
Ch. 21 Univariate Unit Root Process
(May 14, 2018)

1 Introduction

Much conventional asymptotic theory for least-squares estimation (e.g. the standard

proofs of consistency and asymptotic normality of OLS estimators) assumes station-

arity of the explanatory variables, possibly around a deterministic trend. However,

not all economic times series are stationary, as we saw in Chapter 19, and for many

important ones, including aggregate consumption and national income, stationarity

is not even a sensible approximation. This chapter describes methods of testing for a

unit root in an observed series. Both parametric regression tests and non-parametric

adjustments to theses test statistics are considered.

To begin with, consider OLS estimation of a AR(1) process,

Yt = ρYt−1 + ut,

where ut ∼ i.i.d.(0, σ2), and Y0 = 0. The OLS estimator of ρ is given by

ρ̂T =

∑T
t=1 Yt−1Yt∑T
t=1 Y

2
t−1

=

(
T∑
t=1

Y 2
t−1

)−1( T∑
t=1

Yt−1Yt

)
and we also have

(ρ̂T − ρ) =

(
T∑
t=1

Y 2
t−1

)−1( T∑
t=1

Yt−1ut

)
. (21-1)

When the true value of ρ is less than 1 in absolute value, then Yt (so does Y 2
t ?)

is a covariance-stationary process. Applying LLN for a covariance process (see 9.19

of Ch. 4) we have(
T∑
t=1

Y 2
t−1

)
/T

p−→ E

[(
T∑
t=1

Y 2
t−1

)
/T

]
=

[
T · σ2

1− ρ2

]
/T = σ2/(1− ρ2). (21-2)
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Since Yt−1ut is a martingale difference sequence1 with variance

E(Yt−1ut)
2 = E(Y 2

t−1)E(u2
t ) = σ2 σ2

1− ρ2
(since Yt−1 and ut are independent)

and

1

T

T∑
t=1

[
σ2 σ2

1− ρ2

]
→ σ2 σ2

1− ρ2
.

Applying CLT for a martingale difference sequence to the second term in the right-

hand side of (1) we have

1√
T

(
T∑
t=1

Yt−1ut

)
L−→ N

(
0, σ2 σ2

1− ρ2

)
. (21-3)

Substituting (2) and (3) to (1) we have

√
T (ρ̂T − ρ) =

[(
T∑
t=1

Y 2
t−1

)
/T

]−1

·
√
T

[(
T∑
t=1

Yt−1ut

)
/T

]
L−→
[

σ2

1− ρ2

]−1

·N
(

0, σ2 σ2

1− ρ2

)
≡ N(0, 1− ρ2). (21-4)

However, Equation(4) is not valid for the case when ρ = 1. To see this, recall

that the variance of Yt when ρ = 1 is tσ2, then the LLN as in (2) would not be valid

since if we apply LLN, then it would incur that(
T∑
t=1

Y 2
t−1

)
/T

p−→ E

[(
T∑
t=1

Y 2
t−1

)
/T

]
= σ2

∑T
t=1 t

T
→∞. (21-5)

Similar reason would show that the CLT would not apply for 1√
T

(
∑T

t=1 Yt−1ut). (In

stead, it is that T−1(
∑T

t=1 Yt−1ut) converges.)

To obtain the limiting distribution, as we shall prove in the following, for (ρ̂T−ρ)

in the unit root case, it turn out that we have to multiply (ρ̂T − 1) by T rather than

by
√
T :

T (ρ̂T − 1) =

[(
T∑
t=1

Y 2
t−1

)
/T 2

]−1 [
T−1

(
T∑
t=1

Yt−1ut

)]
. (21-6)

Thus, the unit root coefficient converge at a faster rate (T ) than a coefficient for

stationary regression (which converges at
√
T ).

1E(Yt−1ut|Ft−1) = Yt−1E(ut|Ft−1) = Yt−1 · 0 = 0. Therefore, Yt−1ut is a martingale difference
sequence.
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2 Asymptotic Theories for Unit Root Process

The fact that unit root process violate the restriction that certain moments of a tim

series to be bounded, e.g. E|X2
t |1+δ < ∆ < ∞ for some δ > 0 and for all t had

made inapplicable of traditional asymptotic theory to the unit root process. In this

section, we develop tools to handle the asymptotics of unit root process.

