Ch. 23 Cointegration

(May 28, 2018)

1 Introduction

An important property of $I(1)$ variables is that there can be linear combinations of theses variables that are $I(0)$. If this is so then these variables are said to be cointegrated. Suppose that we consider two variables Y_{t} and X_{t} that are $I(1)$. (For example, $Y_{t}=Y_{t-1}+\zeta_{t}$ and $X_{t}=X_{t-1}+\eta_{t}$.) Then, Y_{t} and X_{t} are said to be cointegrated if there exists a β such that $Y_{t}-\beta X_{t}$ is $I(0)$. What this mean is that the regression equation

$$
Y_{t}=\beta X_{t}+u_{t}
$$

make sense because Y_{t} and X_{t} do not drift too far apart from each other over time. Thus, there is a long-run equilibrium relationship between them. If Y_{t} and X_{t} are not cointegrated, that is, $Y_{t}-\beta X_{t}=u_{t}$ is also $I(1)$, then Y_{t} and X_{t} would drift apart from each other over time. In this case the relationship between Y_{t} and X_{t} that we obtain by regressing Y_{t} and X_{t} would be spurious.

Let us continue the cointegration with the spurious regression setup in which X_{t} and Y_{t} are independent random walks, consider what happens if we take a nontrivial linear combination of X_{t} and Y_{t} :

$$
a_{1} Y_{t}+a_{2} X_{t}=a_{1} Y_{t-1}+a_{2} X_{t-1}+a_{1} \zeta_{t}+a_{2} \eta_{t}
$$

where a_{1} and a_{2} are not both zero. We can write this as

$$
Z_{t}=Z_{t-1}+v_{t},
$$

where $Z_{t}=a_{1} Y_{t}+a_{2} X_{t}$ and $v_{t}=a_{1} \zeta_{t}+a_{2} \eta_{t}$. Thus, Z_{t} is again a random walk process, as v_{t} is i.i.d. with mean zero and finite variance, given that ζ_{t} and η_{t} each are i.i.d.
with mean zero and finite variance. No matter what coefficients a_{1} and a_{2} we choose, the resulting linear combination is again a random walk, hence an integrated or unit root process.

Now consider what happens when X_{t} is a random walk as before, but Y_{t} is instead generated according to $Y_{t}=\beta X_{t}+u_{t}$, with u_{t} again i.i.d.. By itself, Y_{t} is an integrated process, because

$$
Y_{t}-Y_{t-1}=\left(X_{t}-X_{t-1}\right) \beta+u_{t}-u_{t-1},
$$

so that

$$
\begin{aligned}
Y_{t} & =Y_{t-1}+\beta \eta_{t}+u_{t}-u_{t-1} \\
& =Y_{t-1}+\varepsilon_{t},
\end{aligned}
$$

where $\varepsilon_{t}=\beta \eta_{t}+u_{t}-u_{t-1}$ is readily verified to be $I(0)$ process.

Fig. 1 Examples of Cointegrated Variables

Despite the fact that both X_{t} and Y_{t} are integrated processes, the situation is very different from that considered at last chapter. Here, there is indeed a linear combination of X_{t} and Y_{t} that are not an integrated process: putting $a_{1}=1$ and $a_{2}=-\beta$ we have

$$
a_{1} Y_{t}+a_{2} X_{t}=Y_{t}-\beta X_{t}=u_{t},
$$

which is i.i.d. This is an example of a pair $\left\{X_{t}, Y_{t}\right\}$ of cointegrated process.
The concept of cointegration was introduced by Granger (1981). This paper and that of Engle and Granger (1987) have had a major impact on modern econometrics. Following Engle and Granger (1987), we have the definition of cointegration formally
as follows.

Definition 1.

The components of the vector \mathbf{x}_{t} are said to be co-integrated of order d, b, denoted $\mathbf{x}_{t} \sim C I(d, b)$, if
(a). all components of \mathbf{x}_{t} are $I(d)$;
(b). there exists a vector $\mathbf{a}(\neq \mathbf{0})$ so that $z_{t}=\mathbf{a}^{\prime} \mathbf{x}_{t} \sim I(d-b), b>0$. The vector \mathbf{a} is called the co-integrating vector.

For ease of exposition, only the value $d=1$ and $b=1$ will be considered in this chapter. For the case that d and b are fractional value, this is called fractional cointegration. We will consider this case in Chapter 25.

Clearly, the cointegrating vector \mathbf{a} is not unique, for if $\mathbf{a}^{\prime} \mathbf{x}_{t}$ is $I(0)$, then so is $b \cdot \mathbf{a}^{\prime} \mathbf{x}_{t}$ for any nonzero scalar b; if \mathbf{a} is a cointegrating vector, then so is $b \mathbf{a}$.

Furthermore, if \mathbf{x}_{t} has k components, then there may be more than one cointegrating vector \mathbf{a}. Indeed, there may be $h<k$ linear independent $(k \times 1)$ vectors $\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{h}\right)$ such that $\mathbf{A}^{\prime} \mathbf{x}_{t}$ is a $I(0)(h \times 1)$ vector, where \mathbf{A}^{\prime} is the following $(h \times k)$ matrix:

$$
\mathbf{A}_{h \times k}^{\prime}=\left[\begin{array}{c}
\mathbf{a}_{1}^{\prime} \\
\mathbf{a}_{2}^{\prime} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{a}_{h}^{\prime}
\end{array}\right]
$$

and is called the cointegrating matrix.
Again, the vector $\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{h}\right)$ are not unique; if $\mathbf{A}^{\prime} \mathbf{x}_{t}$ is a $I(0)$, then for any nonzero $(1 \times h)$ vector \mathbf{b}^{\prime}, the scalar $\mathbf{b}^{\prime} \mathbf{A}^{\prime} \mathbf{x}_{t}$ is also $I(0)$. Then the $(k \times 1)$ vector $\boldsymbol{\phi}$ given by $\phi^{\prime}=\mathbf{b}^{\prime} \mathbf{A}^{\prime}$ could also be described as a cointegrating vector. ${ }^{1}$

It is seen that the paramtetrs in \mathbf{A} are not identified. What can be determined by the model is the space spanned by \mathbf{A}, the cointegration space $s p(\mathbf{A})$. Suppose that there exists an $(h \times k)$ matrix \mathbf{A}^{\prime} whose rows are linearly independent such that $\mathbf{A}^{\prime} \mathbf{x}_{t}$ is a $(h \times 1) I(0)$ vector. Suppose further that if \mathbf{c}^{\prime} is any $(1 \times k)$ vector that is linearly independent of the rows of \mathbf{A}^{\prime}, then $\mathbf{c}^{\prime} \mathbf{x}_{t}$ is a $I(1)$ scalar. Then we say that there are

[^0]exactly h cointegrating relations among the elements of \mathbf{x}_{t} and that $\left(\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{h}\right)$ form a basis for the space of the cointegrating vectors.

Example.

Let P_{t} denote an index of the price level in the United States, P_{t}^{*} a price index for Italy, and S_{t} the exchange rate between the currency. Then purchasing power parity holds that

$$
P_{t}=S_{t} P_{t}^{*}
$$

or, taking logarithms,

$$
p_{t}=s_{t}+p_{t}^{*},
$$

where $p_{t} \equiv \log P_{t}, s_{t} \equiv \log S_{t}$, and $p_{t}^{*} \equiv \log P_{t}^{*}$. In equilibrium we need $p_{t}-s_{t}-p_{t}^{*}=0$. However, in practice, error in measuring price, transportation costs, and differences in quality prevent purchasing power parity from holding exactly at every date t. A weaker form of the hypothesis is that the variable z_{t} defined by

$$
z_{t}=p_{t}-s_{t}-p_{t}^{*}
$$

is $I(0)$, even though the individual elements $\mathbf{y}_{t}=\left(p_{t} s_{t} p_{t}^{*}\right)^{\prime}$ are all $I(1)$. In this case, we have a single cointegrating vector $\mathbf{a}=\left(\begin{array}{lll}1 & -1 & -1\end{array}\right)^{\prime}$. The term $z_{t}=\mathbf{a}^{\prime} \mathbf{y}_{t}$ is interpreted as the equilibrium error; although it is not always zero, but it can not be apart from zero too often and too far to make sense the equilibrium concept.

2 Granger Representation Theorem

Let each elements of the $(k \times 1)$ vector, \mathbf{y}_{t} is $I(1)$ with the $(k \times h)$ cointegrating matrix, \mathbf{A}, such that each elements of $\mathbf{A}^{\prime} \mathbf{y}_{t}$ is $I(0)$. Then Granger (1983) have the following fundamental results when \mathbf{y}_{t} are cointegrated.

2.1 Implication of Cointegration For the VMA Representation

We now discuss the general implications of cointegration for the moving average representation of a vector system. Since it is assumed the $\triangle \mathbf{y}_{t}$ is $I(0)$, let $\boldsymbol{\delta} \equiv E\left(\triangle \mathbf{y}_{t}\right)$, and define

$$
\begin{equation*}
\mathbf{u}_{t}=\triangle \mathbf{y}_{t}-\boldsymbol{\delta} \tag{23-1}
\end{equation*}
$$

Suppose that \mathbf{u}_{t} has the Wold representation: ${ }^{2}$

$$
\mathbf{u}_{t}=\varepsilon_{t}+\boldsymbol{\Psi}_{1} \varepsilon_{t-1}+\boldsymbol{\Psi}_{2} \varepsilon_{t-1}+\ldots=\boldsymbol{\Psi}(L) \varepsilon_{t}
$$

where $E\left(\varepsilon_{t}\right)=\mathbf{0}$ and

$$
E\left(\varepsilon_{t} \varepsilon_{\tau}^{\prime}\right)=\left\{\begin{array}{cc}
\boldsymbol{\Omega} \quad \text { for } t=\tau \\
\mathbf{0} \quad \text { otherwise }
\end{array}\right.
$$

Let $\boldsymbol{\Psi}(1)$ denotes the $(k \times k)$ matrix polynomial $\boldsymbol{\Psi}(z)$ evaluated at $z=1$; that is,

$$
\boldsymbol{\Psi}(1) \equiv \mathbf{I}_{k}+\mathbf{\Psi}_{1}+\mathbf{\Psi}_{2}+\mathbf{\Psi}_{3}+\ldots
$$

Then the following holds.
(a). $\mathbf{A}^{\prime} \boldsymbol{\Psi}(1)=\mathbf{0}$,
(b). $\mathbf{A}^{\prime} \boldsymbol{\delta}=\mathbf{0}$.

To verify this claim, note that as long as $\left\{s \boldsymbol{\Psi}_{s}\right\}_{s=0}^{\infty}$ is absolutely summable, the difference equation (23-1) implies that (from multivariate B-N decomposition):

$$
\begin{align*}
\mathbf{y}_{t} & =\mathbf{y}_{0}+\boldsymbol{\delta} \cdot t+\mathbf{u}_{1}+\mathbf{u}_{2}+\ldots+\mathbf{u}_{t} \\
& =\mathbf{y}_{0}+\boldsymbol{\delta} \cdot t+\boldsymbol{\Psi}(1) \cdot\left(\varepsilon_{1}+\varepsilon_{2}+\ldots+\boldsymbol{\varepsilon}_{t}\right)+\boldsymbol{\eta}_{t}-\boldsymbol{\eta}_{0} \tag{23-2}
\end{align*}
$$

[^1]where $\boldsymbol{\eta}_{t}$ is a stationary process. Premultiplying (23-2) by \mathbf{A}^{\prime} results in
\[

$$
\begin{equation*}
\mathbf{A}^{\prime} \mathbf{y}_{t}=\mathbf{A}^{\prime}\left(\mathbf{y}_{0}-\boldsymbol{\eta}_{0}\right)+\mathbf{A}^{\prime} \boldsymbol{\delta} \cdot t+\mathbf{A}^{\prime} \boldsymbol{\Psi}(1) \cdot\left(\varepsilon_{1}+\boldsymbol{\varepsilon}_{2}+\ldots+\boldsymbol{\varepsilon}_{t}\right)+\mathbf{A}^{\prime} \boldsymbol{\eta}_{t} \sim I(0) \tag{23-3}
\end{equation*}
$$

\]

If $E\left(\varepsilon_{t} \varepsilon_{t}^{\prime}\right)$ is nonsingular, then $\mathbf{c}^{\prime}\left(\varepsilon_{1}+\varepsilon_{2}+\ldots+\varepsilon_{t}\right)$ is $I(1)$ for every nonzero $(k \times 1)$ vector \mathbf{c}. Moreover, if some of the series exhibit nonzero drift $(\boldsymbol{\delta} \neq \mathbf{0})$, the linear combination $\mathbf{A}^{\prime} \mathbf{y}_{t}$ will grow deterministically at rate $\mathbf{A}^{\prime} \boldsymbol{\delta}$. Thus if the underlying hypothesis suggesting the possibility of cointegration is that certain linear combination of \mathbf{y}_{t} are $I(0)$, this require that both conditions that $\mathbf{A}^{\prime} \boldsymbol{\Psi}(1)=\mathbf{0}$ and $\mathbf{A}^{\prime} \boldsymbol{\delta}=\mathbf{0}$ hold.

