
Ch. 23 Cointegration
(May 28, 2018)

1 Introduction

An important property of I(1) variables is that there can be linear combinations of

theses variables that are I(0). If this is so then these variables are said to be cointe-

grated. Suppose that we consider two variables Yt and Xt that are I(1). (For example,

Yt = Yt−1 +ζt and Xt = Xt−1 +ηt.) Then, Yt and Xt are said to be cointegrated if there

exists a β such that Yt − βXt is I(0). What this mean is that the regression equation

Yt = βXt + ut

make sense because Yt and Xt do not drift too far apart from each other over time.

Thus, there is a long-run equilibrium relationship between them. If Yt and Xt are not

cointegrated, that is, Yt−βXt = ut is also I(1), then Yt and Xt would drift apart from

each other over time. In this case the relationship between Yt and Xt that we obtain

by regressing Yt and Xt would be spurious.

Let us continue the cointegration with the spurious regression setup in which Xt

and Yt are independent random walks, consider what happens if we take a nontrivial

linear combination of Xt and Yt:

a1Yt + a2Xt = a1Yt−1 + a2Xt−1 + a1ζt + a2ηt,

where a1 and a2 are not both zero. We can write this as

Zt = Zt−1 + vt,

where Zt = a1Yt +a2Xt and vt = a1ζt +a2ηt. Thus, Zt is again a random walk process,

as vt is i.i.d. with mean zero and finite variance, given that ζt and ηt each are i.i.d.
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with mean zero and finite variance. No matter what coefficients a1 and a2 we choose,

the resulting linear combination is again a random walk, hence an integrated or unit

root process.

Now consider what happens when Xt is a random walk as before, but Yt is instead

generated according to Yt = βXt+ut, with ut again i.i.d.. By itself, Yt is an integrated

process, because

Yt − Yt−1 = (Xt −Xt−1)β + ut − ut−1,

so that

Yt = Yt−1 + βηt + ut − ut−1
= Yt−1 + εt,

where εt = βηt + ut − ut−1 is readily verified to be I(0) process.

−
5

0
5

10
15

0 20 40 60 80 100
t

y x1

The cointegration with smaller variance of cointegrating error

−
10

0
10

20

0 20 40 60 80 100
t

y x2

The cointegration with larger variance of cointegrating error

Fig.1 Examples of Cointegrated Variables

Despite the fact that both Xt and Yt are integrated processes, the situation is very

different from that considered at last chapter. Here, there is indeed a linear combination

of Xt and Yt that are not an integrated process: putting a1 = 1 and a2 = −β we have

a1Yt + a2Xt = Yt − βXt = ut,

which is i.i.d. This is an example of a pair {Xt, Yt} of cointegrated process.

The concept of cointegration was introduced by Granger (1981). This paper and

that of Engle and Granger (1987) have had a major impact on modern econometrics.

Following Engle and Granger (1987), we have the definition of cointegration formally
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as follows.

Definition 1.
The components of the vector xt are said to be co-integrated of order d, b, denoted

xt ∼ CI(d, b), if

(a). all components of xt are I(d);

(b). there exists a vector a(6= 0) so that zt = a′xt ∼ I(d− b), b > 0. The vector a is

called the co-integrating vector. �

For ease of exposition, only the value d = 1 and b = 1 will be considered in

this chapter. For the case that d and b are fractional value, this is called fractional

cointegration. We will consider this case in Chapter 25.

Clearly, the cointegrating vector a is not unique, for if a′xt is I(0), then so is b ·a′xt
for any nonzero scalar b; if a is a cointegrating vector, then so is ba.

Furthermore, if xt has k components, then there may be more than one cointegrating

vector a. Indeed, there may be h < k linear independent (k× 1) vectors (a1, a2,..., ah)

such that A′xt is a I(0) (h× 1) vector, where A′ is the following (h× k) matrix:

A′h×k =


a′1
a′2
.
.
.

a′h

 ,

and is called the cointegrating matrix.

Again, the vector (a1, a2,..., ah) are not unique; if A′xt is a I(0), then for any

nonzero (1 × h) vector b′, the scalar b′A′xt is also I(0). Then the (k × 1) vector φ

given by φ′ = b′A′ could also be described as a cointegrating vector.1

It is seen that the paramtetrs in A are not identified. What can be determined by

the model is the space spanned by A, the cointegration space sp(A). Suppose that

there exists an (h× k) matrix A′ whose rows are linearly independent such that A′xt

is a (h× 1) I(0) vector. Suppose further that if c′ is any (1× k) vector that is linearly

independent of the rows of A′, then c′xt is a I(1) scalar. Then we say that there are

1Recalling the results that rank(AB) ≤ min(rank(A), rank(B)).
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exactly h cointegrating relations among the elements of xt and that (a1, a2,..., ah) form

a basis for the space of the cointegrating vectors.

Example.
Let Pt denote an index of the price level in the United States, P ∗t a price index for

Italy, and St the exchange rate between the currency. Then purchasing power parity

holds that

Pt = StP
∗
t ,

or, taking logarithms,

pt = st + p∗t ,

where pt ≡ logPt, st ≡ logSt, and p∗t ≡ logP ∗t . In equilibrium we need pt−st−p∗t = 0.

However, in practice, error in measuring price, transportation costs, and differences

in quality prevent purchasing power parity from holding exactly at every date t. A

weaker form of the hypothesis is that the variable zt defined by

zt = pt − st − p∗t

is I(0), even though the individual elements yt = (pt st p
∗
t )
′ are all I(1). In this case,

we have a single cointegrating vector a = (1 − 1 − 1)′. The term zt = a′yt is

interpreted as the equilibrium error; although it is not always zero, but it can not be

apart from zero too often and too far to make sense the equilibrium concept. �
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2 Granger Representation Theorem

Let each elements of the (k×1) vector, yt is I(1) with the (k×h) cointegrating matrix,

A, such that each elements of A′yt is I(0). Then Granger (1983) have the following

fundamental results when yt are cointegrated.

2.1 Implication of Cointegration For the VMA Representation

We now discuss the general implications of cointegration for the moving average rep-

resentation of a vector system. Since it is assumed the 4yt is I(0), let δ ≡ E(4yt),

and define

ut = 4yt − δ. (23-1)

Suppose that ut has the Wold representation:2

ut = εt + Ψ1εt−1 + Ψ2εt−1 + ... = Ψ(L)εt,

where E(εt) = 0 and

E(εtε
′
τ ) =

{
Ω for t = τ
0 otherwise.

