
ht

]
+

[
u2t
ht
− 1

]
∂

∂α′

[
1

2ht

∂ht
∂α

])
.

The condition expectation E(ut|Ft−1) = ht, therefore the conditional expectation

of the second term of () is zero and of the last factor in the first, is just one. Hence

the information matrix which is simple the negative expectation of the Hessian

matrix over all observation, become

I =
T∑

t=m+1

E

[
− 1

2h2t

∂ht
∂α

∂ht
∂α′

]
which is consistently estimated under H0 by

Î0 =
T∑

t=m+1

[
− 1

2h2t

∂ht
∂α

∂ht
∂α′

]
H0

=
T∑

t=m+1

(
− 1

2α2
0

z′tzt

)
=

1

2α2
0

Z′Z.

The LM test statistic can be consistently estimated by

LM∗ =

(
1

2α0

Z′g

)′(
1

2α2
0

Z′Z

)−1(
1

2α0

Z′g

)
=

1

2
g′Z(Z′Z)−1Z′g

which under the null hypothesis is asymptotically distributed as a χ2
m distribution.
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A simplicities is to note that

plim
g′g

T
= plim

1

T


[(

e2m+1

α0

− 1

) (
e2m+2

α0

− 1

)
...

(
e2T
α0

− 1

)]′


(
e2m+1

α0
− 1)

(
e2m+2

α0
− 1)

.

.

.

(
e2T
α0
− 1)




= plim

∑T e4t/T

α2
0

− 2
∑T e2t/T

α0

+
T

T
(Under normality)

= 3− 2 + 1

= 2.

Thus, an asymptotically equivalent statistic would be

LM = T · (g′Z(Z′Z)−1Z′g)

g′g
= TR2

where R2 is the squared multiple correlation between g and Z. Since adding a

constant and multiplying by a scalar will not change the R2 of a regression, this

is also the R2 of the regression of e2t on an intercept and m lagged values of e2t .

The statistic will be asymptotically distributed as χ2 with m degree of freedom

when the null hypothesis is true. The test procedure is to run the OLS regression

and save the residuals. Regress the squared residuals on a constant and m lags

and test TR2 as χ2
m

2.4.2 Tsay’s LR type F -Test

It is simple to test whether the residuals ut from a regression model exhibit time-

varying heteroskedasticity without having to estimate the ARCH parameters.

Engle (1982) derived the following Lagrange multiplier principle. This test is

equivalent to the usual F statistic for testing αi = 0, i = 1, ...,m in the linear

regression

û2t = α0 + α1û
2
t−1 + α2û

2
t−2 + · · ·+ αmû

2
t−m + et, t = m+ 1, ..., T, (16)

where et denote the error term, m is a prespecified positive integer, and T is the

sample size. Let SSE0 =
∑T

t=m+1(û
2
t − û2)2,8 where û2 is the sample mean of

8Sums of squared error under null hypothesis.
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û2, and SSE1 =
∑T

t=m+1 ê
2
t , where êt is the least squares residual of the linear

regression (16). Then we have

F =
(SSE0 − SSE1)/m

SSE1/(T −m− 1)
,

which is asymptotically distributed as a χ2 distribution with m degree of freedom

under the null hypothesis.

2.5 Forecasting from an ARCH Model
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3 The GARCH Model

Although the ARCH model is simple, it often requires many parameters to ade-

quately describe the volatility process such as of an asset returns. Some alterna-

tive model must be sought. Bollerslev (1986) proposes a useful extension known

as the generalized ARCH (GARCH) model.

The white noise process ut follows a GARCH(s,m) if

ut =
√
htεt, ht = α0 +

s∑
j=1

βjht−j +
m∑
i=1

αiu
2
t−i (17)

where again εt is a sequence of iid random variables with mean 0 and variance

1.0, α0 > 0, αi ≥ 0, βj ≥ 0, and
∑max(m,s)

i=1 (αi + βi) < 1.