The second condition means that despite the presence of a drift term in the process generating \mathbf{y}_{t}, there is no linear trend in the cointegrated combination. ${ }^{3}$ To the implication of the first condition, from partitioned matrix production we have

$$
\mathbf{A}^{\prime} \boldsymbol{\Psi}(1)=\left[\begin{array}{c}
\mathbf{a}_{\mathbf{1}(1 \times k)}^{\prime} \\
\mathbf{a}_{\mathbf{2}(1 \times k)}^{\prime} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{a}_{\mathbf{h}(1 \times k)}
\end{array}\right] \cdot \boldsymbol{\Psi}(1)_{(k \times k)}=\left[\begin{array}{c}
\mathbf{a}_{1}^{\prime} \boldsymbol{\Psi}(1) \\
\mathbf{a}_{\mathbf{2}}^{\prime} \boldsymbol{\Psi}(1) \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{a}_{\mathbf{h}} \boldsymbol{\Psi}(1)
\end{array}\right]=\left[\begin{array}{c}
\mathbf{0} \\
\mathbf{0} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{0}
\end{array}\right],
$$

which implies

$$
\begin{array}{r}
\mathbf{a}_{i}^{\prime} \boldsymbol{\Psi}(1)=\left[\begin{array}{lllll}
a_{1 i} & a_{2 i} & . & . & a_{k i}
\end{array}\right]\left[\begin{array}{c}
\boldsymbol{\psi}(1)_{1(1 \times k)}^{\prime} \\
\boldsymbol{\psi}(1)_{2(1 \times k)}^{\prime} \\
\cdot \\
\cdot \\
\boldsymbol{\psi}(1)_{k(1 \times k)}^{\prime}
\end{array}\right]=\sum_{s=1}^{k} a_{s i} \boldsymbol{\psi}(1)_{s}^{\prime}=\mathbf{0}_{(1 \times k)} \\
\text { for } i=1,2, \ldots, k,(23-4)
\end{array}
$$

where $a_{s i}$ is the s th elements of the row vector \mathbf{a}_{i}^{\prime} and $\boldsymbol{\psi}(1)_{i}^{\prime}$ is the i th row of the matrix $\boldsymbol{\Psi}(1)$

Equation (23-4) implies that certain linear combination of the rows (columns ?) of $\boldsymbol{\Psi}(1)$ are zero, meaning that the row vector of $\boldsymbol{\Psi}(1)$ are linearly dependent. That is, $\boldsymbol{\Psi}(1)$ is a singular matrix, or equivalently, the determinant of $\boldsymbol{\Psi}(1)$ are zero, i.e. $|\boldsymbol{\Psi}(1)|=0$, that is $|\boldsymbol{\Psi}(z)|=0$ has a root $z=1 .{ }^{4}$ This in turn means that the

[^2]matrix operator $\boldsymbol{\Psi}(L)$ is non-invertible. ${ }^{5}$ Thus, a cointegrated system can never be represented by a finite-order vector autoregression in the differenced data $\triangle \mathbf{y}_{t}$ from the non-invertibility of $\Psi(L)$ of the following equations:
$$
\triangle \mathbf{y}_{t}=\boldsymbol{\delta}+\boldsymbol{\Psi}(L) \varepsilon_{t} .
$$

2.2 Implication of Cointegration For the VAR Representation

Suppose that the level of \mathbf{y}_{t} can be represented as a non-stationary p th-order vector autoregression: ${ }^{6}$

$$
\begin{equation*}
\mathbf{y}_{t}=\mathbf{c}+\boldsymbol{\Phi}_{1} \mathbf{y}_{t-1}+\boldsymbol{\Phi}_{2} \mathbf{y}_{t-2}+\ldots+\boldsymbol{\Phi}_{p} \mathbf{y}_{t-p}+\boldsymbol{\varepsilon}_{t} \tag{23-5}
\end{equation*}
$$

or

$$
\begin{equation*}
\boldsymbol{\Phi}(L) \mathbf{y}_{t}=\mathbf{c}+\boldsymbol{\varepsilon}_{t} . \tag{23-6}
\end{equation*}
$$

where

$$
\boldsymbol{\Phi}(L) \equiv\left[\mathbf{I}_{k}-\boldsymbol{\Phi}_{1} L-\boldsymbol{\Phi}_{2} L^{2}-\ldots-\boldsymbol{\Phi}_{p} L^{p}\right] .
$$

Suppose that $\triangle \mathbf{y}_{t}$ has the Wold representation

$$
\begin{equation*}
(1-L) \mathbf{y}_{t}=\boldsymbol{\delta}+\boldsymbol{\Psi}(L) \boldsymbol{\varepsilon}_{t} . \tag{23-7}
\end{equation*}
$$

Premultiplying (23-7) by $\boldsymbol{\Phi}(L)$ results in

$$
\begin{equation*}
(1-L) \boldsymbol{\Phi}(L) \mathbf{y}_{t}=\boldsymbol{\Phi}(1) \boldsymbol{\delta}+\boldsymbol{\Phi}(L) \boldsymbol{\Psi}(L) \boldsymbol{\varepsilon}_{t} . \tag{23-8}
\end{equation*}
$$

Substituting (23-6) into (23-8), we have

$$
\begin{equation*}
(1-L) \boldsymbol{\varepsilon}_{t}=\boldsymbol{\Phi}(1) \boldsymbol{\delta}+\boldsymbol{\Phi}(L) \boldsymbol{\Psi}(L) \boldsymbol{\varepsilon}_{t}, \tag{23-9}
\end{equation*}
$$

[^3]since $(1-L) \mathbf{c}=\mathbf{0}$. Now, equation (23-9) has to hold for all realizations of ε_{t}, which require that
\[

$$
\begin{equation*}
\boldsymbol{\Phi}(1) \boldsymbol{\delta}=\mathbf{0} \quad \text { (a vector }) \tag{23-10}
\end{equation*}
$$

\]

and that $(1-L) \mathbf{I}_{k}$ and $\boldsymbol{\Phi}(L) \boldsymbol{\Psi}(L)$ represent the identical polynomials in L. In particular, for $L=1$, equation (23-9) implies that

$$
\begin{equation*}
\boldsymbol{\Phi}(1) \boldsymbol{\Psi}(1)=\mathbf{0} . \quad(\text { a matrix }) \tag{23-11}
\end{equation*}
$$

Let $\boldsymbol{\phi}_{i}^{\prime}$ denote i th row of $\boldsymbol{\Phi}(1)$. Then (23-10) and (23-11) state that $\boldsymbol{\phi}_{i}^{\prime} \boldsymbol{\Psi}(1)=\mathbf{0}^{\prime}$ (a row of zero) and $\boldsymbol{\phi}_{i}^{\prime} \boldsymbol{\delta}=0$ (a zero scalar). Recalling conditions (a) and (b)of section 2.1, this mean that $\boldsymbol{\phi}_{i}$ is a cointegrating vector. If $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{h}$ form a basis for the space of cointegrating vectors, then it must be possible to express ϕ_{i} as a linear combination of $\mathbf{a}_{1}, \mathbf{a}_{2}, \ldots, \mathbf{a}_{h}$-that is, there exist an $(h \times 1)$ vector \mathbf{b}_{i} such that

$$
\left.\phi_{i}=\left[\mathbf{a}_{1} \mathbf{a}_{2} \ldots . \mathbf{a}_{h}\right] \mathbf{b}_{i}=\mathbf{A} \mathbf{b}_{i}=\mathbf{a}_{1} b_{i 1}+\ldots+\mathbf{a}_{h} b_{i h} \text { (linear combination of } \mathbf{a}_{j}, j=1, \ldots, h .\right)
$$

or that

$$
\phi_{i}^{\prime}=\mathbf{b}_{i}^{\prime} \mathbf{A}^{\prime}
$$

for \mathbf{A}^{\prime} the $(h \times k)$ matrix whose i th row is \mathbf{a}_{i}^{\prime}. Applying this reasoning to each of the rows of $\boldsymbol{\Phi}(1)$, i.e.

$$
\boldsymbol{\Phi}(1)=\left[\begin{array}{c}
\phi_{1}^{\prime} \tag{23-12}\\
\phi_{2}^{\prime} \\
\cdot \\
\cdot \\
\cdot \\
\boldsymbol{\phi}_{k}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{b}_{1}^{\prime} \mathbf{A}^{\prime} \\
\mathbf{b}_{2}^{\prime} \mathbf{A}^{\prime} \\
\cdot \\
\cdot \\
\cdot \\
\mathbf{b}_{k}^{\prime} \mathbf{A}^{\prime}
\end{array}\right]=\mathbf{B A}^{\prime},
$$

where \mathbf{B} is an $k \times h$ matrix. However, it is seen that the matrix \mathbf{A} and \mathbf{B} is not identified since for any choice of $h \times h$ matrix $\boldsymbol{\Upsilon}$, the matrix $\boldsymbol{\Phi}(1)=\mathbf{B} \boldsymbol{\Upsilon}^{-1} \mathbf{\Upsilon} \mathbf{A}^{\prime}=\mathbf{B}^{*} \mathbf{A}^{* \prime}$ implies the same distribution with $\boldsymbol{\Phi}(1)=\mathbf{B A}^{\prime}$. What can be determined is the space spanned by \mathbf{A} the cointegrating space which need the concept of the basis.

Note that (23-12) implies that the $k \times k$ matrix $\boldsymbol{\Phi}(1)$ is a singular matrix because

$$
\operatorname{rank}(\boldsymbol{\Phi}(1))=\operatorname{rank}\left(\mathbf{B} \mathbf{A}^{\prime}\right) \leq \min \left(\operatorname{rank}(\mathbf{B}), \operatorname{rank}\left(\mathbf{A}^{\prime}\right)\right)=h<k .
$$

2.3 Vector Error Correction Representation

A final representation for a cointegrated system is obtained by recalling from equation (22-1) of Chapter 22 that any $V A R$ (not necessary cointegrated at this stage) in the form of (22-5) can be equivalently be written as

$$
\begin{equation*}
\triangle \mathbf{y}_{t}=\boldsymbol{\xi}_{1} \triangle \mathbf{y}_{t-1}+\boldsymbol{\xi}_{2} \triangle \mathbf{y}_{t-2}+\ldots+\boldsymbol{\xi}_{p-1} \mathbf{y}_{t-p+1}+\mathbf{c}+\boldsymbol{\xi}_{0} \mathbf{y}_{t-1}+\boldsymbol{\varepsilon}_{t} \tag{23-13}
\end{equation*}
$$

where

$$
\boldsymbol{\xi}_{0} \equiv \boldsymbol{\rho}-\mathbf{I}=-\left(\mathbf{I}-\boldsymbol{\Phi}_{1}-\boldsymbol{\Phi}_{2}-\ldots-\boldsymbol{\Phi}_{p}\right)=-\boldsymbol{\Phi}(1) .
$$

Note that if \mathbf{y}_{t} has h cointegrating relations, then substitution of (23-12) into (2313) results in

$$
\begin{equation*}
\triangle \mathbf{y}_{t}=\boldsymbol{\xi}_{1} \triangle \mathbf{y}_{t-1}+\boldsymbol{\xi}_{2} \Delta \mathbf{y}_{t-2}+\ldots+\boldsymbol{\xi}_{p-1} \Delta \mathbf{y}_{t-p+1}+\mathbf{c}-\mathbf{B A}^{\prime} \mathbf{y}_{t-1}+\boldsymbol{\varepsilon}_{t} \tag{23-14}
\end{equation*}
$$

Denote $\mathbf{z}_{t} \equiv \mathbf{A}^{\prime} \mathbf{y}_{t}$, noticing that \mathbf{z}_{t} is a stationary $(h \times 1)$ vector. Then (23-14) can be written as

$$
\begin{equation*}
\triangle \mathbf{y}_{t}=\boldsymbol{\xi}_{1} \triangle \mathbf{y}_{t-1}+\boldsymbol{\xi}_{2} \triangle \mathbf{y}_{t-2}+\ldots+\boldsymbol{\xi}_{p-1} \triangle \mathbf{y}_{t-p+1}+\mathbf{c}-\mathbf{B} \mathbf{z}_{t-1}+\boldsymbol{\varepsilon}_{t} . \tag{23-15}
\end{equation*}
$$

Expression (23-15) is known as the vector error-correction representation of the cointegrated system. It is interesting to see that while a cointegrated system can never be represented by a finite-order vector autoregression in the differenced data $\triangle \mathbf{y}_{t}$, it has a vector error correction representation; the difference is in that the former has ignored the error correction term, $-\mathbf{B z}_{t-1}$.