Let Ψ(1) denotes the (k × k) matrix polynomial Ψ(z) evaluated at z = 1; that is,

Ψ(1) ≡ Ik + Ψ1 + Ψ2 + Ψ3 + ...,

Then the following holds.

(a). A′Ψ(1) = 0,

(b). A′δ = 0. �

To verify this claim, note that as long as {sΨs}∞s=0 is absolutely summable, the

difference equation (23-1) implies that (from multivariate B-N decomposition):

yt = y0 + δ · t+ u1 + u2 + ...+ ut

= y0 + δ · t+ Ψ(1) · (ε1 + ε2 + ...+ εt) + ηt − η0, (23-2)

2Recalling from Chapter 15 that Wold’s decomposition is important for us because it provides an
explanation of the sense in which ARMA model (stochastic difference equation) provide a general
model for the indeterministic part of any stationary stochastic process.
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where ηt is a stationary process. Premultiplying (23-2) by A′ results in

A′yt = A′(y0 − η0) + A′δ · t+ A′Ψ(1) · (ε1 + ε2 + ...+ εt) + A′ηt ∼ I(0).

(23-3)

If E(εtε
′
t) is nonsingular, then c′(ε1 + ε2 + ...+ εt) is I(1) for every nonzero (k× 1)

vector c. Moreover, if some of the series exhibit nonzero drift (δ 6= 0), the linear

combination A′yt will grow deterministically at rate A′δ. Thus if the underlying

hypothesis suggesting the possibility of cointegration is that certain linear combination

of yt are I(0), this require that both conditions that A′Ψ(1) = 0 and A′δ = 0 hold.

The second condition means that despite the presence of a drift term in the process

generating yt, there is no linear trend in the cointegrated combination.3 To the

implication of the first condition, from partitioned matrix production we have

A′Ψ(1) =



a′1(1×k)
a′2(1×k)

.

.

.
ah(1×k)

 ·Ψ(1)(k×k) =


a′1Ψ(1)
a′2Ψ(1)

.

.

.
ahΨ(1)

 =


0
0
.
.
.
0

 ,

which implies

a′iΨ(1) =
[
a1i a2i . . . aki

]


ψ(1)′1(1×k)
ψ(1)′2(1×k)

.

.

.
ψ(1)′k(1×k)

 =
k∑
s=1

asiψ(1)′s = 0(1×k)

for i = 1, 2, ..., k, (23-4)

where asi is the sth elements of the row vector a′i and ψ(1)′i is the i th row of the

matrix Ψ(1)

Equation (23-4) implies that certain linear combination of the rows (columns ?)

of Ψ(1) are zero, meaning that the row vector of Ψ(1) are linearly dependent. That

is, Ψ(1) is a singular matrix, or equivalently, the determinant of Ψ(1) are zero, i.e.

|Ψ(1)| = 0, that is |Ψ(z)| = 0 has a root z = 1.4 This in turn means that the

3See Banerjee et.al (1993) p. 151 for details.
4Recall from Theorem 4 on page 7 of Chapter 22, this condition violate the proof of spurious

regression
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matrix operator Ψ(L) is non-invertible.5 Thus, a cointegrated system can never be

represented by a finite-order vector autoregression in the differenced data 4yt from the

non-invertibility of Ψ(L) of the following equations:

4yt = δ + Ψ(L)εt.

2.2 Implication of Cointegration For the VAR Representation

Suppose that the level of yt can be represented as a non-stationary pth-order vector

autoregression:6

yt = c + Φ1yt−1 + Φ2yt−2 + ...+ Φpyt−p + εt, (23-5)

or

Φ(L)yt = c + εt. (23-6)

where

Φ(L) ≡ [Ik −Φ1L−Φ2L
2 − ...−ΦpL

p].

Suppose that 4yt has the Wold representation

(1− L)yt = δ + Ψ(L)εt. (23-7)

Premultiplying (23-7) by Φ(L) results in

(1− L)Φ(L)yt = Φ(1)δ + Φ(L)Ψ(L)εt. (23-8)

Substituting (23-6) into (23-8), we have

(1− L)εt = Φ(1)δ + Φ(L)Ψ(L)εt, (23-9)

5If the determinant of an (n × n) matrix H is not equal zero, its inverse is found by dividing the
adjoint by the determinant: H−1 = (1/|H|) · [(−1)i+j |Hji|].

6The is not the only model for I(1). See Saikkonen and Luukkonen (1997) infinite VAR and ?
VARMA model
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since (1 − L)c = 0. Now, equation (23-9) has to hold for all realizations of εt, which

require that

Φ(1)δ = 0 (a vector) (23-10)

and that (1−L)Ik and Φ(L)Ψ(L) represent the identical polynomials in L. In partic-

ular, for L = 1, equation (23-9) implies that

Φ(1)Ψ(1) = 0. (a matrix) (23-11)

Let φ′i denote ith row of Φ(1). Then (23-10) and (23-11) state that φ′iΨ(1) = 0′ (a

row of zero) and φ′iδ = 0 (a zero scalar). Recalling conditions (a) and (b)of section 2.1,

this mean that φi is a cointegrating vector. If a1, a2,..., ah form a basis for the space

of cointegrating vectors, then it must be possible to express φi as a linear combination

of a1, a2,..., ah–that is, there exist an (h× 1) vector bi such that

φi = [a1 a2 .... ah]bi = Abi = a1bi1 + ...+ ahbih (linear combination of aj, j = 1, ..., h.)

or that

φ′i = b′iA
′

for A′ the (h× k) matrix whose ith row is a′i. Applying this reasoning to each of the

rows of Φ(1), i.e.

Φ(1) =


φ′1
φ′2
.
.
.
φ′k

 =


b′1A

′

b′2A
′

.

.

.
b′kA

′

 = BA′, (23-12)

where B is an k×h matrix. However, it is seen that the matrix A and B is not identified

since for any choice of h×h matrix Υ, the matrix Φ(1) = BΥ−1ΥA′ = B∗A∗′ implies

the same distribution with Φ(1) = BA′. What can be determined is the space spanned

by A the cointegrating space which need the concept of the basis.