2.1 Random Walks and Wiener Process

Consider a random walk,

Yt = Yt−1 + εt,

where Y0 = 0 and εt is i.i.d. with mean zero and V ar(εt) = σ2 < ∞. By repeated

substitution we have

Yt = Yt−1 + εt

= Yt−2 + εt−1 + εt
...

= Y0 +
t∑

s=1

εs

=
t∑

s=1

εs.

Before we can study the behavior of estimators based on random walks, we must

understand in more detail the behavior of the random walk process itself. By the

assumption of Y0 = 0, consider the random walk {Yt}, we can write

YT =
T∑
t=1

εt.

Rescaling, we have

T−1/2YT/σ = T−1/2

T∑
t=1

εt/σ.

(It is important to note here σ2 should be read as V ar(T−1/2
∑T

t=1 εt) = E[T−1(
∑
εt)

2] =
T ·σ2

T
= σ2.) According to the Lindeberg-Lévy CLT, we have

T−1/2YT/σ
L−→ N(0, 1).
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More generally, we can construct a variable YT (r) from the partial sum of εt

YT (r) =

[Tr]∑
t=1

εt,

where 0 ≤ r ≤ 1 and [Tr] denotes the largest integer that is less than or equal to

Tr.

Applying the same rescaling, we define

WT (r) ≡ T−1/2YT (r)/σ

= T−1/2

[Tr]∑
t=1

εt/σ. (21-7)

Now

WT (r) = T−1/2([Tr])1/2

([Tr])−1/2

[Tr]∑
t=1

εt/σ

 ,

and for a given r, the term in the brackets {·} again obeys the CLT and converges

in distribution to N(0, 1), whereas T−1/2([Tr])1/2 converges to r1/2. It follows from

standard arguments that WT (r) converges in distribution to N(0, r).

Suppose that we first choose rt so that for some integer t, Trt = t (i.e., rt = t/T ).

Then we will consider what happens as r increase to the value (t + 1)/T . With

rt = t/T we have [Trt] = t, so

WT (r) = T−1/2

t∑
s=1

εs/σ, r = t/T.

For t/T < r < (t+ 1)/T , we still have [Tr] = t, so

WT (r) = T−1/2

t∑
s=1

εs/σ, t/T < r < (t+ 1)/T.

That is, WT (r) is constant for t/T ≤ r < (t+ 1)/T . When r hits (t+ 1)/T , we see

that WT (r) jumps to

WT (r) = T−1/2

t+1∑
s=1

εs/σ, r = (t+ 1)/T.

Thus, WT (r) is a piecewise constant function that jumps to a new values when-

ever r = t/T for interger t. In this way we are able to concentrate the original hori-

zontal axis of 1 to T to the close interval [0, 1], indexing the observations by r. If, for

example, T = 100, the original observation Y50 will be indexed by r ∈ [0.50, 0.51),

and so on.
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We have written WT (r) so that it is clear that WT can be considered to be a

function of r. Also, because WT (r) depends on the ε′ts, it is random. Therefore, we

can think of WT (r) as defining a random function of r, which we write WT (·). Just

as the CLT provides conditions ensuring that the rescaled random walk T−1/2YT/σ

(which we can now write as WT (1)) converges, as T become large, to a well-defined

limiting random variables (the standard normal), the function central limit theorem

(FCLT) provides conditions ensuring that the random function WT (·) converge, as

T become large, to a well-defined limit random function, say W (·). The word “Func-

tional” in Functional Central Limit theorem appears because this limit is a function

of r.

Some further properties of random walk, suitably rescaled, are in the following.

Proposition.
If Yt is a random walk, then Yt4 − Yt3 is independent of Yt2 − Yt1 for all t1 < t2 <

t3 < t4. Consequently, Wt(r4) −WT (r3) is independent of Wt(r2) −WT (r1) for all

[T · ri]∗ = ti, i = 1, .., 4.