Example.

Let the individual elements $\left(p_{t} s_{t} p_{t}^{*}\right)^{\prime}$ are all $I(1)$ and have a single cointegrating vector $\mathbf{a}=\left(\begin{array}{lll}1 & -1 & -1\end{array}\right)^{\prime}$ among them. Then these three variables has a $V E C M$ representation:

$$
\begin{aligned}
{\left[\begin{array}{c}
\triangle p_{t} \\
\triangle s_{t} \\
\triangle p_{t}^{*}
\end{array}\right]=} & {\left[\begin{array}{lll}
\xi_{11}^{(1)} & \xi_{12}^{(1)} & \xi_{13}^{(1)} \\
\xi_{21}^{(1)} & \xi_{22}^{(1)} & \xi_{23}^{(1)} \\
\xi_{31}^{(1)} & \xi_{32}^{(1)} & \xi_{33}^{(1)}
\end{array}\right]\left[\begin{array}{l}
\triangle p_{t-1} \\
\triangle s_{t-1} \\
\triangle p_{t-1}^{*}
\end{array}\right]+\left[\begin{array}{lll}
\xi_{11}^{(2)} & \xi_{12}^{(2)} & \xi_{13}^{(2)} \\
\xi_{21}^{(2)} & \xi_{22}^{(2)} & \xi_{23}^{(2)} \\
\xi_{31}^{(2)} & \xi_{32}^{(2)} & \xi_{33}^{(2)}
\end{array}\right]\left[\begin{array}{l}
\triangle p_{t-2} \\
\triangle s_{t-2} \\
\triangle p_{t-2}^{*}
\end{array}\right]+\ldots } \\
& +\left[\begin{array}{lll}
\xi_{11}^{(p-1)} & \xi_{12}^{(p-1)} & \xi_{13}^{(p-1)} \\
\xi_{22}^{(p-1)} & \xi_{22}^{(p-1)} & \xi_{23}^{(p-1)} \\
\xi_{31}^{(p-1)} & \xi_{32}^{(p-1)} & \xi_{33}^{(p-1)}
\end{array}\right]\left[\begin{array}{c}
\triangle p_{t-p+1} \\
\triangle s_{t-p+1} \\
\triangle p_{t-p+1}^{*}
\end{array}\right] \\
& +\left[\begin{array}{c}
c_{p} \\
c_{s} \\
c_{p^{*}}
\end{array}\right]-\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & -1 & -1
\end{array}\right]\left[\begin{array}{c}
p_{t-1} \\
s_{t-1} \\
p_{t-1}^{*}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{t}^{(p)} \\
\varepsilon_{t}^{(s)} \\
\varepsilon_{t}^{(p *)}
\end{array}\right]
\end{aligned}
$$

from which we see that the dynamics of changes in each variable is not only according to the lags of its own and other variable's change but also to the levels of each of the elements of \mathbf{z}_{t-1} by the speed \mathbf{B} :

$$
\begin{aligned}
\triangle p_{t}= & \xi_{11}^{(1)} \triangle p_{t-1}+\xi_{12}^{(1)} \triangle s_{t-1}+\xi_{13}^{(1)} \triangle p_{t-1}^{*}+\xi_{11}^{(2)} \triangle p_{t-2}+\xi_{12}^{(2)} \triangle s_{t-2}+\xi_{13}^{(2)} \triangle p_{t-2}^{*} \\
& +\ldots+\xi_{11}^{(p-1)} \triangle p_{t-p+1}+\xi_{12}^{(p-1)} \triangle s_{t-p+1}+\xi_{13}^{(p-1)} \triangle p_{t-p+1}^{*}+c_{p} \\
& -b_{1}\left(p_{t-1}-s_{t-1}-p_{t-1}^{*}\right)+\varepsilon_{t}^{(p)} \\
= & \xi_{11}^{(1)} \triangle p_{t-1}+\xi_{12}^{(1)} \triangle s_{t-1}+\xi_{13}^{(1)} \triangle p_{t-1}^{*}+\xi_{11}^{(2)} \triangle p_{t-2}+\xi_{12}^{(2)} \triangle s_{t-2}+\xi_{13}^{(2)} \triangle p_{t-2}^{*} \\
& +\ldots+\xi_{11}^{(p-1)} \triangle p_{t-p+1}+\xi_{12}^{(p-1)} \triangle s_{t-p+1}+\xi_{13}^{(p-1)} \triangle p_{t-p+1}^{*}+c_{p} \\
& -b_{1} z_{t-1}+\varepsilon_{t}^{(p)} .
\end{aligned}
$$

From economics equilibrium, when there is a positive equilibrium error happen in previous period, i.e. $z_{t-1}=p_{t-1}-s_{t}-p_{t-1}^{*}>0$, at time t, the changes in p_{t}, i.e. $\triangle p_{t}=p_{t}-p_{t-1}$ should be negatively related with this equilibrium error. Therefore, the parameters of equilibrium error adjustment should be positive in (23-15).

3 Johansen's Granger Representation Theorem

Hohansen (1991) analysis the VAR model for cointegration with Gaussian error and constant. Consider a general k-dimensional $V A R$ model with Gaussian error written in the error correction form:

$$
\begin{equation*}
\triangle \mathbf{y}_{t}=\boldsymbol{\xi}_{1} \triangle \mathbf{y}_{t-1}+\boldsymbol{\xi}_{2} \triangle \mathbf{y}_{t-2}+\ldots+\boldsymbol{\xi}_{p-1} \triangle \mathbf{y}_{t-p+1}+\mathbf{c}+\boldsymbol{\xi}_{0} \mathbf{y}_{t-1}+\boldsymbol{\varepsilon}_{t} \tag{23-16}
\end{equation*}
$$

where

$$
\begin{aligned}
E\left(\varepsilon_{t}\right) & =\mathbf{0} \\
E\left(\varepsilon_{t} \varepsilon_{s}^{\prime}\right) & =\left\{\begin{array}{cc}
\boldsymbol{\Omega} & \text { for } t=s \\
\mathbf{0} & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

The model defined by (23-16) is rewritten as

$$
\boldsymbol{\xi}(L) \mathbf{y}_{t}=-\boldsymbol{\xi}_{0} \mathbf{y}_{t}+\boldsymbol{C}(L) \triangle \mathbf{y}_{t}=\mathbf{c}+\boldsymbol{\varepsilon}_{t}
$$

where

$$
\begin{equation*}
\boldsymbol{\xi}(L)=(1-L) \mathbf{I}-\sum_{i=1}^{p-1} \boldsymbol{\xi}_{i}(1-L) L^{i}-\boldsymbol{\xi}_{0} L^{1} \tag{23-17}
\end{equation*}
$$

and

$$
\begin{equation*}
\boldsymbol{C}(L)=(\boldsymbol{\xi}(L)-\boldsymbol{\xi}(1)) /(1-L)=\mathbf{I}-\sum_{i=1}^{p-1} \boldsymbol{\xi}_{i} L^{i} \tag{23-18}
\end{equation*}
$$

Note that

$$
\begin{aligned}
-\boldsymbol{\xi}_{0} \mathbf{y}_{t}+\boldsymbol{C}(L) \triangle \mathbf{y}_{t} & =-\boldsymbol{\xi}_{0} \mathbf{y}_{t}+\boldsymbol{\xi}(L) \mathbf{y}_{t}-\boldsymbol{\xi}(1) \mathbf{y}_{t} \\
& =-\boldsymbol{\xi}_{0} \mathbf{y}_{t}+\boldsymbol{\xi}(L) \mathbf{y}_{t}+\boldsymbol{\xi}_{0} \mathbf{y}_{t} \\
& =\boldsymbol{\xi}(L) \mathbf{y}_{t}
\end{aligned}
$$

from the fact in (23-17) that $\boldsymbol{\xi}(1)=-\boldsymbol{\xi}_{0}$.
Johansen (1991) provide the following fundamental result about error correction models of order 1 and their structure. The basic results is due to Granger (1983) and Engle and Granger (1987). In addition he provide an explicit condition for the process to be integrated of order 1 and he clarify the role of the constant term.
$\mathfrak{T h e o r e m} 2$ (Granger's Representation Theorem):
Let the process \mathbf{y}_{t} satisfy the equation (17) for $t=1,2, \ldots$, and let

$$
\xi_{0}=-\mathbf{B A}^{\prime}
$$

for \mathbf{A} and \mathbf{B} of dimension $k \times h$ and $\operatorname{rank} h,{ }^{7}$ and let

$$
\mathbf{B}_{\perp}^{\prime} \boldsymbol{C}(1) \mathbf{A}_{\perp}
$$

have full rank $k-h$. We define

$$
\boldsymbol{\Psi}=\mathbf{A}_{\perp}\left(\mathbf{B}_{\perp}^{\prime} \boldsymbol{C}(1) \mathbf{A}_{\perp}\right)^{-1} \mathbf{B}_{\perp}^{\prime} .
$$

Then $\triangle \mathbf{y}_{t}$ and $\mathbf{A}^{\prime} \mathbf{y}_{t}$ can be given initial distributions, such that
(a) $\triangle \mathbf{y}_{t}$ is stationary,
(b) $\mathbf{A}^{\prime} \mathbf{y}_{t}$ is stationary,
(c) \mathbf{y}_{t} is nonstationary, with linear trend $\boldsymbol{\tau} t=\boldsymbol{\Psi} \mathbf{c} t$.

Further
(d) $E\left(\mathbf{A}^{\prime} \mathbf{y}_{t}\right)=\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-1} \mathbf{B}^{\prime} \mathbf{c}+\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-1}\left(\mathbf{B}^{\prime} \boldsymbol{C}(1) \mathbf{A}_{\perp}\right)\left(\mathbf{B}_{\perp}^{\prime} \boldsymbol{C}(1) \mathbf{A}_{\perp}\right)^{-1} \mathbf{B}_{\perp}^{\prime} \mathbf{c}$,
(e) $\mathrm{E}\left(\triangle \mathrm{y}_{t}\right)=\boldsymbol{\tau}$.

If $\mathbf{B}_{\perp}^{\prime} \mathbf{c}=\mathbf{0}$, then $\boldsymbol{\tau}=\mathbf{0}$ and the linear trend disappears. However, the cointegrating vector still contain a constant term, i.e. $E\left(\mathbf{A}^{\prime} \mathbf{y}_{t}\right)=\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-1} \mathbf{B}^{\prime} \mathbf{c}$, when $\mathbf{B}_{\perp}^{\prime} \mathbf{c}=\mathbf{0}$.
(f) $\triangle \mathbf{y}_{t}=\boldsymbol{\Psi}(L)\left(\varepsilon_{t}+\mathbf{c}\right)$
with $\boldsymbol{\Psi}(1)=\boldsymbol{\Psi}$. For $\boldsymbol{\Psi}_{1}(L)=(\boldsymbol{\Psi}(L)-\boldsymbol{\Psi}(1)) /(1-L)$ so that $\boldsymbol{\Psi}(L)=\boldsymbol{\Psi}(1)+(1-$ $L) \Psi_{1}(L)$, the process has the representation
(g) $\mathbf{y}_{t}=\mathbf{y}_{0}+\boldsymbol{\Psi} \sum_{i=1}^{T} \varepsilon_{i}+\boldsymbol{\tau} t+\mathbf{S}_{t}-\mathbf{S}_{0}$,
where $\mathbf{S}_{t}=\boldsymbol{\Psi}_{1}(L) \boldsymbol{\varepsilon}_{t}$.