3.1 Population’s Properties of GARCH Models

3.1.1 GARCH Can be Regarded as an ARMA Idea to u2t

To understand properties ofGARCH models, it is informative to use the following

representation. Let ηt = u2t − ht, so that ht = u2t − ηt. By plugging ht−i =

u2t−i − ηt−i(i = 0, ..., s) into (), we can rewrite the GARCH models as

u2t = α0 +

max(m,s)∑
i=1

(αi + βi)u
2
t−i + ηt −

s∑
j=1

βjηt−j. (18)

Here, it is understood that αi = 0 for i > m and βj = 0 for j > s. Notice that

ht is the forecast of u2t based on its own lagged value and thus ηt = u2t − ht is

the error associated with this forecast. Thus, ηt is a white noise process that is

fundamental for u2t . (18) is recognized as an ARMA form for the squared series

u2t .

3.1.2 The Conditional Mean and Variance

Let Ft−1 denote the information set available at time t−1. The conditional mean

of ut is

E(ut|Ft−1) =
√
ht · E(εt|Ft−1) = 0. (19)
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From (17) it implies that the conditional variance of ut is

σ2
t = V ar(ut|Ft−1)

= E{[ut − E(ut|Ft−1)]2|Ft−1}

= E(u2t |Ft−1) (since E(ut|Ft−1) = 0)

= E(htε
2
t |Ft−1)

= E(ε2t )E(α0 +
m∑
i=1

αiu
2
t−i +

s∑
j=1

βjht−j|Ft−1)

= α0 +
m∑
i=1

αiu
2
t−i +

s∑
j=1

βjht−j

= ht.

3.1.3 The Conditional Density

By assuming that εt is a Gaussian variate, the condition density of ut given all

the information update to t− 1 is

f(ut|Ft−1) =
√
htf(εt|Ft−1) =

√
ht ·N(0, 1) ∼ N(0, ht).

3.1.4 The Unconditional Mean and Variance

The unconditional mean of ut is E[E(ut|Ft−1)] = E(0) = 0. While ut is condi-

tional heteroscedastic, from (18) the unconditional variance of ut is

E(u2t ) = E

α0 +

max(m,s)∑
i=1

(αi + βi)u
2
t−i + ηt −

s∑
j=1

βjηt−j


= α0 +

max(m,s)∑
i=1

(αi + βi)E(u2t−i).

The unconditional variance of ut thus is

σ2 = E(u2t ) =
α0

1−
∑max(m,s)

i=1 (αi + βi)

provided that the denominator of the fraction is positive.
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3.1.5 Coefficients Constraint in an Conditional Gaussian GARCH(1, 1)
model

The strengths and weakness of GARCH model can easily be seen by focusing on

the simplest GARCH(1, 1) model with

ut =
√
htεt

ht = α0 + α1u
2
t−1 + β1ht−1, 0 ≤ α1, β1 ≤ 1, (α1 + β1) < 1.

with εt ∼ N(0, 1). First, a large u2t−1 or ht−1 gives rise to a large σ2
t . This means

that a large u2t−1 tends to be followed by another large u2t , generating, again, the

well-known behavior of volatility clustering in financial time series. Second, it

can be shown that if 1− 2α2
1 − (α1 + β1)

2 > 0, then

E(u4t )

[E(u2t )]
2

=
3[1− (α1 + β1)

2]

1− (α1 + β1)2 − 2α2
1

> 3. (20)

Consequently, similar to ARCH models, the tail distribution of a GARCH(1, 1)

process is heavier than that of a normal distribution. Third, the model provides

a simple parametric function that can be used to describe the volatility evolution.

To see the result of (20), by definition

E(u2t |Ft−1) = α0 + α1u
2
t−1 + β1ht−1 = ht,

and therefore

E(u4t |Ft−1) = 3[E(u2t |Ft−1)] = 3(α0 + α1u
2
t−1 + β1ht−1)

2

Hence

E(u4t ) = 3E[α2
0 + α2

1u
4
t−1 + β2

1h
2
t−1 + 2(α0α1u

2
t−1) + 2(α0β1ht−1) + 2(α1β1u

2
t−1ht−1)].(21)

Denote E(u4t ) = m4. Notice that

E(ht) = E[E(u2t |Ft−1)] = E(u2t ) = σ2,

E(h2t ) = E[E(u2t |Ft−1)2] = σ4 =
m4

3
,

E(u2t−1ht−1) = E[E(u2t−1ht−1|Ft−1)] = E[u2t−1E(ht−1|Ft−1)]

= E{u2t−1[E(u2t−1|Ft−2)|Ft−1]}

= E{u2t−1[E(u2t−1|Ft−2]}

= σ4 =
m4

3
.
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(21) become

E(u4t ) = 3α2
0 + 3α2

1m4 + β2
1m4 + 6α0α1σ

2 + 6α0β1σ
2 + 2α1β1m4.