Proof.
Note that

Yt4 − Yt3 = εt4 + εt4−1 + ...+ εt3+1,

Yt2 − Yt1 = εt2 + εt2−1 + ...+ εt1+1.

Since (εt2 , εt2−1, ..., εt1+1) is independent of (εt4 , εt4−1, ..., εt3+1) it follow that Yt4−Yt3
and Yt2 − Yt1 are independent. Consequently,

WT (r4)−WT (r3) = T−1/2(εt4 + εt4−1 + ...+ εt3+1)/σ

is independent of

WT (r2)−WT (r1) = T−1/2(εt2 + εt2−1 + ...+ εt1+1)/σ. �

Proposition.

For given 0 ≤ a < b ≤ 1, WT (b)−WT (a)
L−→ N(0, b− a) as T →∞.

r 2018 by Prof. Chingnun Lee 5 Ins.of Economics,NSYSU,Taiwan



Ch.21 2 ASYMPTOTIC THEORIES FOR UNIT ROOT PROCESS

Proof.
By definition

WT (b)−WT (a) = T−1/2

[Tb]∑
t=[Ta]+1

εt

= T−1/2([Tb]− [Ta])1/2 × ([Tb]− [Ta])−1/2

[Tb]∑
t=[Ta]+1

εt.

The last term ([Tb]−[Ta])−1/2
∑[Tb]

t=[Ta]+1 εt
L−→ N(0, 1) by the CLT, and T−1/2([Tb]−

[Ta])1/2 = (([Tb]− [Ta])/T )1/2 → (b− a)1/2 as T →∞. Hence WT (b)−WT (a)
L−→

N(0, b− a). �

In words, the random walk has independent increments and those increments

have a limiting normal distribution, with a variance reflecting the size of the interval

(b− a) over which the increment is taken.

It should not be surprising, therefore, that the limit of the sequence of function

WT (·) constructed from the random walk preserves these properties in the limit in

an appropriate sense. In fact, these properties form the basis of the definition of the

Wiener process.

Definition.
Let (S,F ,P) be a complete probability space. Then W : S × [0, 1] → R1 is

a standard Wiener process if each of r ∈ [0, 1], W (·, r) is F -measurable, and in

addition,

(a). The process starts at zero: P [W (·, 0) = 0] = 1.

(b). The increments are independent: if 0 ≤ a0 ≤ a1... ≤ ak ≤ 1, then W (·, ai) −
W (·, ai−1) is independent of W (·, aj) − W (·, aj−1), j = 1, .., k, j 6= i for all

i = 1, ..., k.

(c). The increments are normally distributed: for 0 ≤ a ≤ b ≤ 1, the increment

W (·, b)−W (·, a) is distributed as N(0, b− a). �

In the definition, we have written W (·, a) explicitness; whenever convenient, how-

ever, we will write W (a) instead of W (·, a), analogous to our notation elsewhere.
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The Wiener process is also called a Brownian motion in honor of Norbert Wiener

(1924), who provided the mathematical foundation for the theory of random mo-

tions observed and described by nineteenth century botanist Robert Brown in 1827.

2.2 Functional Central Limit Theorems

We earlier defined convergence in law for random variables, and now we need to

extend the definition to cover random functions.

Definition.
Let S(·) represent a continuous-time stochastic process with S(r) representing its

value at some date r for r ∈ [0, 1]. Suppose, further, that any given realization, S(·)
is a continuous function of r with probability 1. For {ST (·)}∞T=1 a sequence of such

continuous function, we say that the sequence of probability measure induced by

{ST (·)}∞T=1 weakly converge to the probability measure induced by S(·), denoted

by ST (·) =⇒ S(·) if all of the following hold:

(a). For any finite collection of k particular dates,

0 ≤ r1 < r2 < ... < rk ≤ 1,

the sequence of k-dimensional random vector {yT}∞T=1 converges in distribu-

tion to the vector y, where

yT ≡


ST (r1)
ST (r2)
.
.
.

ST (rk)

 , y ≡


S(r1)
S(r2)
.
.
.

