
Ch. 22 Unit Root in Vector Time Series
(June 12, 2017)

1 Multivariate Wiener Processes and Multivariate FCLT

Section 2.1 of Chapter 21 described univariate standard Brownian motion W (r) as

a scalar continuous-time process (W : r ∈ [0, 1] → R1). The variable W (r) has a

N(0, r) distribution across realization, and for any given realization, W (r) is continu-

ous function of the date r with independent increments. If a set of k such independent

processes, denoted W1(r),W2(r), ...,Wk(r), are collected in a ( k × 1) vector w(r), the

results is k − dimentional standard Brownian motion.

Definition.
A k-dimensional standard Brownian motion w(·) is a continuous-time process associ-

ating each date r ∈ [0, 1] with the (k × 1) vector w(r) satisfying the following:

(a). w(0) = 0;

(b). For any dates 0 ≤ r1 < r2 < ... < rk ≤ 1, the changes [w(r2)−w(r1)], [w(r3)−
w(r2)], ..., [w(rk)−w(rk−1)] are independent multivariate Gaussian with [w(s)−
w(v)] ∼ N(0, (s− v)Ik);

(c). For any given realization, w(r) is continuous in r with probability 1. �

Analogous to the univariate case, we can define a multivariate random walk as fol-

lows.

1



Ch.22 1 MULTIVARIATE WIENER PROCESSES AND MULTIVARIATE FCLT

Definition.
Let the k × 1 random vector yt follow yt = yt−1 + εt, t = 1, 2, ..., where y0 = 0 and

εt is a sequence of i.i.d. random vector such that E(εt) = 0 and E(εtε
′
t) = Ω, a fi-

nite positive definite matrix. Then yt is a multivariate (k-dimensional) random walk.�

We form the re-scaled partial sums as

wT (r) ≡ Ω−1/2T−1/2
[Tr]∗∑
t=1

εt.

The components of wT (r) are the individual partial sums

WTj(r) = T−1/2
[Tr]∗∑
t=1

ε̃tj, j = 1, 2, ..., k,

where ε̃tj is the jth element of Ω−1/2εt.

The Function Central Limit Theorem (FCLT) provides conditions under which

wT (r) converges to the multivariate standard Wiener process w(r). The simplest mul-

tivariate FCLT is the multivariate Donsker’s theorem.

Theorem. (Multivariate Donsker)

Let εt be a sequence of i.i.d. random vector such that E(εt) = 0 and E(εtε
′
t) = Ω, a

finite positive definite matrix. Then wT (·) =⇒ w(·). �

Quite general multivariate FCLTs are available. For example, we may applied FCLT

to serially dependent vector processes using a generalization of (70) and Theorem 12

of Chapter 21.

Theorem. (FCLT when ut is a vector MA(∞) process):

Let

ut =
∞∑
s=0

Ψsεt−s,

then

wT (·) =⇒ w(·),
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where wT (r) ≡ Ψ(1)−1Ω−1/2T−1/2
∑[Tr]∗

t=1 ut, εt is a k dimensional i.i.d. random vector

with variance covariance Ω, and if ψ
(s)
ij denote the row i, column j element of Ψs,

∞∑
s=0

s · |ψ(s)
ij | <∞

for each i, j = 1, 2, ..., k.

Proof.
Using multivariate Beveridge-Nelson decomposition and from that to derive the long

run variance matrix of ut to be 1
T
E[
∑

ut]
2 = Ψ2(1)Ω. �
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2 Vector Autoregression Containing Unit Roots

Let yt be an (k × 1) vector autoregressive process (V AR(p)), i.e.

[Ik −Φ1L−Φ2L
2 − ...−ΦpL

p]yt = c + εt. (22-1)

The scalar algebra in (33) of Chapter 21 works perfectly well for matrices, estab-

lishing that for any value Φ1, Φ2,..., Φp, the following polynomials are equivalent:

[Ik −Φ1L−Φ2L
2 − ...−ΦpL

p]

= (Ik − ρL)− (ξ1L+ ξ2L
2 + ...+ ξp−1L

p−1)(1− L),

where

ρ ≡ Φ1 + Φ2 + ...+ Φp (22-2)

ξs ≡ −[Φs+1 + Φs+2 + ...+ Φp] for s = 1, 2, ..., p− 1.

It follows that any V AR(p) process (22-1) can always be written in the form

(Ik − ρL)yt − (ξ1L+ ξ2L
2 + ...+ ξp−1L

p−1)(1− L)yt = c + εt

or

yt = ξ14yt−1 + ξ24yt−2 + ...+ ξp−1yt−p+1 + c + ρyt−1 + εt. (22-3)

There are tow meanings of a V AR process contains unit roots.