Note that (23-12) implies that the k × k matrix Φ(1) is a singular matrix because

rank(Φ(1)) = rank(BA′) ≤ min(rank(B), rank(A′)) = h < k.
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2.3 Vector Error Correction Representation

A final representation for a cointegrated system is obtained by recalling from equation

(22-1) of Chapter 22 that any V AR (not necessary cointegrated at this stage) in the

form of (22-5) can be equivalently be written as

4yt = ξ14yt−1 + ξ24yt−2 + ...+ ξp−1yt−p+1 + c + ξ0yt−1 + εt, (23-13)

where

ξ0 ≡ ρ− I = −(I−Φ1 −Φ2 − ...−Φp) = −Φ(1).

Note that if yt has h cointegrating relations, then substitution of (23-12) into (23-

13) results in

4yt = ξ14yt−1 + ξ24yt−2 + ...+ ξp−14yt−p+1 + c−BA′yt−1 + εt, (23-14)

Denote zt ≡ A′yt, noticing that zt is a stationary (h× 1) vector. Then (23-14) can

be written as

4yt = ξ14yt−1 + ξ24yt−2 + ...+ ξp−14yt−p+1 + c−Bzt−1 + εt. (23-15)

Expression (23-15) is known as the vector error-correction representation of the

cointegrated system. It is interesting to see that while a cointegrated system can never

be represented by a finite-order vector autoregression in the differenced data 4yt, it

has a vector error correction representation; the difference is in that the former has

ignored the error correction term, −Bzt−1.

Example.
Let the individual elements (pt st p

∗
t )
′ are all I(1) and have a single cointegrating

vector a = (1 − 1 − 1)′ among them. Then these three variables has a V ECM

representation: 4pt4st
4p∗t

 =

 ξ
(1)
11 ξ

(1)
12 ξ

(1)
13

ξ
(1)
21 ξ

(1)
22 ξ

(1)
23

ξ
(1)
31 ξ

(1)
32 ξ

(1)
33


 4pt−14st−1
4p∗t−1

+

 ξ
(2)
11 ξ

(2)
12 ξ

(2)
13

ξ
(2)
21 ξ

(2)
22 ξ

(2)
23

ξ
(2)
31 ξ

(2)
32 ξ

(2)
33


 4pt−24st−2
4p∗t−2

+ ...

+

 ξ
(p−1)
11 ξ

(p−1)
12 ξ

(p−1)
13

ξ
(p−1)
21 ξ

(p−1)
22 ξ

(p−1)
23

ξ
(p−1)
31 ξ

(p−1)
32 ξ

(p−1)
33


 4pt−p+1

4st−p+1

4p∗t−p+1



+

 cp
cs
cp∗

−
 b1
b2
b3

 [ 1 −1 −1
]  pt−1

st−1
p∗t−1

+

 ε
(p)
t

ε
(s)
t

ε
(p∗)
t

 ,
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from which we see that the dynamics of changes in each variable is not only according

to the lags of its own and other variable’s change but also to the levels of each of

the elements of zt−1 by the speed B:

4pt = ξ
(1)
11 4pt−1 + ξ

(1)
12 4st−1 + ξ

(1)
13 4p∗t−1 + ξ

(2)
11 4pt−2 + ξ

(2)
12 4st−2 + ξ

(2)
13 4p∗t−2

+...+ ξ
(p−1)
11 4pt−p+1 + ξ

(p−1)
12 4st−p+1 + ξ

(p−1)
13 4p∗t−p+1 + cp

−b1(pt−1 − st−1 − p∗t−1) + ε
(p)
t

= ξ
(1)
11 4pt−1 + ξ

(1)
12 4st−1 + ξ

(1)
13 4p∗t−1 + ξ

(2)
11 4pt−2 + ξ

(2)
12 4st−2 + ξ

(2)
13 4p∗t−2

+...+ ξ
(p−1)
11 4pt−p+1 + ξ

(p−1)
12 4st−p+1 + ξ

(p−1)
13 4p∗t−p+1 + cp

−b1zt−1 + ε
(p)
t . �

From economics equilibrium, when there is a positive equilibrium error happen in

previous period, i.e. zt−1 = pt−1 − st − p∗t−1 > 0, at time t, the changes in pt, i.e.

4pt = pt − pt−1 should be negatively related with this equilibrium error. Therefore,

the parameters of equilibrium error adjustment should be positive in (23-15).
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3 Johansen’s Granger Representation Theorem

Hohansen (1991) analysis the VAR model for cointegration with Gaussian error and

constant. Consider a general k-dimensional V AR model with Gaussian error written

in the error correction form:

4yt = ξ14yt−1 + ξ24yt−2 + ...+ ξp−14yt−p+1 + c + ξ0yt−1 + εt, (23-16)

where

E(εt) = 0

E(εtε
′
s) =

{
Ω for t = s
0 otherwise.

The model defined by (23-16) is rewritten as

ξ(L)yt = −ξ0yt +C(L)4yt = c + εt,

where

ξ(L) = (1− L)I−
p−1∑
i=1

ξi(1− L)Li − ξ0L1 (23-17)

and

C(L) = (ξ(L)− ξ(1))/(1− L) = I−
p−1∑
i=1

ξiL
i. (23-18)

Note that

−ξ0yt +C(L)4yt = −ξ0yt + ξ(L)yt − ξ(1)yt

= −ξ0yt + ξ(L)yt + ξ0yt

= ξ(L)yt

from the fact in (23-17) that ξ(1) = −ξ0.
Johansen (1991) provide the following fundamental result about error correction

models of order 1 and their structure. The basic results is due to Granger (1983) and

Engle and Granger (1987). In addition he provide an explicit condition for the process

to be integrated of order 1 and he clarify the role of the constant term.

Theorem 2 (Granger’s Representation Theorem):

Let the process yt satisfy the equation (17) for t = 1, 2, ..., and let

ξ0 = −BA′
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for A and B of dimension k × h and rank h,7 and let

B′⊥C(1)A⊥

have full rank k − h. We define

Ψ = A⊥(B′⊥C(1)A⊥)−1B′⊥.

Then 4yt and A′yt can be given initial distributions, such that

(a) 4yt is stationary,

(b) A′yt is stationary,

(c) yt is nonstationary, with linear trend τ t = Ψct.

Further

(d) E(A′yt) = (B′B)−1B′c + (B′B)−1(B′C(1)A⊥)(B′⊥C(1)A⊥)−1B′⊥c,

(e) E(4yt) = τ .