S(rk)

 ;

(b). For each ε > 0, the probability that ST (r1) differs from ST (r2) for any dates

r1 and r2 within δ of each other goes to zero uniformly in T as δ → 0;

(c). P{|ST (0)| > λ} → 0 uniformly in T as λ→∞. �
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This definition applies to sequences of continuous functions, though the function

in (7) is a discontinues step function. Fortunately, the discountinuities occur at a

countable set of points. Formally, ST (·) can be replaced with a similar continuous

function, interpolating between the steps.

The Function Central Limit Theorem (FCLT) provides conditions under which

WT converges to the standard Wiener process, W. The simplest FCLT is a general-

ization of the Lindeberg-Lévy CLT, known as Donsker’s theorem.

Theorem. (Donsker)

Let εt be a sequence of i.i.d. random scalars with mean zero. If σ2 ≡ V ar(εt) <∞,

σ2 6= 0, then WT =⇒ W . �

Because pointwise convergence in distribution WT (·, r) L−→ W (·, r) for each

r ∈ [0, 1] is necessary (but not sufficient) for weak convergence WT =⇒ W , the

Lindeberg-Lévy CLT (WT (·, 1)
L−→ W (·, 1)) follows immediately from Donsker’s

theorem. Donsker’s theorem is strictly stronger than Lindeberg-Lévy however, as

both use identical assumptions, but Donsker’s theorem delivers a much stronger

conclusion. Donsker called his result an invariance principle. Consequently, the

FCLT is often referred as an invariance principle.

So far, we have assumed that the sequence εt used to construct WT is i.i.d..

Nevertheless, just as we can obtain central limit theorems when εt is not necessary

i.i.d.. In fact, versions of the FCLT hold for each CLT previous given in Chapter 4.

See the following section.

In Chapter 4 we saw that if {XT}∞T=1 is a sequence of random variables with

XT
L−→ X and if g : R1 → R1 is a continuous function, then g(XT )

L−→ g(X). A

similar result holds for sequences of random functions.

Theorem. (Continuous Mapping Theorem):

If ST (·) =⇒ S(·) and g(·) is a continuous functional, then g(ST (·)) =⇒ g(S(·)). �

In the above theorem, continuity of a functional g(·) means that for any ς > 0,

there exist a δ > 0 such that if h(r) and k(r) are any continuous bounded functions

on [0, 1], h : [0, 1] → R1 and k : [0, 1] → R1, such that |h(r) − k(r)| < δ for all

r ∈ [0, 1], then |g(h(·))− g(k(·))| < ς(δ).
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3 Regression with a Unit Root

3.1 Dickey-Fuller Test, Yt is AR(1) process

Consider the following simple AR(1) process with a unit root,

Yt = βYt−1 + ut, (21-8)

where β = 1, Y0 = 0 and ut is i.i.d. with mean zero and variance σ2. We consider

the three least square regressions:

Yt = β̆Yt−1 + ŭt, (21-9)

Yt = α̂ + β̂Yt−1 + ût, (21-10)

and

Yt = α̃ + β̃Yt−1 + δ̃t+ ũt, (21-11)

where β̆, (α̂, β̂), and (α̃, β̃, δ̃) are the conventional least-squares regression coeffi-

cients. Dickey and Fuller (1979) were concerned with the limiting distribution of

the regression in (9), (10), and (11) (β̆, (α̂, β̂), and (α̃, β̃, δ̃)) under the null hypoth-

esis that the data are generated by (8).

We first provide the following asymptotic results of the sample moments which

are useful to derive the asymptotics of the OLS estimator.

Lemma.
Let ut be a i.i.d. sequence with mean zero and variance σ2 and

yt = u1 + u2 + ...+ ut for t = 1, 2, ..., T, (21-12)

with y0 = 0. Then

(a). T−
1
2

T∑
t=1

ut
L−→ σW (1),

(b). T−2
T∑
t=1

Y 2
t−1

L−→ σ2
∫ 1

0
[W (r)]2dr,

(c). T−
3
2

T∑
t=1

Yt−1
L−→ σ

∫ 1

0
W (r)dr,
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(d). T−1
T∑
t

Yt−1ut
L−→ 1

2
σ2[W (1)2 − 1],

(e). T−
3
2

T∑
t=1

tut
L−→ σ[W (1)−

∫ 1

0
W (r)dr],

(f). T−
5
2

T∑
t=1

tYt−1
L−→ σ

∫ 1

0
rW (r)dr,

(h). T−3
T∑
t=1

tY 2
t−1

L−→ σ2
∫ 1

0
r[W (r)]2dr.