Consequently,

(1− 3α2
1 − β2

1 − 2α1β1)m4 = 3α2
0 + 6α0α1σ

2 + 6α0β1σ
2

= 3α2
0 + +

6α0α1 · α0

(1− α1 − β1)
+

6α0β1 · α0

(1− α1 − β1)

=
3α2

0(1− α1 − β1) + 6α2
0α1 + 6α2

0β1
(1− α1 − β1)

=
3α2

0(1 + α1 + β1)

(1− α1 − β1)
,

that is,

m4 =
3α2

0(1 + α1 + β1)

(1− α1 − β1)(1− 3α2
1 − β2

1 − 2α1β1)
.

The unconditional kurtosis of ut is

m4

(σ2)2
=

3α2
0(1 + α1 + β1)

(1− α1 − β1)(1− 3α2
1 − β2

1 − 2α1β1)
× (1− α1 − β1)2

α2
0

=
3[1− (α1 + β1)

2]

1− (α1 + β1)2 − 2α2
1

> 3.

3.2 Testing for GARCH

3.3 Estimation

3.4 Forecasting from an GARCH Model
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4 The integrated GARCH Model

If the AR polynomial of the GARCH representation in Eq. (18) has a unit root,

then we have (ut) an IGARCH model. Thus, IGARCH models are unit-root

GARCH models. Similar to ARIMA models, a key feature of IGARCH models

is that the impact of past squared shock ηt−i = u2t−i − σ2
t−1 for i > 0 on u2t is

persistent. For example, an IGARCH(1, 1) model can be written as

ut =
√
htεt, ht = α0 + β1ht−1 + (1− β1)u2t−1, (22)

where εt is defined as before and 1 > β1 > 0

If ut follows an IGARCH model, then the unconditional variance of ut is

infinite, so neither ut nor u2t satisfies the definition of a covariance-stationary

process.
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5 The Exponential GARCH Model

To overcome some weaknesses of the GARCH model in handling financial time

series, Nelson 91991) propose the exponential GARCH (EGARCH) model. In

particular, to allow for asymmetric effect between positive and negative innova-

tion, he consider the weighted innovation

g(εt) = θεt + γ[|εt| − E(|εt|)],

where θ and γ are real constant. Both εt and |εt| − E(|εt|) are zero-mean iid

sequence with continuous distributions. Therefore, E[g(εt)] = 0. The asymmetry

of g(εt) can be seen by rewriting it as

g(εt) =

{
(θ + γ)εt − γE(|εt|) if εt ≥ 0,
(θ − γ)εt − γE(|εt|) if εt < 0.

For the standard Gaussian random variable εt, E(|εt|) =
√

2/π. For the

standardized student-t distribution, we have

E(|εt)| =
2
√
v − 2Γ((v + 1)/2)

(v − 1)Γ(v/2)
√
π

.

An EGARCH(m, s)model can be written as

ut =
√
htεt, ln(ht) = α0 +

1 + β1L+ ...+ βsL
s

1− α1L− ...− αmLm
g(εt−1),

where α0 is a constant and all roots of 1 +β(L) = 0 and 1−α(L) = 0 are outside

the unit circle. Based on this representation, some properties of the EGARCH

model can be obtained in a similar manner as those of the GARCH model. For

instance, the unconditional mean of lnht is α0. However, the model differs from

the GARCH model in at least two ways:

(a). It uses logged conditional variance to relax the positiveness constraint of

model coefficients,

(b). The use of g(εt) enables the model to respond asymmetrically to positive

and negative lagged values of ut.