Proof:
See Johansen (1991), p. 1559.

$$
\boldsymbol{\Delta} \mathbf{y}_{\mathbf{t}}=\xi_{1} \Delta \mathbf{y}_{\mathbf{t}-\mathbf{1}}+\xi_{\mathbf{2}} \Delta \mathbf{y}_{\mathbf{t}-\mathbf{2}}+\ldots+\xi_{\mathbf{p}-\mathbf{1}} \mathbf{y}_{\mathbf{t}-\mathbf{p}+\mathbf{1}}+\mathbf{c}+\xi_{\mathbf{0}} \mathbf{y}_{\mathbf{t}-\mathbf{1}}+\varepsilon_{\mathbf{t}}
$$

The model is rewritten as

$$
\xi(\mathbf{L}) \mathbf{y}_{\mathbf{t}}=-\xi_{0} \mathbf{y}_{\mathbf{t}}+\mathbf{C}(\mathbf{L}) \Delta \mathbf{y}_{\mathbf{t}}=\mathbf{c}+\varepsilon_{\mathbf{t}}
$$

[^4]where
\[

$$
\begin{gathered}
\xi(\mathbf{L})=(\mathbf{1}-\mathbf{L}) \mathbf{I}-\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{p}-\mathbf{1}} \xi_{\mathbf{i}}(\mathbf{1}-\mathbf{L}) \mathbf{L}^{\mathbf{i}}-\xi_{\mathbf{0}} \mathbf{L}^{\mathbf{1}} \\
\left(\xi(\mathbf{1})=-\xi_{\mathbf{0}}\right)
\end{gathered}
$$
\]

and

$$
\mathbf{C}(\mathbf{L})=(\xi(\mathbf{L})-\xi(\mathbf{1})) /(\mathbf{1}-\mathbf{L})=\mathbf{I}-\sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{p}-\mathbf{1}} \xi_{\mathbf{i}} \mathbf{L}^{\mathbf{i}}
$$

Theorem 2 (Granger's Representation Theorem)
Let the process y_{t} satisfy the equation

$$
\Delta \mathbf{y}_{\mathbf{t}}=\xi_{1} \Delta \mathbf{y}_{\mathbf{t}-\mathbf{1}}+\xi_{2} \triangle \mathbf{y}_{\mathbf{t}-\mathbf{2}}+\ldots+\xi_{\mathbf{p}-\mathbf{1}} \mathbf{y}_{\mathbf{t}-\mathbf{p}+\mathbf{1}}+\mathbf{c}+\xi_{\mathbf{0}} \mathbf{y}_{\mathbf{t}-\mathbf{1}}+\varepsilon_{\mathbf{t}}
$$

and let

$$
\xi_{0}=-\mathbf{B A}^{\prime}
$$

and let

$$
\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp} \quad \text { have full } \operatorname{rank}(k-h)
$$

and define

$$
\Psi=\mathbf{A}_{\perp}\left(\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)^{-\mathbf{1}} \mathbf{B}_{\perp}^{\prime}
$$

Then $\triangle y_{t}$ and $\mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}}$ can be gien initial distributions, such that
(a). $\triangle \mathbf{y}_{\mathrm{t}}$ is stationary
(b). $\mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}}$ is stationary
(c). $\mathbf{y}_{\mathbf{t}}$ is nonstationary, with linear trend $\tau \mathbf{t}=\Psi \mathbf{c t}$
(d). $\mathrm{E}\left(\mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}}\right)=\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-\mathbf{1}} \mathbf{B}^{\prime} \mathbf{c}+\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-\mathbf{1}}\left(\mathbf{B}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)\left(\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)^{-\mathbf{1}} \mathbf{B}_{\perp}^{\prime} \mathbf{c}$
(e). $\mathrm{E}\left(\triangle \mathbf{y}_{\mathbf{t}}\right)=\tau$
(f). $\Delta \mathbf{y}_{\mathbf{t}}=\boldsymbol{\Psi}(\mathbf{L})\left(\varepsilon_{\mathbf{t}}+\mathbf{c}\right)$
(g). $\mathbf{y}_{\mathbf{t}}=\mathbf{y}_{\mathbf{0}}+\boldsymbol{\Psi} \sum_{\mathbf{i}=\mathbf{1}}^{\mathbf{T}} \varepsilon_{\mathbf{i}}+\tau \mathbf{t}+\mathbf{S}_{\mathbf{t}}-\mathbf{S}_{\mathbf{0}}$

Proof:
Rewritten the equation

$$
\xi(\mathbf{L}) \mathbf{y}_{\mathbf{t}}=\mathbf{B A}^{\prime} \mathbf{y}_{\mathbf{t}}+\mathbf{C}(\mathbf{L}) \Delta \mathbf{y}_{\mathbf{t}}=\mathbf{c}+\varepsilon_{\mathbf{t}}
$$

multiplier \mathbf{B}^{\prime} and $\mathbf{B}_{\perp}^{\prime}$, we

$$
\begin{align*}
& \mathbf{B}^{\prime} \mathbf{B A}^{\prime} \mathbf{y}_{\mathbf{t}}+\mathbf{B}^{\prime} \mathbf{C}(\mathbf{L}) \triangle \mathbf{y}_{\mathbf{t}}=\mathbf{B}^{\prime}\left(\mathbf{c}+\varepsilon_{\mathbf{t}}\right) \tag{a}\\
& \mathbf{B}_{\perp}^{\prime} \mathbf{B A}^{\prime} \mathbf{y}_{\mathbf{t}}+\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{L}) \triangle \mathbf{y}_{\mathbf{t}}=\mathbf{B}_{\perp}^{\prime}\left(\mathbf{c}+\varepsilon_{\mathbf{t}}\right) \tag{b}
\end{align*}
$$

because $\mathbf{B}_{\perp}^{\prime} \mathbf{B}=\mathbf{0}$, (b) will become $\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{L}) \triangle \mathbf{y}_{\mathbf{t}}=\mathbf{B}_{\perp}^{\prime}\left(\mathbf{c}+\varepsilon_{\mathbf{t}}\right)$
However, ξ is a non-inverse singular matrix
Here, we introduce two new variables:

$$
\begin{gathered}
\mathbf{z}_{\mathbf{t}}=\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-\mathbf{1}} \mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}} \\
\mathbf{x}_{\mathbf{t}}=\left(\mathbf{A}_{\perp}^{\prime} \mathbf{A}_{\perp}\right)^{-\mathbf{1}} \mathbf{A}_{\perp}^{\prime} \triangle \mathbf{y}_{\mathbf{t}}
\end{gathered}
$$

The process $\triangle \mathbf{y}_{\mathbf{t}}$ can be recovered from $\mathbf{z}_{\mathbf{t}}$ and $\mathbf{x}_{\mathbf{t}}$

$$
\triangle \mathbf{y}_{\mathbf{t}}=\left(\mathbf{A}_{\perp} \overline{\mathbf{A}}_{\perp}^{\prime}+\mathbf{A} \overline{\mathbf{A}}^{\prime}\right) \triangle \mathbf{y}_{\mathbf{t}}=\mathbf{A}_{\perp} \mathbf{x}_{\mathbf{t}}+\mathbf{A} \Delta \mathrm{z}_{\mathbf{t}}
$$

we use the result into (a) and (b)

$$
\begin{gathered}
\mathbf{B}^{\prime} \mathbf{B A}^{\prime} \mathbf{A} \mathbf{z}_{\mathbf{t}}+\mathbf{B C}(\mathbf{L}) \mathbf{A}_{\perp} \mathbf{x}_{\mathbf{t}}+\mathbf{B}^{\prime} \mathbf{C}(\mathbf{L}) \mathbf{A} \boldsymbol{\Delta} \mathbf{z}_{\mathbf{t}}=\mathbf{B}^{\prime}\left(\mathbf{c}+\varepsilon_{\mathbf{t}}\right) \\
\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{L}) \mathbf{A}_{\perp} \mathbf{x}_{\mathbf{t}}+\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{L}) \mathbf{A} \boldsymbol{\Delta} \mathbf{z}_{\mathbf{t}}=\mathbf{B}_{\perp}^{\prime}\left(\mathbf{c}+\varepsilon_{\mathbf{t}}\right)
\end{gathered}
$$

Rewritten

$$
\tilde{\mathbf{H}}(\mathbf{L})\left(\mathbf{z}_{\mathbf{t}}^{\prime}, \mathbf{x}_{\mathbf{t}}^{\prime}\right)^{\prime}=\left(\mathbf{B}, \mathbf{B}_{\perp}\right)^{\prime}\left(\varepsilon_{\mathbf{t}}+\mathbf{c}\right)
$$

with

$$
\tilde{\mathbf{H}}(\mathbf{z})=\left[\begin{array}{cc}
\mathbf{B}^{\prime} \mathbf{B} \mathbf{A}^{\prime} \mathbf{A}+\mathbf{B}^{\prime} \mathbf{C}(\mathbf{z}) \mathbf{A}(\mathbf{1}-\mathbf{z}) & \mathbf{B}^{\prime} \mathbf{C}(\mathbf{z}) \mathbf{A}_{\perp} \\
\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{z}) \mathbf{A}(\mathbf{1}-\mathbf{z}) & \mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{z}) \mathbf{A}_{\perp}
\end{array}\right]
$$

When $\mathrm{z}=1$,

$$
|\tilde{\mathbf{H}}(\mathbf{1})|=\left|\mathbf{B}^{\prime} \mathbf{B}\left\|\mathbf{A}^{\prime} \mathbf{A}\right\| \mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{L}) \mathbf{A}_{\perp}\right| \neq \mathbf{0}
$$

Hence $\mathrm{z}=1$ is not a root

Proof:(a)\&(b) When $z \neq 1$,

$$
\tilde{\mathbf{H}}(\mathbf{z})=\left(\mathbf{B}, \mathbf{B}_{\perp}\right)^{\prime} \xi(\mathbf{z})\left(\mathbf{A}, \mathbf{A}_{\perp}(\mathbf{1}-\mathbf{z})^{-\mathbf{1}}\right)
$$

The determinant is

$$
\left.|\tilde{\mathbf{H}}(\mathbf{z})|=\left|\left(\mathbf{B}, \mathbf{B}_{\perp}\right)\right|\left|\xi(\mathbf{z}) \| \mathbf{A}, \mathbf{A}_{\perp}\right|(\mathbf{1}-\mathbf{z})^{-(\rho-\mathbf{r})}\right)
$$

This shows that all roots of $|\tilde{\mathbf{H}}(\mathbf{z})|=\mathbf{0}$ are outside the unit cycle.
The following equations can be inverse:

$$
\begin{gathered}
\mathbf{B}^{\prime} \mathbf{B A}^{\prime} \mathbf{A} \mathbf{z}_{\mathbf{t}}+\mathbf{B C}(\mathbf{L}) \mathbf{A}_{\perp} \mathbf{x}_{\mathbf{t}}+\mathbf{B}^{\prime} \mathbf{C}(\mathbf{L}) \mathbf{A} \Delta \mathbf{z}_{\mathbf{t}}=\mathbf{B}^{\prime}\left(\mathbf{c}+\varepsilon_{\mathbf{t}}\right) \\
\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{L}) \mathbf{A}_{\perp} \mathbf{x}_{\mathbf{t}}+\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{L}) \mathbf{A} \boldsymbol{\Delta} \mathbf{z}_{\mathbf{t}}=\mathbf{B}_{\perp}^{\prime}\left(\mathbf{c}+\varepsilon_{\mathbf{t}}\right)
\end{gathered}
$$

Therefore, z_{t} and x_{t} become stationary, and $\Delta y_{t}=A_{\perp} x_{t}+A \Delta z_{t}$ is stationary; this implies $\mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}}$ is stationary

Proof:(d)

we still use the same equations:

$$
\begin{align*}
& \mathbf{B}^{\prime} \mathbf{B A}^{\prime} \mathbf{y}_{\mathbf{t}}+\mathbf{B}^{\prime} \mathbf{C}(\mathbf{L}) \triangle \mathbf{y}_{\mathbf{t}}=\mathbf{B}^{\prime}\left(\mathbf{c}+\varepsilon_{\mathbf{t}}\right) \tag{a}\\
& \mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}}=\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-\mathbf{1}}\left[\mathbf{B}^{\prime}\left(\varepsilon_{\mathbf{t}}+\mathbf{c}\right)-\mathbf{B}^{\prime} \mathbf{C}(\mathbf{L}) \Delta \mathbf{y}_{\mathbf{t}}\right]
\end{align*}
$$

let $\triangle \mathbf{y}_{\mathbf{t}}=\mathbf{A}_{\perp} \mathbf{x}_{\mathbf{t}}+\mathbf{A} \boldsymbol{\Delta} \mathbf{z}_{\mathrm{t}}$

$$
\mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}}=\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-\mathbf{1}}\left[\mathbf{B}^{\prime}\left(\varepsilon_{\mathbf{t}}+\mathbf{c}\right)-\mathbf{B}^{\prime} \mathbf{C}(\mathbf{L})\left(\mathbf{A}_{\perp} \mathbf{x}_{\mathrm{t}}+\mathbf{A} \boldsymbol{\Delta} \mathbf{z}_{\mathrm{t}}\right)\right]
$$

let $\mathrm{L}=1$

$$
\mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}}=\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-\mathbf{1}}\left[\mathbf{B}^{\prime}\left(\varepsilon_{\mathbf{t}}+\mathbf{c}\right)-\mathbf{B}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp} \mathbf{x}_{\mathbf{t}}\right]
$$

$$
\begin{aligned}
{\left[\begin{array}{l}
\mathbf{z}_{\mathbf{t}}{ }^{\prime} \\
\mathbf{x}_{\mathbf{t}}{ }^{\prime}
\end{array}\right] } & =\tilde{\mathbf{H}}(\mathbf{1})^{-\mathbf{1}}\left[\begin{array}{c}
\mathbf{B} \\
\mathbf{B}_{\perp}
\end{array}\right](\mathbf{c}+\varepsilon) \\
& =\left[\begin{array}{cc}
-\mathbf{B}^{\prime} \mathbf{B} \mathbf{A}^{\prime} \mathbf{A} & \mathbf{B}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp} \\
\mathbf{0} & \mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{B} \\
\mathbf{B}_{\perp}
\end{array}\right](\mathbf{c}+\varepsilon)
\end{aligned}
$$