If B′⊥c = 0, then τ = 0 and the linear trend disappears. However, the cointegrating

vector still contain a constant term, i.e. E(A′yt) = (B′B)−1B′c, when B′⊥c = 0.

(f) 4yt = Ψ(L)(εt + c)

with Ψ(1) = Ψ. For Ψ1(L) = (Ψ(L) −Ψ(1))/(1 − L) so that Ψ(L) = Ψ(1) + (1 −
L)Ψ1(L), the process has the representation

(g) yt = y0 + Ψ
∑T

i=1 εi + τ t+ St − S0,

where St = Ψ1(L)εt.

Proof:

See Johansen (1991), p.1559.

∆yt = ξ14 yt−1 + ξ24 yt−2 + . . .+ ξp−1yt−p+1 + c + ξ0yt−1 + εt

The model is rewritten as

ξ(L)yt = −ξ0yt + C(L)4yt = c + εt

7Define the orthogonal complements P⊥ of any matrix P of rank q and dimension n× q as follows
(0 < q < n):
(a) P⊥ is of dimension n× (n− q);
(b) P′⊥P = 0(n−q)×q, P′P⊥ = 0q×(n−q);
(c) P⊥ has rank n− q, and its column space lies in the null space of P′.
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where

ξ(L) = (1− L)I−
p−1∑
i=1

ξi(1− L)Li − ξ0L1

(ξ(1) = −ξ0)

and

C(L) = (ξ(L)− ξ(1))/(1− L) = I−
p−1∑
i=1

ξiL
i

Theorem 2 (Granger’s Representation Theorem)

Let the process yt satisfy the equation

4yt = ξ14 yt−1 + ξ24 yt−2 + . . .+ ξp−1yt−p+1 + c + ξ0yt−1 + εt

and let

ξ0 = −BA′

and let

B′⊥C(1)A⊥ have full rank(k− h)

and define

Ψ = A⊥(B′⊥C(1)A⊥)−1B′⊥

Then 4yt and A′yt can be gien initial distributions, such that

(a). 4yt is stationary

(b). A′yt is stationary

(c). yt is nonstationary, with linear trend τt = Ψct

(d). E(A′yt)=(B′B)−1B′c + (B′B)−1(B′C(1)A⊥)(B′⊥C(1)A⊥)−1B′⊥c

(e). E(4yt)=τ

(f). 4yt = Ψ(L)(εt + c)

(g). yt = y0 + Ψ
∑T

i=1 εi + τt + St − S0

r 2017 by Prof. Chingnun Lee 13 Ins.of Economics,NSYSU,Taiwan



Ch.23 3 JOHANSEN’S GRANGER REPRESENTATION THEOREM

Proof:

Rewritten the equation

ξ(L)yt = BA′yt + C(L)4yt = c + εt

multiplier B′ and B′⊥ ,we

B′BA′yt + B′C(L)4yt = B′(c + εt) (a)

B′⊥BA′yt + B′⊥C(L)4yt = B′⊥(c + εt) (b)

because B′⊥B = 0, (b) will become B′⊥C(L)4yt = B′⊥(c + εt)

However, ξ is a non-inverse singular matrix

Here, we introduce two new variables:

zt = (A′A)−1A′yt

xt = (A′⊥A⊥)−1A′⊥4yt

The process 4yt can be recovered from zt and xt

4yt = (A⊥Ā⊥
′
+ AĀ′)4yt = A⊥xt + A∆zt

we use the result into (a) and (b)

B′BA′Azt + BC(L)A⊥xt + B′C(L)A∆zt = B′(c + εt)

B′⊥C(L)A⊥xt + B′⊥C(L)A∆zt = B′⊥(c + εt)

Rewritten

H̃(L)(z′t,x
′
t)
′ = (B,B⊥)′(εt + c)

with

H̃(z) =

[
B′BA′A + B′C(z)A(1− z) B′C(z)A⊥

B′⊥C(z)A(1− z) B′⊥C(z)A⊥

]
When z=1,

|H̃(1)| = |B′B||A′A||B′⊥C(L)A⊥| 6= 0

Hence z=1 is not a root

Proof:(a)&(b) When z6=1,

H̃(z) = (B,B⊥)′ξ(z)(A,A⊥(1− z)−1)
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The determinant is

|H̃(z)| = |(B,B⊥)||ξ(z)||A,A⊥|(1− z)−(ρ−r))

This shows that all roots of |H̃(z)| = 0 are outside the unit cycle.

The following equations can be inverse:

B′BA′Azt + BC(L)A⊥xt + B′C(L)A∆zt = B′(c + εt)

B′⊥C(L)A⊥xt + B′⊥C(L)A∆zt = B′⊥(c + εt)

Therefore, zt and xt become stationary,and ∆yt = A⊥xt + A∆zt is stationary; this

implies A′yt is stationary

Proof:(d)

we still use the same equations:

B′BA′yt + B′C(L)4yt = B′(c + εt) (a)

A
′
yt = (B

′
B)−1[B

′
(εt + c)−B

′
C(L)∆yt]

let 4yt = A⊥xt + A∆zt

A
′
yt = (B

′
B)−1[B

′
(εt + c)−B

′
C(L)(A⊥xt + A∆zt)]

let L=1

A
′
yt = (B

′
B)−1[B

′
(εt + c)−B

′
C(1)A⊥xt][

zt
′

xt
′

]
= H̃(1)−1

[
B
B⊥

]
(c + ε)

=

[
−B′BA′A B′C(1)A⊥

0 B′⊥C(1)A⊥

]−1 [
B
B⊥

]
(c + ε)

Hint:[
A11 A12

A21 A22

]−1
=

[
A−111 (I + A12F2A21A

−1
11 ) −A−111 A12F2

−F2A21A
−1
11 F2

]
F2 = (A22 − A21A

−1
11 A12)

−1
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[
zt
′

xt
′

]
= H̃(1)−1

[
B
B⊥

]
(c + ε)

=

[
−B′BA′A B′C(1)A⊥

0 B′⊥C(1)A⊥

]−1 [
B
B⊥

]
(c + ε)

=

[
(−B′BA′A)−1 W

0 (B′⊥C(1)A⊥)−1

] [
−B
B⊥

]
(c + ε)

( W = −(−B′BA′A)−1B′C(1)A⊥(B′⊥C(1)A⊥)−1 )