A joint weak convergence for the sample moments given above to their respective

limits is easily established and will be used below.

Proof.

(a). This is a straightforward results of Donsker’s Theorem with r = 1.

(b). First rewrite T−2
T∑
t=1

Y 2
t−1 in term of WT (rt−1) ≡ T−1/2Yt−1/σ = T−1/2

t−1∑
s=1

us/σ,

where rt−1 = (t − 1)/T , so that T−2
T∑
t=1

Y 2
t−1 = σ2T−1

T∑
t=1

WT (rt−1)2. Because

WT (r) is constant for (t− 1)/T ≤ r < t/T , we have

T−1

T∑
t=1

WT (rt−1)2 =
T∑
t=1

∫ t/T

(t−1)/T

WT (r)2dr

=

∫ 1

0

WT (r)2dr.

The continuous mapping theorem applies to h(WT ) =
∫ 1

0
WT (r)2dr. It follows

that h(WT ) =⇒ h(W ), so that T−2
∑T

t=1 Y
2
t−1 =⇒ σ2

∫ 1

0
W (r)2dr, as claimed.

(c). The proof of item (c) is analogous to that of (b). First rewrite T−3/2
∑T

t=1 Yt−1

in term ofWT (rt−1) ≡ T−1/2Yt−1/σ = T−1/2
∑t−1

s=1 us/σ, where rt−1 = (t−1)/T ,

so that T−3/2
∑T

t=1 Yt−1 = σT−1
∑T

t=1 WT (rt−1). Because WT (r) is constant for

(t− 1)/T ≤ r < t/T , we have

T−1

T∑
t=1

WT (rt−1) =
T∑
t=1

∫ t/T

(t−1)/T

WT (r)dr

=

∫ 1

0

WT (r)dr.
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The continuous mapping theorem applies to h(WT ) =
∫ 1

0
WT (r)dr. It follows

that h(WT ) =⇒ h(W ), so that T−3/2
∑T

t=1 Yt−1 =⇒ σ
∫ 1

0
W (r)dr, as claimed.

(d). For a random walk, Y 2
t = (Yt−1 + ut)

2 = Y 2
t−1 + 2Yt−1ut + u2

t , implying

that Yt−1ut = (1/2){Y 2
t − Y 2

t−1 − u2
t} and then

∑T
t=1 Yt−1ut = (1/2){Y 2

T −
Y 2

0 } − (1/2)
∑T

t=1 u
2
t . Recall that Y0 = 0, and thus it is convenient to write∑T

t=1 Yt−1ut = 1
2
Y 2
T − 1

2

∑T
t=1 u

2
t . From items (a)) we know that T−1Y 2

T (=

(T−1/2
∑T

t=1 us)
2 L−→ σ2W 2(1) and T−1

∑T
t=1 u

2
t

p−→ σ2 by LLN (Kolmogorov);

then, T−1
∑T

t=1 Yt−1ut =⇒ 1
2
σ2[W (1)2 − 1].

(e). We first observe that
∑T

t=1 Yt−1 = [u1 +(u1 +u2)+(u1 +u2 +u3)+...+(u1 +u2 +

u3 + ...+uT−1)] = [T −1)u1 + (T −2)u2 + (T −3)u3 + ...+ [T − (T −1)uT−1] =∑T
t=1(T − t)ut =

∑T
t=1 Tut −

∑T
t=1 tut, or

∑T
t=1 tut = T

∑T
t=1 ut −

∑T
t=1 Yt−1.