Hint:

$$
\begin{gathered}
{\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A_{11}^{-1}\left(I+A_{12} F_{2} A_{21} A_{11}^{-1}\right) & -A_{11}^{-1} A_{12} F_{2} \\
-F_{2} A_{21} A_{11}^{-1} & F_{2}
\end{array}\right]} \\
F_{2}=\left(A_{22}-A_{21} A_{11}^{-1} A_{12}\right)^{-1}
\end{gathered}
$$

$$
\left.\begin{array}{rl}
{\left[\begin{array}{c}
\mathbf{z}_{\mathbf{t}}^{\prime} \\
\mathbf{x}_{\mathbf{t}}^{\prime}
\end{array}\right]} & =\tilde{\mathbf{H}}(\mathbf{1})^{-\mathbf{1}}\left[\begin{array}{c}
\mathbf{B} \\
\mathbf{B}_{\perp}
\end{array}\right](\mathbf{c}+\varepsilon) \\
& =\left[\begin{array}{cc}
-\mathbf{B}^{\prime} \mathbf{\mathbf { B A } ^ { \prime }} \mathbf{A} & \mathbf{B}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp} \\
\mathbf{0} & \mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}
\end{array}\right]^{-1}\left[\begin{array}{c}
\mathbf{B} \\
\mathbf{B}_{\perp}
\end{array}\right](\mathbf{c}+\varepsilon) \\
& =\left[\begin{array}{cc}
\left(-\mathbf{B}^{\prime} \mathbf{B} \mathbf{A}^{\prime} \mathbf{A}\right)^{-\mathbf{1}} & W \\
\mathbf{0} & \left(\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)^{\mathbf{- 1}}
\end{array}\right]\left[\begin{array}{c}
-\mathbf{B} \\
\mathbf{B}_{\perp}
\end{array}\right](\mathbf{c}+\varepsilon) \\
(& W=-\left(-\mathbf{B}^{\prime} \mathbf{B} \mathbf{A}^{\prime} \mathbf{A}\right)^{-\mathbf{1}} \mathbf{B}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\left(\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)^{-\mathbf{1}}
\end{array}\right)
$$

We will get

$$
\mathbf{x}_{\mathbf{t}}=\left(\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)^{-\mathbf{1}} \mathbf{B}_{\perp}{ }^{\prime}(\mathbf{c}+\varepsilon)
$$

$$
\begin{gathered}
\mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}}=\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-\mathbf{1}}\left[\mathbf{B}^{\prime}\left(\varepsilon_{\mathbf{t}}+\mathbf{c}\right)-\mathbf{B}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp} \mathbf{x}_{\mathbf{t}}\right] \\
\mathbf{x}_{\mathbf{t}}=\left(\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)^{-\mathbf{1}} \mathbf{B}_{\perp}^{\prime}(\mathbf{c}+\varepsilon) \\
\mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}}=\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-\mathbf{1}}\left[\mathbf{B}^{\prime}\left(\varepsilon_{\mathbf{t}}+\mathbf{c}\right)-\mathbf{B}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\left(\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)^{-\mathbf{1}} \mathbf{B}_{\perp}^{\prime}(\mathbf{c}+\varepsilon)\right] \\
E\left(\mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}}\right)=\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-\mathbf{1}}\left[\mathbf{B}^{\prime} \mathbf{c}-\mathbf{B}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\left(\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)^{-\mathbf{1}} \mathbf{B}_{\perp}^{\prime} \mathbf{c}\right] \\
E\left(\mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}}\right)=\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-\mathbf{1}} \mathbf{B}^{\prime} \mathbf{c}-\left(\mathbf{B}^{\prime} \mathbf{B}\right)^{-\mathbf{1}}\left(\mathbf{B}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)\left(\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)^{-\mathbf{1}} \mathbf{B}_{\perp}^{\prime} \mathbf{c}
\end{gathered}
$$

Proof: (e)

let $\Delta \mathbf{y}_{\mathbf{t}}=\mathbf{A}_{\perp} \mathbf{x}_{\mathbf{t}}+\mathbf{A} \Delta \mathbf{z}_{\mathrm{t}}$

$$
E\left(\Delta \mathbf{y}_{\mathbf{t}}\right)=\mathbf{A}_{\perp} \mathbf{E}\left(\mathbf{x}_{\mathbf{t}}\right)+\mathbf{A E}\left(\boldsymbol{\Delta}_{\mathbf{z}_{\mathbf{t}}}\right)
$$

let $\mathrm{L}=1$

$$
\begin{gathered}
E\left(\triangle \mathbf{y}_{\mathbf{t}}\right)=\mathbf{A}_{\perp} \mathbf{E}\left(\mathbf{x}_{\mathbf{t}}\right) \\
\mathbf{x}_{\mathbf{t}}=\left(\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)^{-\mathbf{1}} \mathbf{B}_{\perp}^{\prime}(\mathbf{c}+\varepsilon) \\
E\left(\triangle \mathbf{y}_{\mathbf{t}}\right)=\mathbf{A}_{\perp}\left(\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{1}) \mathbf{A}_{\perp}\right)^{-\mathbf{1}} \mathbf{B}_{\perp}^{\prime} \mathbf{c}
\end{gathered}
$$

$<$ Question $>$ Why we can't solve the equtions by $A^{\prime} y_{t} \& \Delta y_{t}$ directly?

$$
\begin{equation*}
\mathbf{B}^{\prime} \mathbf{B A}^{\prime} \mathbf{y}_{\mathbf{t}}+\mathbf{B}^{\prime} \mathbf{C}(\mathbf{L}) \triangle \mathbf{y}_{\mathbf{t}}=\mathbf{B}^{\prime}\left(\mathbf{c}+\varepsilon_{\mathbf{t}}\right) \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{B}_{\perp}^{\prime} \mathbf{B A}^{\prime} \mathbf{y}_{\mathbf{t}}+\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{L}) \triangle \mathbf{y}_{\mathbf{t}}=\mathbf{B}_{\perp}^{\prime}\left(\mathbf{c}+\varepsilon_{\mathbf{t}}\right) \tag{b}
\end{equation*}
$$

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\mathbf{B}^{\prime} \mathbf{B} & \mathbf{B}^{\prime} \mathbf{C}(\mathbf{L}) \\
\mathbf{B}_{\perp}^{\prime} \mathbf{B} & \mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{L})
\end{array}\right]\left[\begin{array}{c}
\mathbf{A}^{\prime} \mathbf{y}_{\mathbf{t}} \\
\Delta \mathbf{y}_{\mathbf{t}}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{B}^{\prime}(\mathbf{c}+\varepsilon) \\
\mathbf{B}_{\perp}^{\prime}(\mathbf{c}+\varepsilon)
\end{array}\right]} \\
& \\
& \mathbf{B}^{\prime} \text { is }(\mathbf{h} \times \mathbf{k}) \quad \mathbf{B}_{\perp}^{\prime} \text { is }(\mathbf{k}-\mathbf{h}) \times \mathbf{k} \quad \mathbf{C}(\mathbf{L}) \text { is }(\mathbf{k} \times \mathbf{k})
\end{aligned}
$$

So, we can't get the solution by this way. From the above, $\mathbf{B}^{\prime} \mathbf{C}(\mathbf{L})$ and $\mathbf{B}_{\perp}^{\prime} \mathbf{B}$ and $\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{L})$ are all not square matrix; those are singular matrix, and the inverse matrix of them are non-existence.

4 Other representations for Cointegration

4.1 Phillips's Triangular Representation

Another convenient representation for a cointegrated system was introduced by Phillips (1991). Suppose that the rows of the $(h \times k)$ matrix \mathbf{A}^{\prime} form a basis for the space of the cointegrating vectors. By reordering and normalizing the cointegrating relations can be represented of the form

$$
\begin{aligned}
& =\left[\begin{array}{ll}
\mathbf{I}_{h} & -\boldsymbol{\Gamma}^{\prime}
\end{array}\right],
\end{aligned}
$$

where $\boldsymbol{\Gamma}^{\prime}$ is an $(h \times g)$ matrix of coefficients for $g \equiv k-h$.
Let \mathbf{z}_{t} denote the errors associated with the set of cointegrating relations:

$$
\mathbf{z}_{t} \equiv \mathbf{A}^{\prime} \mathbf{y}_{t}
$$

Since \mathbf{z}_{t} is $I(0)$, then the mean $\boldsymbol{\mu}_{1}^{*} \equiv E\left(\mathbf{z}_{t}\right)$ exists, and we can define

$$
\mathbf{z}_{t}^{*} \equiv \mathbf{z}_{t}-\boldsymbol{\mu}_{1}^{*}
$$

Partition \mathbf{y}_{t} as

$$
\mathbf{y}_{t}=\left[\begin{array}{l}
\mathbf{y}_{1 t(h \times 1)} \tag{23-19}\\
\mathbf{y}_{2 t(g \times 1)}
\end{array}\right]
$$

Then

$$
\mathbf{z}_{t}=\mathbf{z}_{t}^{*}+\boldsymbol{\mu}_{1}^{*}=\left[\begin{array}{ll}
\mathbf{I}_{h} & -\boldsymbol{\Gamma}^{\prime}
\end{array}\right]\left[\begin{array}{l}
\mathbf{y}_{1 t(h \times 1)} \\
\mathbf{y}_{2 t(g \times 1)}
\end{array}\right]
$$

or

$$
\begin{equation*}
\mathbf{y}_{1 t(h \times 1)}=\boldsymbol{\Gamma}_{(h \times g)}^{\prime} \cdot \mathbf{y}_{2 t(g \times 1)}+\mathbf{z}_{t(h \times 1)}^{*}+\boldsymbol{\mu}_{1(h \times 1)}^{*} \tag{23-20}
\end{equation*}
$$

A representation for $\mathbf{y}_{2 t}$ is given by the last g rows of (23-1):

$$
\begin{equation*}
\triangle \mathbf{y}_{2 t(g \times 1)}=\boldsymbol{\delta}_{2(g \times 1)}+\mathbf{u}_{2 t(g \times 1)} \tag{23-21}
\end{equation*}
$$

where $\boldsymbol{\delta}_{2}$ and $\mathbf{u}_{2 t}$ represent the last g elements of the ($k \times 1$) vector $\boldsymbol{\delta}$ and \mathbf{u}_{t} in (23-1), respectively. (23-20) and (23-21) constitute Phillips's (1991) triangular representation
of a system with exactly h cointegrating relations. Note that \mathbf{z}_{t}^{*} and $\mathbf{u}_{2 t}$ represent zero-mean stationary disturbance in this representation.

Example.

Let the individual elements $\left(p_{t} s_{t} p_{t}^{*}\right)^{\prime}$ are all $I(1)$ and have a single cointegrating vector $\mathbf{a}=\left(\begin{array}{lll}1 & -1 & -1\end{array}\right)^{\prime}$ among them. The triangular representation of these three variables are: given

$$
\mathbf{A}^{\prime}=\mathbf{a}^{\prime}=\left[1-\gamma_{1}-\gamma_{2}\right],
$$

then

$$
\begin{aligned}
p_{t} & =\gamma_{1} s_{t}+\gamma_{2} p_{t}^{*}+\mu_{1}^{*}+z_{t}^{*} \\
\triangle s_{t} & =\delta_{s}+u_{s t} \\
\triangle p_{t}^{*} & =\delta_{p *}+u_{p *, t},
\end{aligned}
$$

where the hypothesized values are $\gamma_{1}=\gamma_{2}=1$.