We will get

xt = (B′⊥C(1)A⊥)−1B⊥
′(c + ε)

A
′
yt = (B

′
B)−1[B

′
(εt + c)−B

′
C(1)A⊥xt]

xt = (B′⊥C(1)A⊥)−1B⊥
′(c + ε)

A
′
yt = (B

′
B)−1[B

′
(εt + c)−B

′
C(1)A⊥(B′⊥C(1)A⊥)−1B⊥

′(c + ε)]

E(A
′
yt) = (B

′
B)−1[B

′
c−B

′
C(1)A⊥(B′⊥C(1)A⊥)−1B⊥

′c]

E(A
′
yt) = (B

′
B)−1B

′
c− (B

′
B)−1(B

′
C(1)A⊥)(B′⊥C(1)A⊥)−1B⊥

′c

Proof: (e)

let 4yt = A⊥xt + A∆zt

E(4yt) = A⊥E(xt) + AE(∆zt)

let L=1

E(4yt) = A⊥E(xt)

xt = (B′⊥C(1)A⊥)−1B⊥
′(c + ε)

E(4yt) = A⊥(B′⊥C(1)A⊥)−1B⊥
′c

< Question > Why we can’t solve the equtions by A′yt & ∆yt directly?

B′BA′yt + B′C(L)4yt = B′(c + εt) (a)
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B′⊥BA′yt + B′⊥C(L)4yt = B′⊥(c + εt) (b)[
B′B B′C(L)
B′⊥B B′⊥C(L)

] [
A′yt

∆yt

]
=

[
B′(c + ε)
B′⊥(c + ε)

]
B′ is (h× k) B′⊥ is (k− h)× k C(L) is (k× k)

So, we can’t get the solution by this way. From the above, B′C(L) and B′⊥B and

B′⊥C(L) are all not square matrix; those are singular matrix, and the inverse matrix

of them are non-existence.
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4 Other representations for Cointegration

4.1 Phillips’s Triangular Representation

Another convenient representation for a cointegrated system was introduced by Phillips

(1991). Suppose that the rows of the (h × k) matrix A′ form a basis for the space of

the cointegrating vectors. By reordering and normalizing the cointegrating relations

can be represented of the form

A′ =


a′1
a′2
.
.
.

a′h

 =


1 0 . . . 0 −γ1,h+1 −γ1,h+2 . . . −γ1,k
0 1 . . . 0 −γ2,h+1 −γ2,h+2 . . . −γ2,k
. . . . . . . . . . . .
. . . . . . . . . . . .
. . . . . . . . . . . .
0 0 . . . 1 −γh,h+1 −γh,h+2 . . . −γh,k


=

[
Ih −Γ′

]
,

where Γ′ is an (h× g) matrix of coefficients for g ≡ k − h.

Let zt denote the errors associated with the set of cointegrating relations:

zt ≡ A′yt.

Since zt is I(0), then the mean µ∗1 ≡ E(zt) exists, and we can define

z∗t ≡ zt − µ∗1.

Partition yt as

yt =

[
y1t(h×1)
y2t(g×1)

]
. (23-19)

Then

zt = z∗t + µ∗1 =
[

Ih −Γ′
] [ y1t(h×1)

y2t(g×1)

]
or

y1t(h×1) = Γ′(h×g) · y2t(g×1) + z∗t (h×1) + µ∗1(h×1). (23-20)

A representation for y2t is given by the last g rows of (23-1):

4y2t(g×1) = δ2(g×1) + u2t(g×1), (23-21)

where δ2 and u2t represent the last g elements of the (k× 1) vector δ and ut in (23-1),

respectively. (23-20) and (23-21 ) constitute Phillips’s (1991) triangular representation
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of a system with exactly h cointegrating relations. Note that z∗t and u2t represent

zero-mean stationary disturbance in this representation.

Example.
Let the individual elements (pt st p

∗
t )
′ are all I(1) and have a single cointegrating vector

a = (1 − 1 − 1)′ among them. The triangular representation of these three variables

are: given

A′ = a′ = [1 − γ1 − γ2],

then

pt = γ1st + γ2p
∗
t + µ∗1 + z∗t

4st = δs + ust

4p∗t = δp∗ + up∗,t,

where the hypothesized values are γ1 = γ2 = 1. �

4.2 The Stock-Watson’s Common Trends Representation

Another useful representation for any cointegrated system was proposed by Stock and

Watson (1988). Suppose that an (k × 1) vector yt is characterized by exact h cointe-

grating relations with g = k− h. We have seen that it is possible to order the element

of yt in such a way that a triangular representation of the form of (23-20) and (23-21)

exists with (z′∗t ,u
′
2t)
′ a I(0) (k × 1) vector with zero mean. Suppose that[

z′∗t
u′2t

]
=
∞∑
s=0

[
Hsεt−s
Jsεt−s

]
for εt an (k× 1) white noise process with {sHs}∞s=0 and {sJs}∞s=0 absolutely summable

sequences of (h × k) and (g × k) matrices, respectively. From B-N decomposition we

have

y2t = y2,0 + δ2 · t+
t∑

s=1

u2s

= y2,0 + δ2 · t+ J(1) · (ε1 + ε2 + ...+ εt) + η2t − η2,0, (23-22)
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where J(1) ≡ (J0 + J1 + J2 + ...), η2t ≡
∑∞

s=0α2sεt−s, and α2s ≡ −(Js+1 + Js+2 +

Js+3 + ...).

Since the (k × 1) vector εt is white noise, the (g × 1) vector J(1)εt is also white

noise, implying that each element of the (g × 1) vector ξ2t defined by

ξ2t = J(1) · (ε1 + ε2 + ...+ εt) (23-23)

is described by a random walk. Substituting (23-23) into (23-22) results in

y2t = µ̃2 + δ2 · t+ ξ2t + η2t (23-24)

for µ̃2 = (y2,0 − η2,0).
Substituting (23-24) into (23-20) produces

y1t = µ̃1 + Γ′(δ2 · t+ ξt) + η̃1t (23-25)

for µ̃1 = µ∗1 + Γ′µ̃2 and η̃1t = z∗t + Γ′η̃2t.