Therefore, T−
3
2

∑T
t=1 tut = T−

1
2

∑T
t=1 ut − T−

3
2

∑T
t=1 Yt−1. By applying the

continuous mapping theorem to the joint convergence of items (a) and (c), we

have

T−
3
2

T∑
t=1

tut ⇒ σ[W (1)−
∫ 1

0

W (r)dr].

(f). The proofs of item (f) and (g) is analogous to those of (c) and (b). First rewrite

T−5/2
∑T

t=1 tYt−1 in term of WT (rt−1) ≡ T−1/2Yt−1/σ = T−1/2
∑t−1

s=1 us/σ,

where rt−1 = (t − 1)/T , so that T−5/2
∑T

t=1 tYt−1 = σT−2
∑T

t=1 tWT (rt−1).

Because WT (r) is constant for (t− 1)/T ≤ r < t/T , we have

T−1

T∑
t=1

(t/T )WT (rt−1) =
T∑
t=1

∫ t/T

(t−1)/T

rWT (r)dr for r = t/T

=

∫ 1

0

rWT (r)dr.

The continuous mapping theorem applies to h(WT ) =
∫ 1

0
rWT (r)dr. It follows

that h(WT ) =⇒ h(W ), so that T−5/2
∑T

t=1 tYt−1 =⇒ σ
∫ 1

0
rW (r)dr, as claimed.

We also write T−3
∑T

t=1 tY
2
t−1 in term ofWT (rt−1) ≡ T−1/2Yt−1/σ = T−1/2

∑t−1
s=1 us/σ,

where rt−1 = (t−1)/T , so that T−3
∑T

t=1 tY
2
t−1 = σ2T−2

∑T
t=1 tWT (rt−1)2. Be-

cause WT (r) is constant for (t− 1)/T ≤ r < t/T , we have

T−1

T∑
t=1

(t/T )WT (rt−1)2 =
T∑
t=1

∫ t/T

(t−1)/T

rWT (r)2dr for

=

∫ 1

0

rWT (r)2dr.
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The continuous mapping theorem applies to h(WT ) =
∫ 1

0
rWT (r)2dr. It follows

that h(WT ) =⇒ h(W ), so that T−3
∑T

t=1 tY
2
t−1 =⇒ σ2

∫ 1

0
rW (r)2dr. This

completes the proofs of this lemma. �

3.1.1 No Constant Term or Time Trend in the Regression; True Process Is a Random
Walk

We first consider the case that no constant term or time trend in the regression

model, but true process is a random walk. The asymptotic distributions of OLS

unit root coefficient estimator and t-ratio test statistics are in the following.

Theorem 1.
Let the data Yt be generated by (8), i.e. Yt = Yt−1 + ut, then as T → ∞, for the

regression model (9), Yt = β̆Yt−1 + ŭt,

T (β̆T − 1)
L−→ 1/2{[W (1)]2 − 1}∫ 1

0
[W (r)]2dr

,

and

t̆ =
(β̆T − 1)

σ̆β̆T

L−→ 1/2{[W (1)]2 − 1}
{
∫ 1

0
[W (r)]2dr}1/2

,

where σ̆2
β̆T

= [s2
T ÷
∑T

t=1 Y
2
t−1]1/2 and s2

T denote the OLS estimate of the disturbance

variance:

s2
T =

T∑
t=1

(Yt − β̆TYt−1)2/(T − 1).

Proof.
Since the deviation of the OLS estimate from the true value is characterized by

T (β̆T − 1) =

T−1
T∑
t=1

Yt−1ut

T−2
T∑
t=1

Y 2
t−1

, (21-13)
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Ch.21 3 REGRESSION WITH A UNIT ROOT

which is a continuous function of Lemma 1(b) and 1(d), it follows that under the

null hypothesis that β = 1, the OLS estimator β̆ is characterized by

T (β̆T − 1)⇒ 1/2{[W (1)]2 − 1}∫ 1

0
[W (r)]2dr

. (21-14)

This completes the proof of the first part in this Theorem.