4.2 The Stock-Watson's Common Trends Representation

Another useful representation for any cointegrated system was proposed by Stock and Watson (1988). Suppose that an $(k \times 1)$ vector \mathbf{y}_{t} is characterized by exact h cointegrating relations with $g=k-h$. We have seen that it is possible to order the element of \mathbf{y}_{t} in such a way that a triangular representation of the form of (23-20) and (23-21) exists with $\left(\mathbf{z}_{t}^{\prime *}, \mathbf{u}_{2 t}^{\prime}\right)^{\prime}$ a $I(0)(k \times 1)$ vector with zero mean. Suppose that

$$
\left[\begin{array}{c}
\mathbf{z}_{t}^{\prime *} \\
\mathbf{u}_{2 t}^{\prime}
\end{array}\right]=\sum_{s=0}^{\infty}\left[\begin{array}{c}
\mathbf{H}_{s} \varepsilon_{t-s} \\
\mathbf{J}_{s} \varepsilon_{t-s}
\end{array}\right]
$$

for ε_{t} an $(k \times 1)$ white noise process with $\left\{s \mathbf{H}_{s}\right\}_{s=0}^{\infty}$ and $\left\{s \mathbf{J}_{s}\right\}_{s=0}^{\infty}$ absolutely summable sequences of $(h \times k)$ and $(g \times k)$ matrices, respectively. From B-N decomposition we have

$$
\begin{align*}
\mathbf{y}_{2 t} & =\mathbf{y}_{2,0}+\boldsymbol{\delta}_{2} \cdot t+\sum_{s=1}^{t} \mathbf{u}_{2 s} \\
& =\mathbf{y}_{2,0}+\boldsymbol{\delta}_{2} \cdot t+\mathbf{J}(1) \cdot\left(\varepsilon_{1}+\boldsymbol{\varepsilon}_{2}+\ldots+\boldsymbol{\varepsilon}_{t}\right)+\boldsymbol{\eta}_{2 t}-\boldsymbol{\eta}_{2,0} \tag{23-22}
\end{align*}
$$

where $\mathbf{J}(1) \equiv\left(\mathbf{J}_{0}+\mathbf{J}_{1}+\mathbf{J}_{2}+\ldots\right), \boldsymbol{\eta}_{2 t} \equiv \sum_{s=0}^{\infty} \boldsymbol{\alpha}_{2 s} \varepsilon_{t-s}$, and $\boldsymbol{\alpha}_{2 s} \equiv-\left(\mathbf{J}_{s+1}+\mathbf{J}_{s+2}+\right.$ $\left.\mathbf{J}_{s+3}+\ldots\right)$.

Since the $(k \times 1)$ vector $\boldsymbol{\varepsilon}_{t}$ is white noise, the $(g \times 1)$ vector $\mathbf{J}(1) \boldsymbol{\varepsilon}_{t}$ is also white noise, implying that each element of the $(g \times 1)$ vector $\boldsymbol{\xi}_{2 t}$ defined by

$$
\begin{equation*}
\boldsymbol{\xi}_{2 t}=\mathbf{J}(1) \cdot\left(\varepsilon_{1}+\varepsilon_{2}+\ldots+\varepsilon_{t}\right) \tag{23-23}
\end{equation*}
$$

is described by a random walk. Substituting (23-23) into (23-22) results in

$$
\begin{equation*}
\mathbf{y}_{2 t}=\tilde{\boldsymbol{\mu}}_{2}+\boldsymbol{\delta}_{2} \cdot t+\boldsymbol{\xi}_{2 t}+\boldsymbol{\eta}_{2 t} \tag{23-24}
\end{equation*}
$$

for $\tilde{\boldsymbol{\mu}}_{2}=\left(\mathbf{y}_{2,0}-\boldsymbol{\eta}_{2,0}\right)$.
Substituting (23-24) into (23-20) produces

$$
\begin{equation*}
\mathbf{y}_{1 t}=\tilde{\boldsymbol{\mu}}_{1}+\boldsymbol{\Gamma}^{\prime}\left(\boldsymbol{\delta}_{2} \cdot t+\boldsymbol{\xi}_{t}\right)+\tilde{\boldsymbol{\eta}}_{1 t} \tag{23-25}
\end{equation*}
$$

for $\tilde{\boldsymbol{\mu}}_{1}=\boldsymbol{\mu}_{1}^{*}+\boldsymbol{\Gamma}^{\prime} \tilde{\boldsymbol{\mu}}_{2}$ and $\tilde{\boldsymbol{\eta}}_{1 t}=\mathbf{z}_{t}^{*}+\boldsymbol{\Gamma}^{\prime} \tilde{\boldsymbol{\eta}}_{2 t}$.
Equations (23-24) and (23-25) give Stock and Watson's (1988) common trends representation. These equations show that the vector \mathbf{y}_{t} can be described as a stationary component,

$$
\left[\begin{array}{c}
\tilde{\boldsymbol{\mu}}_{1} \\
\tilde{\boldsymbol{\mu}}_{2}
\end{array}\right]+\left[\begin{array}{l}
\tilde{\boldsymbol{\eta}}_{1 t} \\
\boldsymbol{\eta}_{2 t}
\end{array}\right],
$$

plus linear combinations of up to g common deterministic trends, as described by the $(g \times 1)$ vector $\boldsymbol{\delta}_{2} \cdot t$, the linear combination of the g common stochastic trend as described by the $(g \times 1)$ vector $\boldsymbol{\xi}_{2 t}$. Therefore, when we say that a $k \times 1$ vector \mathbf{y}_{t} is characterized by exactly h cointegrations, it is equivalent to say that there are $g(=k-h)$ common trends among them.

5 Estimation and Testing of Cointegration from Single Equation

5.1 Testing for Cointegration When the Cointegrating Vector is Known

Often when theoretical considerations suggest that certain variables will be cointegrated, or that $\mathbf{a}^{\prime} \mathbf{y}_{t}$ is stationary for some $(k \times 1)$ cointegrating vector a, the theory is based on a particular known value for \mathbf{a}. In the purchasing power parity example, $\mathbf{a}=(1-1-1)^{\prime}$. Given the null hypothesis of unit root can not be rejected from various unit root tests on the individual series p_{t}, s_{t}, and p_{t}^{*}, the next step is to test whether their particular linear combination $z_{t}=\mathbf{a}^{\prime} \mathbf{y}_{t}=p_{t}-s_{t}-p_{t}^{*}$ is stationary from various unit root tests. See the example on p. 585 of Hamilton.

5.2 Testing the Null Hypothesis of No Cointegration, Residual-Based Tests for Cointegration

If the theoretical model of the system dynamic does not suggest a particular value for the cointegrating vector a, then one approach is first to estimate a by $O L S$.

5.2.1 Estimating The Cointegrating Vector

If it is known for certain that the cointegrating vector has a nonzero coefficient for the first element of $\mathbf{y}_{t}\left(a_{1} \neq 0\right)$, then a particularly convenient normalization is to set $a_{1}=1$ and represent subsequent entries of $\mathbf{a}\left(a_{2}, a_{3}, \ldots, a_{k}\right)$ as the negative s of a set of unknown parameters $\left(\gamma_{2}, \gamma_{3}, \ldots, \gamma_{k}\right)$:

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\cdot \\
\cdot \\
\cdot \\
a_{k}
\end{array}\right]=\left[\begin{array}{c}
1 \\
-\gamma_{2} \\
-\gamma_{3} \\
\cdot \\
\cdot \\
\cdot \\
-\gamma_{k}
\end{array}\right],
$$

where $\gamma_{i}=-a_{i} / a_{1}, \forall i=2, \ldots, k$. Then consistent estimation of \mathbf{a} is achieved by an $O L S$ regression of the first element of \mathbf{y}_{t} on all of the other:

$$
\begin{equation*}
Y_{1 t}=\gamma_{2} Y_{2 t}+\gamma_{3} Y_{3 t}+\ldots+\gamma_{k} Y_{k t}+u_{t} . \tag{23-26}
\end{equation*}
$$

[^5]Consistent estimates of $\gamma_{2}, \gamma_{3}, \ldots, \gamma_{k}$ are also obtained when a constant term is included in (27), as in

$$
Y_{1 t}=\alpha+\gamma_{2} Y_{2 t}+\gamma_{3} Y_{3 t}+\ldots+\gamma_{k} Y_{k t}+u_{t} .
$$

or

$$
Y_{1 t}=\alpha+\gamma^{\prime} \mathbf{y}_{2 t}+u_{t}
$$

where $\boldsymbol{\gamma}^{\prime}=\left(\gamma_{2}, \gamma_{3}, \ldots, \gamma_{k}\right)$ and $\mathbf{y}_{2 t}=\left(Y_{2 t}, Y_{3 t}, \ldots, Y_{k t}\right)^{\prime}$.

Theorem (Stock, 1986):
Let $Y_{1 t}$ be a scalar $\mathbf{y}_{2 t}$ be a $(g \times 1)$ vector. Let $k \equiv g+1$, and suppose that the $(k \times 1)$ vector $\left(Y_{1 t}, \mathbf{y}_{2 t}^{\prime}\right)^{\prime}$ is characterized by exactly one cointegrating relation $(h=1)$ that has a nonzero coefficients on $y_{1 t}$. Let the triangular representation for the system be

$$
\begin{align*}
Y_{1 t} & =\alpha+\gamma^{\prime} \mathbf{y}_{2 t}+z_{t}^{*} \tag{23-27}\\
\triangle \mathbf{y}_{2 t} & =\mathbf{u}_{2 t} \tag{23-28}
\end{align*}
$$

Suppose that

$$
\left[\begin{array}{c}
z_{t}^{*} \\
\mathbf{u}_{2 t}
\end{array}\right]=\boldsymbol{\Psi}^{*}(L) \varepsilon_{t}
$$

where $\boldsymbol{\varepsilon}_{t}$ is an $(k \times 1)$ i.i.d. vector with mean zero, finite fourth moments, and positive definite variance-covariance matrix $E\left(\varepsilon_{t} \varepsilon_{t}^{\prime}\right)=\mathbf{P P}^{\prime}$. Suppose further that the sequence of $(k \times k)$ matrices $\left\{s \cdot \boldsymbol{\Psi}_{s}^{*}\right\}_{s=0}^{\infty}$ is absolutely summable and that the rows of $\boldsymbol{\Psi}^{*}(1)$ are linearly independent. Let $\hat{\alpha}_{T}$ and $\hat{\gamma}_{T}$ be the OLS estimators of (28). Partition $\Psi^{*}(1) \cdot \mathbf{P}$ as

$$
\Psi^{*}(1) \cdot \mathbf{P}=\left[\begin{array}{l}
\boldsymbol{\lambda}_{1}^{* \prime}{ }_{(1 \times n)} \\
\boldsymbol{\Lambda}_{2(g \times n)}^{*}
\end{array}\right] .
$$

Then

$$
\left[\begin{array}{c}
T^{1 / 2}\left(\hat{\alpha}_{T}-\alpha\right) \\
T\left(\hat{\gamma}_{T}-\gamma\right)
\end{array}\right] \xrightarrow{L}\left[\begin{array}{cc}
1 & \left\{\int[\mathbf{W}(r)]^{\prime} d r\right\} \cdot \boldsymbol{\Lambda}_{2}^{* \prime} \\
\boldsymbol{\Lambda}_{2}^{*} \cdot \int \mathbf{W}(r) d r & \boldsymbol{\Lambda}_{2}^{*}\left\{\int[\mathbf{W}(r)] \cdot[\mathbf{W}(r)]^{\prime} d r\right\} \cdot \boldsymbol{\Lambda}_{2}^{* \prime}
\end{array}\right]^{-1}\left[\begin{array}{l}
h_{1} \\
\mathbf{h}_{2}
\end{array}(\} 3-29\right)
$$

where $\mathbf{W}(r)$ is k-dimensional standard Brownian motion, the integral sign denotes integration over r from 0 to 1 , and

$$
\begin{aligned}
h_{1} & \equiv \boldsymbol{\lambda}_{1}^{* \prime} \cdot \mathbf{W}(1) \\
\mathbf{h}_{2} & \equiv \boldsymbol{\Lambda}_{2}^{*}\left\{\int[\mathbf{W}(r)] \cdot[\mathbf{W}(r)]^{\prime} d r\right\} \cdot \boldsymbol{\lambda}_{1}^{*}+\sum_{v=0}^{\infty} E\left(\mathbf{u}_{2 t} z_{t+v}^{*}\right) .
\end{aligned}
$$

This theorem shows that the $O L S$ estimator of the cointegrating vector is consistent. However, it is noted that the correlation between the regressors $\mathbf{y}_{2 t}$ and the error z_{t}^{*} is not to induce inconsistency of $\hat{\boldsymbol{\gamma}}_{T}$; instead, the asymptotic distribution exhibits a bias since the distribution of $T\left(\hat{\gamma}_{T}-\gamma\right)$ does not centered around zero. ${ }^{8}$

In the next chapter we will consider system estimation of cointegrating vector. Banerjee et al. (1993, p.214) examined one of main reasons for using such an estimation: the large finite-sample biases that can arise static $O L S$ estimates of cointegrating vectors or parameters. While such estimator are super-consistent (T-consistent), Monte Carlo experiments nonetheless suggest that a large number of observations may be necessary before the biases become small.

Example.