Equations (23-24) and (23-25) give Stock and Watson’s (1988) common trends rep-

resentation. These equations show that the vector yt can be described as a stationary

component,[
µ̃1

µ̃2

]
+

[
η̃1t
η2t

]
,

plus linear combinations of up to g common deterministic trends, as described by the

(g × 1) vector δ2 · t, the linear combination of the g common stochastic trend

as described by the (g × 1) vector ξ2t. Therefore, when we say that a k × 1 vector

yt is characterized by exactly h cointegrations, it is equivalent to say that there are

g(= k − h) common trends among them.
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5 Estimation and Testing of Cointegration from Single

Equation

5.1 Testing for Cointegration When the Cointegrating Vector is Known

Often when theoretical considerations suggest that certain variables will be cointe-

grated, or that a′yt is stationary for some (k × 1) cointegrating vector a, the theory

is based on a particular known value for a. In the purchasing power parity example,

a = (1 − 1 − 1)′. Given the null hypothesis of unit root can not be rejected from

various unit root tests on the individual series pt, st, and p∗t , the next step is to test

whether their particular linear combination zt = a′yt = pt − st − p∗t is stationary from

various unit root tests. See the example on p.585 of Hamilton.

5.2 Testing the Null Hypothesis of No Cointegration, Residual-Based
Tests for Cointegration

If the theoretical model of the system dynamic does not suggest a particular value for

the cointegrating vector a, then one approach is first to estimate a by OLS.

5.2.1 Estimating The Cointegrating Vector

If it is known for certain that the cointegrating vector has a nonzero coefficient for

the first element of yt (a1 6= 0), then a particularly convenient normalization is to set

a1 = 1 and represent subsequent entries of a (a2, a3, ..., ak) as the negative s of a set of

unknown parameters (γ2, γ3, ..., γk):

a1
a2
a3
.
.
.
ak


=



1
−γ2
−γ3
.
.
.
−γk


,

where γi = −ai/a1,∀i = 2, ..., k. Then consistent estimation of a is achieved by an

OLS regression of the first element of yt on all of the other:

Y1t = γ2Y2t + γ3Y3t + ...+ γkYkt + ut. (23-26)

r 2017 by Prof. Chingnun Lee 21 Ins.of Economics,NSYSU,Taiwan



Ch.23

5 ESTIMATION AND TESTING OF COINTEGRATION FROM SINGLE
EQUATION

Consistent estimates of γ2, γ3, ..., γk are also obtained when a constant term is included

in (27), as in

Y1t = α + γ2Y2t + γ3Y3t + ...+ γkYkt + ut.

or

Y1t = α + γ ′y2t + ut,

where γ ′ = (γ2, γ3, ..., γk) and y2t = (Y2t, Y3t, ..., Ykt)
′.

Theorem (Stock, 1986):

Let Y1t be a scalar y2t be a (g× 1) vector. Let k ≡ g+ 1, and suppose that the (k× 1)

vector (Y1t,y
′
2t)
′ is characterized by exactly one cointegrating relation (h = 1) that has

a nonzero coefficients on y1t. Let the triangular representation for the system be

Y1t = α + γ ′y2t + z∗t (23-27)

4y2t = u2t. (23-28)

Suppose that[
z∗t
u2t

]
= Ψ∗(L)εt,

where εt is an (k× 1) i.i.d. vector with mean zero, finite fourth moments, and positive

definite variance-covariance matrix E(εtε
′
t) = PP′. Suppose further that the sequence

of (k× k) matrices {s ·Ψ∗s}∞s=0 is absolutely summable and that the rows of Ψ∗(1) are

linearly independent. Let α̂T and γ̂T be the OLS estimators of (28). Partition Ψ∗(1)·P
as

Ψ∗(1) ·P =

[
λ∗1
′
(1×n)

Λ∗2(g×n)

]
.

Then [
T 1/2(α̂T − α)
T (γ̂T − γ)

]
L−→
[

1
{∫

[W(r)]′dr
}
·Λ∗2′

Λ∗2 ·
∫

W(r)dr Λ∗2
{∫

[W(r)] · [W(r)]′dr
}
·Λ∗2′

]−1 [
h1
h2

]
,(23-29)

where W(r) is k-dimensional standard Brownian motion, the integral sign denotes

integration over r from 0 to 1, and

h1 ≡ λ∗1
′ ·W(1)

h2 ≡ Λ∗2

{∫
[W(r)] · [W(r)]′dr

}
· λ∗1 +

∞∑
v=0

E(u2tz
∗
t+v).
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This theorem shows that the OLS estimator of the cointegrating vector is consistent.

However, it is noted that the correlation between the regressors y2t and the error z∗t is

not to induce inconsistency of γ̂T ; instead, the asymptotic distribution exhibits a bias

since the distribution of T (γ̂T − γ) does not centered around zero.8

In the next chapter we will consider system estimation of cointegrating vector.

Banerjee et al. (1993, p.214) examined one of main reasons for using such an estima-

tion: the large finite-sample biases that can arise static OLS estimates of cointegrating

vectors or parameters. While such estimator are super-consistent (T -consistent), Monte

Carlo experiments nonetheless suggest that a large number of observations may be nec-

essary before the biases become small.

Example.
The following is the code to generate the spurious regression. Let Xt = Xt−1 + vt, and

Yt = 2 + 3Xt + ut where[
ut
vt

]
i.i.d∼ N

([
0
0

]
,

[
1 0.5

0.5 2

])
.

Consider the sequence of an OLS regression of Yt on Xt and a constant

Yt = α + βXt + εt, t = 1, 2, ..., T.

It can see that the OLS estimates of α̂ and β̂ is super-consistent and the t-ratio to test

the null hypothesis that α = 0 and β = 0, tα̂ and tβ̂, ??is increasing with sample. We

always incorrectly reject the null hypothesis.

(a). Plot super-consistency of α̂ and β̂.

(b). Plot the t ratio, tα̂ and tβ̂.

8See similar results at Phillips-Perron Test of Chapter 21.
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Figure (23-1a). Super-consistency of α̂ and β̂ in a cointegrated

regression.

�

5.3 The Role of Normalization

The OLS estimate of the cointegrating vector was obtained by normalizing the first

element of the cointegrating vector a to be unity. The proposal was then to regress the

first element of yt on the others. For example, with k = 2, we would regression Y1t on

Y2t:

Y1t = α + γY2t + ut.

Obviously, we might equally well have normalized a2 = 1 and use the same argument

to suggest a regression of Y2t on Y1t:

Y2t = θ + ξY1t + vt.