(a). First, if the first difference of yt follows a V AR(p− 1) process:

4yt = ξ14yt−1 + ξ24yt−2 + ...+ ξp−1yt−p+1 + c + εt,

requiring from (22-3) that

ρ = Ik

or from (22-2) that

Φ1 + Φ2 + ...+ Φp = Ik. (22-4)
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(b). Second, recalling from (8) of Chapter 18 that a V AR(p) such as in (22-1) will be

said to contain at least one unit root (z = 1) if the following determinant is zero:

|Ik −Φ1 −Φ2 − ...−Φp| = 0. (22-5)

�

Note that (22-4) implies (22-5) but (22-5) does not imply (22-4). Vector autore-

gression for which (22-5) holds but (22-4) does not will be considered in Chapter 23.
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3 Spurious Regression

3.1 Asymptotics for Spurious Regression

Consider a regression of the form

yt = x′tβ + ut, (22-6)

for which elements of yt and xt might be nonstationary. If there does not exist some

population value for β for which the disturbance ut = yt − x′tβ is I(0), then OLS

is quite likely to produce spurious results. In an extreme condition that Yt and xt

are independent random walks, as we shall see, the OLS estimator of β, β̂T is not

consistent for β = 0 but instead converge to a particular random variable. Because

there is truly no relation between Yt and xt, and because β̂T is incapable of revealing

this, we call this a case of “spurious regression”.

This spurious-regression phenomenon was first considered by Yule (1926), and the

dangers of spurious regression were forcefully brought to the economists by the Monte

Carlo studies of Granger and Newbold (1974) and latter explained theoretically by

Phillips (1986).

Theorem. (Spurious Regression, two independent random walks):

Let Xt and Yt be independent random walks, Xt = Xt−1 +ηt and Yt = Yt−1 + ζt, and ηt

is independent of ζt. Consider the regression equation for Yt in terms of Xt, formally

as Yt = Xtβ+ut, where β = 0 and ut = Yt, reflecting the lack of any relations between Yt

andXt. Then theOLS estimator of β, β̂T
L−→ (σ2/σ1)

[∫ 1

0
W1(r)

2dr
]−1 ∫ 1

0
W1(r)W2(r)dr,

where σ2
1 = E(η2t ) and σ2

2 = E(ζ2t ).

Proof.
To proceed, we write

W1T (rt−1) = T−1/2
t−1∑
s=1

ηs/σ1 = T−1/2Xt−1/σ1,

W2T (rt−1) = T−1/2
t−1∑
s=1

ζs/σ2 = T−1/2Yt−1/σ2

or

T−1/2Xt−1 = σ1W1T (rt−1) (22-7)
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and

T−1/2Yt−1 = σ2W2T (rt−1), (22-8)

where σ2
1 ≡ limT→∞ V ar(T

−1/2∑T
t=1 ηt) and σ2

2 ≡ limT→∞ V ar(T
−1/2∑T

t=1 ζt), and

rt−1 = (t− 1)/T as before.

From Donsker’s theorem and the continuous mapping theorem we have that T−2
∑T

t=1X
2
t−1 ⇒

σ2
1

∫ 1

0
W1(r)dr and also T−2

∑T
t=1 Y

2
t−1 ⇒ σ2

2

∫ 1

0
W2(r)dr. The multivariate version of

Donsker’s theorem states that1[
σ2
1 0

0 σ2
2

]−1/2
T−1/2

[Tr]∗∑
t=1

[
ηt
ζ

]
⇒
[
W1(r)
W2(r)

]
or [

T−1/2XT (r)
T−1/2YT (r)

]
⇒
[
σ1W1(r)
σ2W2(r)

]
.

From (22-7) and (22-8) we have

T−1 · T−1
T∑
t=1

Xt−1Yt−1 = T−1
T∑
t=1

σ1W1T (rt−1)σ2W2T (rt−1)

= σ1σ2T
−1

T∑
t=1

W1T (rt−1)W2T (rt−1)

= σ1σ2

T∑
t=1

∫ t/T

(t−1)/T
W1T (r)W2T (r)dr

= σ1σ2

∫ 1

0

W1T (r)W2T (r)dr

⇒ σ1σ2

∫ 1

0

W1(r)W2(r)dr,

where we have use the fact that W1T (r) and W2T (r) is constant for (t−1)/T ≤ r < t/T

and the continuous mapping theorem to the mapping

(x, y) 7→
∫ 1

0

x(a)y(a)da.