The following is the code to generate the spurious regression. Let $X_{t}=X_{t-1}+v_{t}$, and $Y_{t}=2+3 X_{t}+u_{t}$ where

$$
\left[\begin{array}{l}
u_{t} \\
v_{t}
\end{array}\right] \stackrel{i . i . d}{\sim} N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 2
\end{array}\right]\right) .
$$

Consider the sequence of an OLS regression of Y_{t} on X_{t} and a constant

$$
Y_{t}=\alpha+\beta X_{t}+\varepsilon_{t}, t=1,2, \ldots, T
$$

It can see that the $O L S$ estimates of $\hat{\alpha}$ and $\hat{\beta}$ is super-consistent and the t-ratio to test the null hypothesis that $\alpha=0$ and $\beta=0, t_{\hat{\alpha}}$ and $t_{\hat{\beta}}$, ??is increasing with sample. We always incorrectly reject the null hypothesis.
(a). Plot super-consistency of $\hat{\alpha}$ and $\hat{\beta}$.
(b). Plot the t ratio, $t_{\hat{\alpha}}$ and $t_{\hat{\beta}}$.

[^6]

5.3 The Role of Normalization

The $O L S$ estimate of the cointegrating vector was obtained by normalizing the first element of the cointegrating vector a to be unity. The proposal was then to regress the first element of \mathbf{y}_{t} on the others. For example, with $k=2$, we would regression $Y_{1 t}$ on $Y_{2 t}$:

$$
Y_{1 t}=\alpha+\gamma Y_{2 t}+u_{t}
$$

Obviously, we might equally well have normalized $a_{2}=1$ and use the same argument to suggest a regression of $Y_{2 t}$ on $Y_{1 t}$:

$$
Y_{2 t}=\theta+\xi Y_{1 t}+v_{t} .
$$

The $O L S$ estimate of $\hat{\xi}$ is not simply the inverse of $\hat{\gamma}$, meaning that these two regressions will give different estimate of the cointegrating vector:

$$
\left[\begin{array}{c}
1 \\
-\hat{\gamma}
\end{array}\right] \neq-\hat{\gamma}\left[\begin{array}{c}
-\hat{\xi} \\
1
\end{array}\right] .
$$

Thus, choosing which variable to call $Y_{1 t}$ and which to call $Y_{2 t}$ might end up making a material difference for the estimate of a as well as for the evidence one finds for cointegration among the series.

5.3.1 What Is the Regression Estimating When There Is More Than One Cointegrating Relation?

The limiting distribution of the $O L S$ estimation in Theorem 1 was derived under the assumption that there is only one cointegration $(h=1)$. In a more general case with $h>1, O L S$ estimate of (28) should still provide a consistent estimate of a cointegrating vector. But which cointegrating vector is it? Wooldridge (1991) show that among the set of possible cointegrating relations, $O L S$ estimation of (28) select the relation whose residuals are uncorrelated with any other $I(1)$ linear combination of $\left(Y_{2 t}, Y_{3 t}, \ldots, Y_{k t}\right)$.

5.3.2 What Is the Regression Estimating When There Is No Cointegrating Relation ?

Let us now consider the properties of $O L S$ estimation when there is no cointegrating relation. Then (28) is a regression of an $I(1)$ variables on a set of $(k-1) I(1)$ variables for which no coefficients produce an $I(0)$ error term. The regression is therefore subject to the spurious regression problem described in Chapter 22. The coefficient $\hat{\alpha}$ and $\hat{\boldsymbol{\gamma}}$ do not provide consistent estimate of any population parameter, and the $O L S$ sample
residual \hat{u}_{t} will be non-stationary. However, this last property can be exploited to test for cointegration. If there is no cointegration, then a regression of \hat{u}_{t} on \hat{u}_{t-1} should yield a unit coefficient. If there is cointegration, then a regression of \hat{u}_{t} on \hat{u}_{t-1} should yield a coefficient that is less than one.

The proposal is thus to estimate (28) by $O L S$ and then construct one of the standard unit root tests on the estimated residuals, such as the $A D F t$ test or the $P P$'s Z_{β} or Z_{t} test. Although theses test statistics are constructed in the same way as when they are applied to individual series y_{t}, when the test are applied to the residual \hat{u}_{t} from a spurious regression, the critical values that are used to interpret the test statistics are different from those employed in Chapter 21.
$\mathfrak{T h e o r e m} 2$ (Residual-Based test for Cointegration, Test with No Cointegration as Null):
Consider an $(k \times 1)$ vector \mathbf{y}_{t} such that

$$
(1-L) \mathbf{y}_{t}=\boldsymbol{\Psi}(L) \varepsilon_{t}=\sum_{s=0}^{\infty} \boldsymbol{\Psi}_{s} \varepsilon_{t-s}
$$

for ε_{t} an i.i.d. vector with mean zero, variance $E\left(\varepsilon_{t} \varepsilon_{t}^{\prime}\right)=\boldsymbol{\Omega}=\mathbf{P P}^{\prime}$, and finite fourth moment and where $\left\{s \cdot \boldsymbol{\Psi}_{s}\right\}_{s=0}^{\infty}$ is absolutely summable. Let $g=(k-1)$ and $\boldsymbol{\Lambda}=$ $\boldsymbol{\Psi}(1) \mathbf{P}$. Suppose that the $(k \times k)$ matrix $\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\prime}$ is nonsingular, and let \mathbf{L} denote the Cholesky decomposition of $\left(\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\prime}\right)^{-1}$. Partition \mathbf{y}_{t} as $\mathbf{y}_{t}=\left(Y_{1 t}, \mathbf{y}_{2 t}^{\prime}\right)^{\prime}$ and consider the OLS regression:

$$
\begin{equation*}
Y_{1 t}=\hat{\alpha}_{T}+\mathbf{y}_{2 t}^{\prime} \hat{\boldsymbol{\beta}}_{T}+\hat{u}_{t} . \tag{23-30}
\end{equation*}
$$

The residual \hat{u}_{t} can then be regression on its own lagged value \hat{u}_{t-1} without a constant term (since the original regression (31) has contained a constant term, the disturbance term u_{t} is zero-mean):

$$
\begin{equation*}
\hat{u}_{t}=\rho \hat{u}_{t-1}+e_{t}, \tag{23-31}
\end{equation*}
$$

yield the $O L S$ estimate

$$
\begin{equation*}
\hat{\rho}_{T}=\frac{\sum \hat{u}_{t} \hat{u}_{t-1}}{\sum \hat{u}_{t-1}^{2}} \tag{23-32}
\end{equation*}
$$

We may form standard Dickey-Fuller and Phillips-Perron $\left(Z_{\rho}, Z_{t}\right)$ from (32). Alternatively we can form a $A D F$ test from

$$
\begin{equation*}
\hat{u}_{t}=\zeta_{1} \triangle \hat{u}_{t-1}+\zeta_{2} \triangle \hat{u}_{t-2}+\ldots+\zeta_{p-1} \triangle \hat{u}_{t-p+1}+\rho \hat{u}_{t-1}+e_{t} . \tag{23-33}
\end{equation*}
$$

Then the following results hold.
(a) The statistics $\hat{\rho}$ defined in (33) satisfies (standard $D F$ test)

$$
\begin{align*}
(T-1)(\hat{\rho}-1) \xrightarrow{L} & \left\{\frac{1}{2}\left\{\left[1-\mathbf{h}_{2}^{\prime}\right] \cdot\left[\mathbf{w}^{*}(1)\right]\left[\mathbf{w}^{*}(1)\right]^{\prime}\left[\begin{array}{c}
1 \\
-\mathbf{h}_{2}
\end{array}\right]\right\}\right. \\
& -h_{1}\left[\mathbf{w}^{*}(1)\right]^{\prime}\left[\begin{array}{c}
1 \\
-\mathbf{h}_{2}
\end{array}\right] \\
& \left.-\frac{1}{2}\left[1-\mathbf{h}_{2}^{\prime}\right] \mathbf{L}^{\prime}\left[E\left(\triangle \mathbf{y}_{t}\right)\left(\triangle \mathbf{y}_{t}^{\prime}\right)\right] \mathbf{L}\left[\begin{array}{c}
1 \\
-\mathbf{h}_{2}
\end{array}\right]\right\} \div H_{n} \tag{23-34}
\end{align*}
$$

Here, \mathbf{w}^{*} denotes n-dimensional standard Brownian motion partitioned as

$$
\mathbf{w}^{*}=\left[\begin{array}{c}
W_{1}^{*}(r)_{(1 \times 1)} \\
\mathbf{w}_{2}^{*}(r)_{(g \times 1)}
\end{array}\right]
$$

h_{1} is a scalar and \mathbf{h}_{2} is a $(g \times 1)$ vector given by

$$
\left[\begin{array}{l}
h_{1} \\
\mathbf{h}_{2}
\end{array}\right] \equiv\left[\begin{array}{cc}
1 & \int_{0}^{1}\left[\mathbf{w}_{2}^{*}(r)\right]^{\prime} d r \\
\int_{0}^{1} \mathbf{w}_{2}^{*}(r) d r & \int_{0}^{1}\left[\mathbf{w}_{2}^{*}(r)\right]\left[\mathbf{w}_{2}^{*}(r)\right]^{\prime} d r
\end{array}\right]^{-1} \times\left[\begin{array}{c}
\int_{0}^{1} W_{1}^{*}(r) d r \\
\int_{0}^{1} \mathbf{w}_{2}^{*}(r) W_{1}^{*}(r) d r
\end{array}\right]
$$

and

$$
H_{n}=\int_{0}^{1}\left[W_{1}^{*}(r)\right]^{2} d r-\left[\int_{0}^{1} W_{1}^{*}(r) d r \int_{0}^{1}\left[W_{1}^{*}(r)\right]\left[\mathbf{w}_{2}^{*}(r)\right]^{\prime} d r\right]\left[\begin{array}{l}
h_{1} \\
\mathbf{h}_{2}
\end{array}\right] .
$$

(b) If the $l \rightarrow \infty$ (Newey-West truncated parameter) as $T \rightarrow \infty$ but $l / T \rightarrow 0$, then the Phillips-Perron statistics constructed from \hat{u}_{t}, Z_{ρ} satisfies

$$
\begin{equation*}
Z_{\rho} \xrightarrow{L} Z_{n}, \tag{23-35}
\end{equation*}
$$

where

$$
\begin{align*}
Z_{n} \equiv & \left\{\frac{1}{2}\left\{\left[1-\mathbf{h}_{2}^{\prime}\right] \cdot\left[\mathbf{w}^{*}(1)\right]\left[\mathbf{w}^{*}(1)\right]^{\prime}\left[\begin{array}{c}
1 \\
-\mathbf{h}_{2}
\end{array}\right]\right\}\right. \\
& \left.-h_{1}\left[\mathbf{w}^{*}(1)\right]^{\prime}\left[\begin{array}{c}
1 \\
-\mathbf{h}_{2}
\end{array}\right]-\frac{1}{2}\left(1+\mathbf{h}_{2}^{\prime} \mathbf{h}_{2}\right)\right\} \div H_{n} \tag{23-36}
\end{align*}
$$

(c) If the $l \rightarrow \infty$ as $T \rightarrow \infty$ but $l / T \rightarrow 0$, then the Phillips-Perron statistics constructed from \hat{u}_{t}, Z_{t} satisfies

$$
\begin{equation*}
Z_{t} \xrightarrow{L} Z_{n} \cdot \sqrt{H_{n}} \div\left(1+\mathbf{h}_{2}^{\prime} \mathbf{h}_{2}\right)^{1 / 2} . \tag{23-37}
\end{equation*}
$$

(d) If, in addition to the preceding assumptions, $\triangle \mathbf{y}_{t}$ follows a zero-mean stationary vector $A R M A$ process and if $p \rightarrow \infty$ as $t \rightarrow \infty$ but $p / T^{1 / 3} \rightarrow 0$, then the $A D F t$ test statistics associated with (34) has the same limiting distribution as the test statistics Z_{t} described in (38).

Results (a) implies that $\hat{\rho} \xrightarrow{p} 1$. Note that although $W_{1}^{*}(r)$ and $\mathbf{w}_{2}^{*}(r)$ are standard Brownian motion, the distribution of the term $h_{1}, \mathbf{h}_{2}, H_{n}$ and Z_{n} above depend only on the number of stochastic explanatory variables included in the cointegrating regression ($k-1$) and on whether a constant term (original cointegration regression) appears in the regression, $(T-1)(\hat{\rho}-1)$ are affected by the variance, correlations and dynamics of $\triangle \mathbf{y}_{t}$.