The OLS estimate of ξ̂ is not simply the inverse of γ̂, meaning that these two regressions

will give different estimate of the cointegrating vector:[
1
−γ̂

]
6= −γ̂

[
−ξ̂
1

]
.
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Figure (22-1b). The two t-ratios to test the null hypothesis that

α = 0 and β = 0, tα̂ and tβ̂, are not increasing with sample size.

Thus, choosing which variable to call Y1t and which to call Y2t might end up making

a material difference for the estimate of a as well as for the evidence one finds for

cointegration among the series.

5.3.1 What Is the Regression Estimating When There Is More Than One Cointegrating
Relation ?

The limiting distribution of the OLS estimation in Theorem 1 was derived under the

assumption that there is only one cointegration (h = 1). In a more general case with

h > 1, OLS estimate of (28) should still provide a consistent estimate of a cointegrating

vector. But which cointegrating vector is it ? Wooldridge (1991) show that among the

set of possible cointegrating relations, OLS estimation of (28) select the relation whose

residuals are uncorrelated with any other I(1) linear combination of (Y2t, Y3t, ..., Ykt).

5.3.2 What Is the Regression Estimating When There Is No Cointegrating Relation ?

Let us now consider the properties of OLS estimation when there is no cointegrating

relation. Then (28) is a regression of an I(1) variables on a set of (k−1) I(1) variables

for which no coefficients produce an I(0) error term. The regression is therefore subject

to the spurious regression problem described in Chapter 22. The coefficient α̂ and γ̂

do not provide consistent estimate of any population parameter, and the OLS sample
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residual ût will be non-stationary. However, this last property can be exploited to test

for cointegration. If there is no cointegration, then a regression of ût on ût−1 should

yield a unit coefficient. If there is cointegration, then a regression of ût on ût−1 should

yield a coefficient that is less than one.

The proposal is thus to estimate (28) by OLS and then construct one of the stan-

dard unit root tests on the estimated residuals, such as the ADF t test or the PP ’s

Zβ or Zt test. Although theses test statistics are constructed in the same way as when

they are applied to individual series yt, when the test are applied to the residual ût from

a spurious regression, the critical values that are used to interpret the test statistics

are different from those employed in Chapter 21.

Theorem 2 (Residual-Based test for Cointegration, Test with No Cointegration as

Null):

Consider an (k × 1) vector yt such that

(1− L)yt = Ψ(L)εt =
∞∑
s=0

Ψsεt−s,

for εt an i.i.d. vector with mean zero, variance E(εtε
′
t) = Ω = PP′, and finite fourth

moment and where {s · Ψs}∞s=0 is absolutely summable. Let g = (k − 1) and Λ =

Ψ(1)P. Suppose that the (k × k) matrix ΛΛ′ is nonsingular, and let L denote the

Cholesky decomposition of (ΛΛ′)−1. Partition yt as yt = (Y1t,y
′
2t)
′ and consider the

OLS regression:

Y1t = α̂T + y′2tβ̂T + ût. (23-30)

The residual ût can then be regression on its own lagged value ût−1 without a constant

term (since the original regression (31) has contained a constant term, the disturbance

term ut is zero-mean):

ût = ρût−1 + et, (23-31)

yield the OLS estimate

ρ̂T =

∑
ûtût−1∑
û2t−1

. (23-32)

We may form standard Dickey-Fuller and Phillips-Perron (Zρ, Zt) from (32). Alterna-

tively we can form a ADF test from

ût = ζ14ût−1 + ζ24ût−2 + ...+ ζp−14ût−p+1 + ρût−1 + et. (23-33)
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Then the following results hold.

(a) The statistics ρ̂ defined in (33) satisfies (standard DF test)

(T − 1)(ρ̂− 1)
L−→

{
1

2

{
[1 − h′2] · [w∗(1)][w∗(1)]′

[
1
−h2

]}
−h1[w∗(1)]′

[
1
−h2

]
−1

2
[1 − h′2]L

′[E(4yt)(4y′t)]L

[
1
−h2

]}
÷Hn. (23-34)

Here, w∗ denotes n-dimensional standard Brownian motion partitioned as

w∗ =

[
W ∗

1 (r)(1×1)
w∗2(r)(g×1)

]
;

h1 is a scalar and h2 is a (g × 1) vector given by[
h1
h2

]
≡

[
1

∫ 1

0
[w∗2(r)]

′dr∫ 1

0
w∗2(r)dr

∫ 1

0
[w∗2(r)][w

∗
2(r)]

′dr

]−1
×

[ ∫ 1

0
W ∗

1 (r)dr∫ 1

0
w∗2(r)W

∗
1 (r)dr

]
,

and

Hn =

∫ 1

0

[W ∗
1 (r)]2dr −

[∫ 1

0

W ∗
1 (r)dr

∫ 1

0

[W ∗
1 (r)][w∗2(r)]

′dr

] [
h1
h2

]
.

(b) If the l → ∞ (Newey-West truncated parameter) as T → ∞ but l/T → 0, then

the Phillips-Perron statistics constructed from ût, Zρ satisfies

Zρ
L−→ Zn, (23-35)

where

Zn ≡
{

1

2

{
[1 − h′2] · [w∗(1)][w∗(1)]′

[
1
−h2

]}
−h1[w∗(1)]′

[
1
−h2

]
− 1

2
(1 + h′2h2)

}
÷Hn. (23-36)

(c) If the l→∞ as T →∞ but l/T → 0, then the Phillips-Perron statistics constructed

from ût, Zt satisfies

Zt
L−→ Zn ·

√
Hn ÷ (1 + h′2h2)

1/2. (23-37)
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(d) If, in addition to the preceding assumptions, 4yt follows a zero-mean stationary

vector ARMA process and if p→∞ as t→∞ but p/T 1/3 → 0, then the ADF t test

statistics associated with (34) has the same limiting distribution as the test statistics

Zt described in (38).

Results (a) implies that ρ̂
p−→ 1. Note that although W ∗

1 (r) and w∗2(r) are standard

Brownian motion, the distribution of the term h1, h2, Hn and Zn above depend only on

the number of stochastic explanatory variables included in the cointegrating regression

(k−1) and on whether a constant term (original cointegration regression) appears in

the regression, (T − 1)(ρ̂− 1) are affected by the variance, correlations and dynamics

of 4yt.