To better understand the EGARCH model, let us consider the simple EGARCH(1, 0)

model

ut =
√
htεt, (1− αL) ln(ht) = (1− αL)α0 + g(εt−1),
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where εt are iid standard normal. In this case, E(|εt)| =
√

2/π and the model

for lnht become

(1− αL) ln(ht) =

{
α∗ + (θ + γ)εt−1 if εt−1 ≥ 0
α∗ + (θ − γ)εt−1 if εt−1 < 0,

where α∗ = (1 − α)α0 −
√

2/πγ. This is a nonlinear function similar to that

of the threshold autoregressive model (TAR) of Tong (1978,1990). It suffices to

say that for this simple EGARCH model the conditional variance evolves in a

nonlinear manner depending on the sign of ut−1. specifically, we have

ht = hαt−1 exp(α∗)


exp

[
(θ + γ) ut−1√

h2t−1

]
if ut−1 ≥ 0,

exp

[
(θ − γ) ut−1√

h2t−1

]
if ut−1 < 0.

The coefficients (θ+γ) and (θ−γ) show the asymmetry in response to positive

and negative ut−1. The model is nonlinear if γ 6= 0. For higher order EGARCH

models, the nonlinearity become much more complicated.
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6 The GARCH −M Model

Finance theory suggests that an asset with a higher perceived risk would pay a

higher return on average. For example, let rt denote the expose rate of return

on some asset minus the return on a safe alternative asset. Suppose that rt is

decomposed into a component anticipated by investors at date t− 1 (denoted µt

and a component that was unanticipated (denoted ut):

rt = µt + ut.

Then the theory suggests that the mean return µt would be related to the variance

of the return ht. In general, the ARCH-in mean or ARCHM , regression model

introduced by Engle, Lilien, and Robins (1987) is characterized by

Yt = x′tβ + δht + ut

ut =
√
htεt, ht = α0 +

m∑
i=1

αiu
2
t−i

for εt i.i.d. with zero mean and unit variance. The effect that higher perceived

variability of ut has on the level of Yt is captured by the parameter δ.
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7 Multivariate GARCH Models

The preceding ideas can also be extend to an (n×1) vector ut. Let ut be a vector

of white noise. Let Ht denote the (n× n) conditional variance-covariance matrix

of ut:

Ht = E(utu
′
t|Ft−1).

Engle and Kroner (1993) proposed the following vector generalization of aGARCH(r,m)

specification:

Ht = K + A1Ht−1A
′
1 + A2Ht−2A

′
2 + ...+ ArHt−rA

′
r

+B1ut−1u
′
t−1B

′
1 + B2ut−2u

′
t−2B

′
2 + ...+ Bmut−1u

′
t−1B

′
m.

Here K, As, and Bs for s = 1, 2, ... denote (n× n) matrices of parameters.

In practice, for reasonably sized n it is necessary to restrict the specification

for Ht further to obtain a numerically traceable formulation. One useful special

case restricts As and Bs to be diagonal matrices for s = 1, 2, .... In such a model,

the conditional covariance between uit and ujt depends only on past values of

ui,t−s · uj,t−s, and not on the products or squares of other disturbance.

7.1 Constant Conditional Correlations Specification

An popular approach introduced by Bollerslev (1990) assumes that the condi-

tional correlations among the element of ut are constant over time. Let h
(t)
ii

denote the row i, column i element of Ht. Thus h
(t)
ii represent the conditional

variance of ith element of ut:

h
(t)
ii = E(u2it|Ft−1).

This conditional variance might be modeled with a univariate GARCH(1, 1) pro-

cess driven by lagged innovation in variables i:

h
(t)
ii = κi + aih

(t−1)
ii + biu

2
i,t−1.

We might postulate n such GARCH specifications (i = 1, 2, ..., n), one for each

element of ut. The conditional covariance between uit and ujt, or the row i,

column j element of Ht, is taken to be a constant correlation ρij (in stead of

0ρijt) times the conditional standard deviation of uit and ujt:

h
(t)
ij = E(uitujt|Ft−1) = ρij ·

√
h
(t)
ii

√
h
(t)
jj .

Maximum likelihood estimation of this specification turns out to be quite tractable;

see Bollerslev (1990) for details.
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