To prove second part of this theorem, we first show the consistency of s2
T . Notice

that the population disturbance sum of squares can be written

(yT − yT−1β)′(yT − yT−1β)

= (yT − yT−1β̆ + yT−1β̆ − yT−1β)′(yT − yT−1β̆ + yT−1β̆ − yT−1β)

= (yT − yT−1β̆)′(yT − yT−1β̆) + (yT−1β̆ − yT−1β)′(yT−1β̆ − yT−1β),

where yT = [Y1 Y2 ... YT ]′ and the cross-product have vanished, since

(yT − yT−1β̆)′yT−1(β̆ − β) = 0,

by the OLS orthogonality condition (X′e = 0). Dividing last equation by T ,

(1/T )(yT − yT−1β)′(yT − yT−1β)

= (1/T )(yT − yT−1β̆)′(yT − yT−1β̆) + (β̆ − β)′[(y′T−1yT−1)/T ](β̆ − β)

or

(1/T )(yT − yT−1β̆)′(yT − yT−1β̆)

= (1/T )(
T∑
t=1

u2
t )− T 1/2(β̆ − β)′[(y′T−1yT−1)/T 2]T 1/2(β̆ − β). (21-15)

Now (1/T )(
∑T

t=1 u
2
t )

p−→ E(u2
t ) ≡ σ2 by LLN for i.i.d. sequence, T 1/2(β̆ − β) → 0

and (y′T−1yT−1)/T 2 =⇒ σ2
∫ 1

0
[W (r)]2dr from (14) and Lemma 1(b), respectively.

We thus have

T 1/2(β̆ − β)′[(y′T−1yT−1)/T 2]T 1/2(β̆ − β)
p−→ 0′σ2

∫ 1

0

[W (r)]2dr · 0 = 0.

Substituting these results into (15) we have

(1/T )(yT − yT−1β̆)′(yT − yT−1β̆)
p−→ σ2.

The OLS disturbance’s variance estimator

s2
T = [1/(T − 1)](yT − yT−1β̆)′(yT − yT−1β̆)

= [T/(T − 1)](1/T )(yT − yT−1β̆)′(yT − yT−1β̆)
p−→ 1 · σ2 = σ2, (21-16)

r 2018 by Prof. Chingnun Lee 13 Ins.of Economics,NSYSU,Taiwan



Ch.21 3 REGRESSION WITH A UNIT ROOT

therefore is a consistent estimator.

Finally, we can express the t statistics alternatively as

t̆T = T (β̆T − 1)

{
T−2

T∑
t=1

Y 2
t−1

}1/2

÷ (s2
T )1/2

or

t̆T =
T−1

∑T
t=1 Yt−1ut{

T−2
∑T

t=1 Y
2
t−1

}1/2

(s2
T )1/2

,

which is a continuous function of Lemma 1(b) and 1(d), it follows that under the

null hypothesis that β = 1, the asymptotic distribution of OLS t statistics is char-

acterized by

t̆T
L−→ 1/2σ2{[W (1)]2 − 1}{

σ2
∫ 1

0
[W (r)]2dr

}1/2

(σ2)1/2

=
1/2{[W (1)]2 − 1}{∫ 1

0
[W (r)]2dr

}1/2
. (21-17)

This complete the proof of this Theorem. �

Statistical tables for the distributions of (14) and (17) for various sample size

T are reported in the section labeled Case 1 in Table B.5 and B.6, respectively at

Hamilton book. This finite sample result assume Gaussian innovations.

3.1.2 Constant Term but No Time Trend included in the Regression; True Process Is
a Random Walk

We next consider the case that a constant term is added in the regression model,

but true process is a random walk. The asymptotic distributions of OLS unit root

coefficient estimator and t-ratio test statistics are in the following.