1Here, in fact we do not have to require that ηt and ζt to be uncorrelated to get the same results.
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Hence for convenience treating β̂T−1 instead of β̂T we have

β̂T−1 − 0 =

(
T−2

T∑
t=1

X2
t−1

)−1(
T−2

T∑
t=1

Xt−1Yt−1

)

=

(
σ2
1

∫ 1

0

W 2
1 (r)dr

)−1
σ1σ2

∫ 1

0

W1(r)W2(r)dr

= (σ2/σ1)

(∫ 1

0

W 2
1 (r)dr

)−1 ∫ 1

0

W1(r)W2(r)dr, (22-9)

which is nondegenerate random variable. β̂T is then not consistent for β = 0, so the

regression is “spurious”. �

The spurious regression problem become clear upon inspection of (22-9). The true

value of the derivative of Yt with respect to Xt is zero because the errors generating Xt

and Yt series in the regression are independent. Yet β̂T fails to converge in probability

to zero and instead has a non-degenerate distribution.

Using similar techniques, Phillips (1986) show that T−1/2tβ̂T
has a non-degenerate

distribution, or in other words that the t-statistic for β̂T has a divergent distribution.

Hence as T →∞, the probability of a significant t-value arising in a regression such as

(22-8) approach one, leading to spurious inference about the existence of a relationship

between Xt and Yt.

The spurious regression problem not only arise from independent random walks, it

even appears among non-cointegrated generally I(1) process.

Theorem. (Spurious Regression, not cointegrated I(1) process, Hamilton’s Paramet-

ric Method):

Consider an (k × 1) vector yt whose first difference is described by

(1− L)yt = Ψ(L)εt =
∞∑
s=0

Ψsεt−s,

for εt an i.i.d. vector with mean zero, variance E(εtε
′
t) = Ω = PP′, and finite fourth

moment and where {s·Ψs}∞s=0 is absolutely summable. Let g = (k−1) and Λ = Ψ(1)P.

Partition yt as yt = (Y1t,y
′
2t)
′, and partition ΛΛ′ as

ΛΛ′ =

[
Σ11 Σ′21
Σ21 Σ22

]
,

where Σ11 is (1× 1) and Σ22 is (g × g).
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Suppose that ΛΛ′ is nonsingular, and define

(σ∗1)2 ≡ (Σ11 −Σ′21Σ
−1
22 Σ21).

Let L22 denote the Cholesky factor of Σ−122 and consider the consequence of an OLS

regression of the first variable on the others and a constant,

Y1t = α̂T + y′2tβ̂T + ût, (22-10)

and ant null hypothesis of the form H0 : Rβ = q, where R is a known (r × g) matrix

representing r separate hypothesis involving β and q is a known r × 1 vector. Then

the following hold.

(a). The OLS estimate α̂T and β̂T are characterized by[
T−1/2α̂T

β̂T −Σ−122 Σ21

]
L−→
[

σ∗1h1
σ∗1L22h22

]
,

where[
h1
h2

]
≡

[
1

∫ 1

0
[w2(r)]

′dr∫ 1

0
w2(r)dr

∫ 1

0
[w2(r)][w2(r)]

′dr

]−1
×

[ ∫ 1

0
W1(r)dr∫ 1

0
w2(r)W1(r)dr

]

andW1(r) denotes scalar standard Brownian motion, w2(r) denotes g-dimensional

standard Brownian motion with w2(r) independent of W1(r).

(b). The sum of squared errors SSE from the OLS estimation of (22-10) satisfies

T−2 · SSE L−→ (σ∗1)2 ·H,

where

H ≡
∫ 1

0

[W1(r)]
2dr −

{[∫ 1

0

W1(r)dr

∫ 1

0

[W1(r)][w2(r)]
′dr

]

×

[
1

∫ 1

0
[w2(r)]

′dr∫ 1

0
w2(r)dr

∫ 1

0
[w2(r)][w2(r)]

′dr

]−1 [ ∫ 1

0
W1(r)dr∫ 1

0
w2(r)W1(r)dr

] .
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(c). The OLS F test satisfies

T−1FT
L−→ (σ∗1R

∗h2 − q∗)′

×

σ∗1H[0 R∗]×

[
1

∫ 1

0
[w2(r)]

′dr∫ 1

0
w2(r)dr

∫ 1

0
[w2(r)][w2(r)]

′dr

]−1 [
0′

R′∗

]
×(σ∗1R

∗h2 − q∗)÷ r,

where

R∗ ≡ RL22,

q∗ ≡ q−RΣ−122 Σ21. �

Result (a) implies that neither estimator is consistent. The estimator of the con-

stant, α̂T actually diverge, and must divided by T 1/2 to obtain a random variable with

a well-specified distribution. The estimator α̂T itself is likely to get farther and farther

from the true value of zero as the sample T increase. Thing does not get better when

we look at β̂T . Different arbitrary large sample will have randomly differing estimators

β̂T . Those usual happenings that β̂T
p−→ 0 and must multiplied by some increasing

function of T in order to obtain a nondegenerate asymptotic distribution does not

occur.