In the special case when $\triangle \mathbf{y}_{t}$ is i.i.d., then $\boldsymbol{\Psi}(L)=\mathbf{I}_{n}$, and the matrix $\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\prime}=$ $E\left(\triangle \mathbf{y}_{t} \triangle \mathbf{y}_{t}^{\prime}\right)$. Since $\mathbf{L L}^{\prime}=\left(\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\prime}\right)^{-1}$, it follows that $\left(\boldsymbol{\Lambda} \boldsymbol{\Lambda}^{\prime}\right)=\left(\mathbf{L}^{\prime}\right)^{-1}(\mathbf{L})^{-1}$. Hence,

$$
\begin{equation*}
\mathbf{L}^{\prime}\left[E\left(\triangle \mathbf{y}_{t}\right)\left(\triangle \mathbf{y}_{t}^{\prime}\right)\right] \mathbf{L}=\mathbf{L}^{\prime}\left(\boldsymbol{\Lambda} \mathbf{\Lambda}^{\prime}\right) \mathbf{L}=\mathbf{L}^{\prime}\left[\left(\mathbf{L}^{\prime}\right)^{-1}(\mathbf{L})^{-1}\right] \mathbf{L}=\mathbf{I}_{n} \tag{23-38}
\end{equation*}
$$

If (39) is substituted into (35), the results is that when $\triangle \mathbf{y}_{t}$ is i.i.d.,

$$
T(\hat{\rho}-1) \xrightarrow{L} Z_{n}
$$

for Z_{n} defined in (37).

In the more general case when $\triangle \mathbf{y}_{t}$ is serially correlated, the limiting distribution of $T(\hat{\rho}-1)$ depends on the nature of this correlation as captured by the elements \mathbf{L}. However, the corrections for autocorrelation implicit in Phillips's Z_{ρ} and Z_{t} statistics or the augmented Dickey-Fuller t test turn out to generate variables whose distribution do not depend on any nuisance parameters.

Although the distribution of $Z_{\rho} Z_{t}$ and the $A D F_{t}$ do not depend on nuisance parameters, the distribution when these statistics are calculated from the residuals \hat{u}_{t} are not the same as the distribution these statistics would have if calculated from the raw data $\triangle \mathbf{y}_{t}$. Moreover, different values for $(k-1)$ (the number of stochastic explanatory variables in the cointegrating regression) imply different characterizations of the limiting statistics, $h_{1}, \mathbf{h}_{2}, H_{n}$, and Z_{n}, meaning that a different critical value must be used to interpret Z_{ρ} for each value of $(k-1)$. Similarly, the asymptotic distribution of \mathbf{h}_{2}, H_{n}, and Z_{n} are different depending on whether a constant term is included in
the cointegrating regression.

$\mathfrak{E x a m p l e}$:

See the purchasing power parity example on Hamilton's p.598.

Exercise:

Reproduce the values in case 2 of Table B. 8 and B. 9 on Hamilton's p.765-766.

5.4 Tests with Cointegration as Null

The test considered in the previous sections are for the null hypothesis of no cointegration. These are based on tests for a unit root hypothesis in the residuals for the cointegrating regression. In Chapter 21 we discussed unit root tests with stationarity as the null hypothesis (e.g. KPSS). Correspondingly these are tests with cointegration as the null. They are
(a) the Leybourne and McCabe test (1993) which is based on an unobserved components model;
(b) the Park and Choi test $(1988,1990)$ which is based on testing the significance of superfluous regressors;
(c) the Shin (1994) test which is a residual-based test
(d) Harris and Inder (1994) test which use non-parametric correction procedure for estimation of cointegration regression.

5.5 Testing Hypothesis About the Cointegrating Vector

The previous section described some way to test whether a vector \mathbf{y}_{t} is cointegrated. It was noted that if \mathbf{y}_{t} is cointegrated, then a consistent estimate of the cointegrating vector can be obtained by $O L S$. However, a difficulties arise with nonstandard distribution for hypothesis test about the cointegrating vector due to the possibility of nonzero correlation between z_{t}^{*} and $\mathbf{u}_{2 t}$. The nuisance parameters $\boldsymbol{\lambda}_{1}^{*}$ and $\boldsymbol{\Lambda}_{2}^{*}$ which appear in (30) also cause a problem. The basic approach to constructing hypothesis tests will therefore be to transform the regression or the estimate so as to eliminate the effects of this correlation. The first one is Stock and Watson (1993)'s dynamic OLS which corrects the correlation by adding leads and lags of $\triangle \mathbf{y}_{2 t}$. The second one is

Phillips and Hansen (1990)'s fully modified OLS estimate. Modification of the OLS have been made in two points. See Hatanaka (1996) p. 266 for details.

6 Simulation of Bivariate Cointegrated System

To illustrate the potential difference in size and power between various residual-based test for cointegration in finite sample, a monte Carlo experiment proposed by Cheung and Lai (1993), similar to that of Engle and Granger (1987), can be conducted. A bivariate system of x_{t} and y_{t} is modeled by

$$
\begin{equation*}
x_{t}+y_{t}=u_{t} \tag{23-39}
\end{equation*}
$$

and

$$
\begin{equation*}
x_{t}+2 y_{t}=v_{t} \tag{23-40}
\end{equation*}
$$

with $(1-L) u_{t}=\varepsilon_{t}$, and v_{t} is generated as an $A R(1)$ process

$$
\begin{equation*}
(1-\phi L) v_{t}=\eta_{t} . \tag{23-41}
\end{equation*}
$$

The innovation ε_{t} and η_{t} are generated as independent standard normal variates. When v_{t} is given by (42) with $|\phi|<1, x_{t}$ and y_{t} are cointegrated and (41) is their cointegrating relationship. However, when $|\phi|=1$, the two series are not cointegrated.

Exercise:

Use the simulation based on 10000 replication in a sample of size 500 to compare the performance of size and power ($\phi=0.85$) of residual-based $A D F$ and $P P$ test for cointegration on a nominal size 5%. Truncated number is chosen as $p=l=4$.

Example.

The following is the code to cointegration regression. Let $X_{t}=X_{t-1}+v_{t}$ and $Y_{t}=$ $2+3 X_{t}+u_{t}$, where

$$
\left[\begin{array}{l}
u_{t} \\
v_{t}
\end{array}\right] \stackrel{i . i . d}{\sim} N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
1 & 0.5 \\
0.5 & 2
\end{array}\right]\right) .
$$

Consider the sequence of an OLS regression of Y_{t} on X_{t} and a constant

$$
Y_{t}=\alpha+\beta X_{t}+\varepsilon_{t}, t=1,2, \ldots, T
$$

It can see that the $O L S$ estimates of $\hat{\alpha}$ and $\hat{\beta}$ is super-consistent and the t-ratio to test the null hypothesis that $\alpha=0$ and $\beta=0, t_{\hat{\alpha}}$ and $t_{\hat{\beta}}$.
[Appendix]

$$
\begin{gathered}
\tilde{\mathbf{H}}(\mathbf{L})=\left[\begin{array}{cc}
\mathbf{B}^{\prime} \mathbf{B} \mathbf{A}^{\prime} \mathbf{A}+\mathbf{B}^{\prime} \mathbf{C}(\mathbf{L}) \mathbf{A}(\mathbf{1}-\mathbf{L}) & \mathbf{B}^{\prime} \mathbf{C}(\mathbf{L}) \mathbf{A}_{\perp} \\
\mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{L}) \mathbf{A}(\mathbf{1}-\mathbf{L}) & \mathbf{B}_{\perp}^{\prime} \mathbf{C}(\mathbf{L}) \mathbf{A}_{\perp}
\end{array}\right] \\
C(L)=(\xi(\mathbf{L})-\xi(\mathbf{1})) /(\mathbf{1}-\mathbf{L}) \\
\tilde{\mathbf{H}}(\mathbf{L})=\left[\begin{array}{cl}
\mathbf{B}^{\prime} \mathbf{B} \mathbf{A}^{\prime} \mathbf{A}+\mathbf{B}^{\prime}(\xi(\mathbf{L})-\xi(\mathbf{1})) \mathbf{A} & \mathbf{B}^{\prime}(\xi(\mathbf{L})-\xi(\mathbf{1})) \mathbf{A}_{\perp}(\mathbf{1}-\mathbf{L})^{-\mathbf{1}} \\
\mathbf{B}_{\perp}^{\prime}(\xi(\mathbf{L})-\xi(\mathbf{1})) \mathbf{A} & \mathbf{B}_{\perp}^{\prime}(\xi(\mathbf{L})-\xi(\mathbf{1})) \mathbf{A}_{\perp}(\mathbf{1}-\mathbf{L})^{-\mathbf{1}}
\end{array}\right] \\
\xi(\mathbf{1})=-\xi_{\mathbf{0}}=\mathbf{B A}^{\prime} \\
\tilde{\mathbf{H}}(\mathbf{L})=\left[\begin{array}{cc}
\mathbf{B}^{\prime} \mathbf{B} \mathbf{A}^{\prime} \mathbf{A}+\mathbf{B}^{\prime}\left(\xi(\mathbf{L})-\mathbf{B A}^{\prime}\right) \mathbf{A} & \mathbf{B}^{\prime}\left(\xi(\mathbf{L})-\mathbf{B A}^{\prime}\right) \mathbf{A}_{\perp}(\mathbf{1}-\mathbf{L})^{-\mathbf{1}} \\
\mathbf{B}_{\perp}^{\prime}\left(\xi(\mathbf{L})-\mathbf{B} A^{\prime}\right) \mathbf{A} & \mathbf{B}_{\perp}^{\prime}\left(\xi(\mathbf{L})-\mathbf{B} \mathbf{A}^{\prime}\right) \mathbf{A}_{\perp}(\mathbf{1}-\mathbf{L})^{-\mathbf{1}}
\end{array}\right] \\
\tilde{\mathbf{H}}(\mathbf{L})=\left[\begin{array}{c}
\mathbf{B}^{\prime} \xi(\mathbf{L}) \mathbf{A} \\
\mathbf{B}_{\perp}^{\prime} \xi(\mathbf{L}) \mathbf{A}_{\perp}(\mathbf{1}-\mathbf{L})^{-\mathbf{1}} \\
\mathbf{B}_{\perp} \xi(\mathbf{L}) \mathbf{A} \\
\mathbf{B}_{\perp}^{\prime} \xi(\mathbf{L}) \mathbf{A}_{\perp}(\mathbf{1}-\mathbf{L})^{-\mathbf{1}}
\end{array}\right] \\
\tilde{\mathbf{H}}(\mathbf{L})=\left(\mathbf{B}, \mathbf{B}_{\perp}\right)^{\prime} \xi(\mathbf{L})\left(\mathbf{A}, \mathbf{A}_{\perp}(\mathbf{1}-\mathbf{L})^{-\mathbf{1}}\right)
\end{gathered}
$$

by the determinant

$$
\begin{gathered}
|A B|=|A||B| \&\left|B^{\prime}\right|=|B| \\
|\tilde{\mathbf{H}}(\mathbf{L})|=\left|\left(\mathbf{B}, \mathbf{B}_{\perp}\right)\right||\xi(\mathbf{L})|\left|\left(\mathbf{A}, \mathbf{A}_{\perp}\right)\right|(\mathbf{1}-\mathbf{L})^{-(\mathbf{k}-\mathbf{h})}
\end{gathered}
$$

[^0]: ${ }^{1}$ Recalling the results that $\operatorname{rank}(\mathbf{A B}) \leq \min (\operatorname{rank}(\mathbf{A}), \operatorname{rank}(\mathbf{B}))$.

[^1]: ${ }^{2}$ Recalling from Chapter 15 that Wold's decomposition is important for us because it provides an explanation of the sense in which $A R M A$ model (stochastic difference equation) provide a general model for the indeterministic part of any stationary stochastic process.

[^2]: ${ }^{3}$ See Banerjee et.al (1993) p. 151 for details.
 ${ }^{4}$ Recall from Theorem 4 on page 7 of Chapter 22, this condition violate the proof of spurious regression

[^3]: ${ }^{5}$ If the determinant of an $(n \times n)$ matrix \mathbf{H} is not equal zero, its inverse is found by dividing the adjoint by the determinant: $\mathbf{H}^{-1}=(1 /|\mathbf{H}|) \cdot\left[(-1)^{i+j}\left|\mathbf{H}_{j i}\right|\right]$.
 ${ }^{6}$ The is not the only model for $I(1)$. See Saikkonen and Luukkonen (1997) infinite VAR and ? VARMA model

[^4]: ${ }^{7}$ Define the orthogonal complements \mathbf{P}_{\perp} of any matrix \mathbf{P} of rank q and dimension $n \times q$ as follows $(0<q<n)$:
 (a) \mathbf{P}_{\perp} is of dimension $n \times(n-q)$;
 (b) $\mathbf{P}_{\perp}^{\prime} \mathbf{P}=\mathbf{0}_{(n-q) \times q}, \mathbf{P}^{\prime} \mathbf{P}_{\perp}=\mathbf{0}_{q \times(n-q)}$;
 (c) \mathbf{P}_{\perp} has rank $n-q$, and its column space lies in the null space of \mathbf{P}^{\prime}.

[^5]: (®) 2017 by $\mathfrak{P r o f}$. $\mathfrak{C h i n g n u n} \mathfrak{L e e}$

[^6]: ${ }^{8}$ See similar results at Phillips-Perron Test of Chapter 21.