In the special case when 4yt is i.i.d., then Ψ(L) = In, and the matrix ΛΛ′ =

E(4yt4y′t). Since LL′ = (ΛΛ′)−1, it follows that (ΛΛ′) = (L′)−1(L)−1. Hence,

L′[E(4yt)(4y′t)]L = L′(ΛΛ′)L = L′[(L′)−1(L)−1]L = In. (23-38)

If (39) is substituted into (35), the results is that when 4yt is i.i.d.,

T (ρ̂− 1)
L−→ Zn

for Zn defined in (37).

In the more general case when 4yt is serially correlated, the limiting distribution

of T (ρ̂ − 1) depends on the nature of this correlation as captured by the elements L.

However, the corrections for autocorrelation implicit in Phillips’s Zρ and Zt statistics

or the augmented Dickey-Fuller t test turn out to generate variables whose distribution

do not depend on any nuisance parameters.

Although the distribution of Zρ Zt and the ADFt do not depend on nuisance pa-

rameters, the distribution when these statistics are calculated from the residuals ût

are not the same as the distribution these statistics would have if calculated from

the raw data 4yt. Moreover, different values for (k− 1) (the number of stochastic ex-

planatory variables in the cointegrating regression) imply different characterizations of

the limiting statistics, h1, h2, Hn, and Zn, meaning that a different critical value must

be used to interpret Zρ for each value of (k−1). Similarly, the asymptotic distribution

of h2, Hn, and Zn are different depending on whether a constant term is included in
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the cointegrating regression.

Example:

See the purchasing power parity example on Hamilton’s p.598.

Exercise:

Reproduce the values in case 2 of Table B.8 and B.9 on Hamilton’s p.765-766.

5.4 Tests with Cointegration as Null

The test considered in the previous sections are for the null hypothesis of no cointe-

gration. These are based on tests for a unit root hypothesis in the residuals for the

cointegrating regression. In Chapter 21 we discussed unit root tests with stationarity

as the null hypothesis (e.g. KPSS). Correspondingly these are tests with cointegra-

tion as the null. They are

(a) the Leybourne and McCabe test (1993) which is based on an unobserved compo-

nents model;

(b) the Park and Choi test (1988,1990) which is based on testing the significance of

superfluous regressors;

(c) the Shin (1994) test which is a residual-based test

(d) Harris and Inder (1994) test which use non-parametric correction procedure for

estimation of cointegration regression.

5.5 Testing Hypothesis About the Cointegrating Vector

The previous section described some way to test whether a vector yt is cointegrated.

It was noted that if yt is cointegrated, then a consistent estimate of the cointegrating

vector can be obtained by OLS. However, a difficulties arise with nonstandard dis-

tribution for hypothesis test about the cointegrating vector due to the possibility of

nonzero correlation between z∗t and u2t. The nuisance parameters λ∗1 and Λ∗2 which

appear in (30) also cause a problem. The basic approach to constructing hypothesis

tests will therefore be to transform the regression or the estimate so as to eliminate the

effects of this correlation. The first one is Stock and Watson (1993)’s dynamic OLS

which corrects the correlation by adding leads and lags of 4y2t. The second one is
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Phillips and Hansen (1990)’s fully modified OLS estimate. Modification of the OLS

have been made in two points. See Hatanaka (1996) p.266 for details.
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6 Simulation of Bivariate Cointegrated System

To illustrate the potential difference in size and power between various residual-based

test for cointegration in finite sample, a monte Carlo experiment proposed by Cheung

and Lai (1993), similar to that of Engle and Granger (1987), can be conducted. A

bivariate system of xt and yt is modeled by

xt + yt = ut (23-39)

and

xt + 2yt = vt (23-40)

with (1− L)ut = εt, and vt is generated as an AR(1) process

(1− φL)vt = ηt. (23-41)

The innovation εt and ηt are generated as independent standard normal variates.

When vt is given by (42) with |φ| < 1, xt and yt are cointegrated and (41) is their

cointegrating relationship. However, when |φ| = 1, the two series are not cointegrated.

Exercise:

Use the simulation based on 10000 replication in a sample of size 500 to compare the

performance of size and power (φ = 0.85) of residual-based ADF and PP test for

cointegration on a nominal size 5%. Truncated number is chosen as p = l = 4.

Example.
The following is the code to cointegration regression. Let Xt = Xt−1 + vt and Yt =

2 + 3Xt + ut, where[
ut
vt

]
i.i.d∼ N

([
0
0

]
,

[
1 0.5

0.5 2

])
.

Consider the sequence of an OLS regression of Yt on Xt and a constant

Yt = α + βXt + εt, t = 1, 2, ..., T.

It can see that the OLS estimates of α̂ and β̂ is super-consistent and the t-ratio to test

the null hypothesis that α = 0 and β = 0, tα̂ and tβ̂.

r 2017 by Prof. Chingnun Lee 31 Ins.of Economics,NSYSU,Taiwan



Ch.23 6 SIMULATION OF BIVARIATE COINTEGRATED SYSTEM

[Appendix]

H̃(L) =

[
B′BA′A + B′C(L)A(1− L) B′C(L)A⊥

B′⊥C(L)A(1− L) B′⊥C(L)A⊥

]
C(L) = (ξ(L)− ξ(1))/(1− L)

H̃(L) =

[
B′BA′A + B′(ξ(L)− ξ(1))A B′(ξ(L)− ξ(1))A⊥(1− L)−1

B′⊥(ξ(L)− ξ(1))A B′⊥(ξ(L)− ξ(1))A⊥(1− L)−1

]
ξ(1) = −ξ0 = BA′

H̃(L) =

[
B′BA′A + B′(ξ(L)−BA′)A B′(ξ(L)−BA′)A⊥(1− L)−1

B′⊥(ξ(L)−BA′)A B′⊥(ξ(L)−BA′)A⊥(1− L)−1

]

H̃(L) =

[
B′ξ(L)A B′ξ(L)A⊥(1− L)−1

B′⊥ξ(L)A B′⊥ξ(L)A⊥(1− L)−1

]
H̃(L) = (B,B⊥)′ξ(L)(A,A⊥(1− L)−1)

by the determinant

|AB| = |A||B|&|B′| = |B|

|H̃(L)| = |(B,B⊥)||ξ(L)||(A,A⊥)|(1− L)−(k−h)
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