Result (b) implies that the usual OLS estimator of the variance of ut

s2T = (T − k)−1SSET ,

again diverge as T →∞. To obtain an estimator that does not grow with the sample

size, the sums of squared errors has to be divided by T 2 rather than T . In this respect,

the residual ût from a spurious regression behave like a unit root process; if ξt is a

scalar I(1) series, then T−1
∑
ξ2t diverge and T−2

∑
ξ2t converges.

Result (c) means that any OLS t or F test based on the spurious regression also

diverge; the OLS F statistics must be divided by T to obtains a variable that does

not grow with the sample size. Since an F test of a single restriction is the square of

the corresponding t test, any t statistics would have to be divided by T 1/2 to obtain

a convergent variable. Thus, as the sample size become large, it becomes increasingly

that the absolute value of an OLS t test will exceed any arbitrary finite value (such

as the usual critical value of t = 2). For example, in the regression of (22-10), it
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appears that Y1t and y2t are significantly related whereas in reality they are completely

independent.

Should we be totally pessimistic on the regression of unit root process from above

results ? There is, in fact, one case of major importance where the correlation prop-

erties of Y1t and y2t do interfere with these qualitative results. The conditions in this

Theorem require that ΛΛ′ is nonsingular. From the fact that rank (ΛΛ′) =rank (Λ),

Λ = Ψ(1)P, and P is nonsingular we require that Ψ(1) is nonsingular or that the

determinant |Ψ(1)| 6= 0. If we allow Ψ(1) to be singular, then the asymptotic theory

of this theorem no longer holds as stated. The condition that Ψ(1) is singular is a nec-

essary conditions for Y1t and y2t to be cointegrated in the sense of Engle and Granger

(1987). See Chapter 23 for details.

Example.
The following is the code to generate the spurious regression. Let Yt = Yt−1 + ut and

Xt = Xt−1 + vt, where2[
ut
vt

]
i.i.d∼ N

([
0
0

]
,

[
1 0.5

0.5 2

])
.

Consider the sequence of an OLS regression of Yt on Xt and a constant

Yt = α + βXt + εt, t = 1, 2, ..., T.

It can see that the OLS estimates of α̂ and β̂ is inconsistent and the t-ratio to test the

null hypothesis that α = 0 and β = 0, tα̂ and tβ̂, is increasing with sample. We always

incorrectly reject the null hypothesis.

(a). Plot inconsistency of α̂ and β̂.

(b). Plot the t ratio, tα̂ and tβ̂.

2It is important to note that here as long as this two I(1) are not cointegrated, even ut and vt are
correlated, the spurious regression phenomenon still exists.
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Figure (22-1a). Inconsistency of α̂ and β̂ in a spurious regression.
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Figure (22-1b). The two t-ratios to test the null hypothesis that

α = 0 and β = 0, tα̂ and tβ̂, are increasing with sample size.

�
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3.2 Cures For Spurious Regression

Many researchers recommend routinely differencing apparently nonstationary variables

before estimating regression (for example, Gordon (1984)):

4Y1t = a+4y′2tb + vt,

which is believe to avoid the spurious regression problem as well as the nonstandard

distributions for certain hypotheses associated with the levels regression (22-10). While

this is the ideal cure for the problem discussed in this section, there are two different

situations in which it might be inappropriate.

(a). First, if a economic theory specify a linear relation between Y1t and y2t in level

as in (22-10), then the parameters has its own economical interpretation, for

example, ∂Ct/∂Yt = β is the marginal propensity to consume which must be

positive under normal condition. However, a regression in differenced data, the

parameters has different economic implication, e.g. ∂4Ct/∂4Yt = b, which

may be positive or negative even though ∂Ct/∂Yt = β must be positive. Thus,

differenceing the data before regression avoids the econometrics’s problem but

incurs additionally the economic interpretation problem.

(b). Second, if both Y1t and y2t are I(1) process, there is an interesting class of models

for which the dynamic relation between Y1t and y2t will be misspecified if the

researchers simply differences both Y1t and y2t. The class of models, known as

cointegrated process, is discussed in the following chapters.

Shei-Mountain (3886m, ‘Snow-Mountain’).

The second highest peak in Taiwan.

End of this Chapter
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