Theorem 2.
Let the data Yt be generated by (8), i.e. Yt = Yt−1 + ut, then as T → ∞, for the

regression model (10), Yt = α̂ + β̂Yt−1 + ût,

T (β̂T − 1)
L−→

1/2{[W (1)]2 − 1} −W (1) ·
∫ 1

0
W (r)dr∫ 1

0
[W (r)]2dr −

[∫ 1

0
W (r)dr

]2 (21-18)

and

t̂ =
(β̂T − 1)

σ̂β̂T

L−→
1/2{[W (1)]2 − 1} −W (1) ·

∫ 1

0
W (r)dr{∫ 1

0
[W (r)]2dr −

[∫ 1

0
W (r)dr

]2
}1/2

, (21-19)
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Ch.21 3 REGRESSION WITH A UNIT ROOT

where σ̂2
β̂T

= s2
T

[
0 1

] [ T
∑
Yt−1∑

Yt−1

∑
Y 2
t−1

]−1 [
0
1

]
and s2

T denote the OLS esti-

mate of the disturbance variance:

s2
T =

T∑
t=1

(Yt − α̂T − β̂TYt−1)2/(T − 2).

Proof.
The proof of this theorem is analogous to that of Theorem 1 and is omitted here.�

Statistical tables for the distributions of (18) and (19) for various sample size T

are reported in the section labeled Case 2 in Table B.5 and B.6, respectively. This

finite sample result assume Gaussian innovations.

These statistics test the null hypothesis that β = 1. However, a maintained as-

sumption on which the derivation of Theorem 2 was based on is that the true value

of α is zero. Thus, it might seem more natural to test for a unit root in this speci-

fication by testing the joint hypothesis that α = 0 and β = 1. Dickey and Fuller

(1981) derive the limiting distribution of the likelihood ratio test for the hypothesis

that (α, β) = (0, 1) and used Monte Carlo to calculate the distribution of the OLS

F test of this hypothesis. Their values are reported under the heading Case 2 in

table B.7.

3.1.3 Constant Term and Time Trend Included in the Regression; True Process Is a
Random Walk With or Without Drift

We finally in the section consider the case that a constant term and a linear trend

are added in the regression model, but true process is a random walk with a drift.

However, the true value of this drift turns out not to matter for the asymptotic

distributions of OLS unit root coefficient estimator and t-ratio test statistics in this

case.

Theorem 3.
Let the data Yt be generated by (8), i.e. Yt = Yt−1 + ut, then as T → ∞, for the
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Ch.21 3 REGRESSION WITH A UNIT ROOT

regression model (11), Yt = α̃ + β̃Yt−1 + δ̃t+ ũt,

T (β̃ − 1)⇒
1/2{[W (1)− 2

∫ 1

0
W (r)dr][W (1) + 6

∫ 1

0
W (r)dr − 12

∫ 1

0
rW (r)dr]− 1}∫ 1

0
[W (r)]2dr − 4[

∫ 1

0
W (r)dr]2 + 12

∫ 1

0
W (r)dr

∫ 1

0
rW (r)dr − 12[

∫ 1

0
rW (r)dr]2

and

t̃ =
(β̃T − 1)

σ̃β̃T
⇒ T (β̃ − 1)÷

√
Q,

where σ̃2
β̃T

= s2
T

[
0 1 0

]


T
T∑
t=1

ξt−1

T∑
t=1

t

T∑
t=1

ξt−1

T∑
t=1

ξ2
t−1

T∑
t=1

tξt−1

T∑
t=1

t
T∑
t=1

tξt−1

T∑
t=1

t2



−1  0
1
0

,

ξt = Yt − αt, s2
T denote the OLS estimate of the disturbance variance:

s2
T =

T∑
t=1

(Yt − α̃− β̃TYt−1 − δ̃t)2/(T − 3),

and

Q ≡
[

0 1 0
]  1

∫
W (r)dr 1/2∫

W (r)dr
∫

[W (r)]2dr
∫
rW (r)dr

1/2
∫
rW (r)dr 1/3

−1  0
1
0

 .

Proof.

(a). Let the data generating process be

Yt = α + Yt−1 + ut,

and the regression model be

Yt = α + βYt−1 + δt+ ut. (21-20)

Note that the regression model of (20) can be equivalently rewritten as

Yt = (1− β)α + β(Yt−1 − α(t− 1)) + (δ + βα)t+ ut

≡ α∗ + β∗ξt−1 + δ∗t+ ut, (21-21)
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where α∗ = (1 − β)α, β∗ = β, δ∗ = δ + βα, and ξt−1 = Yt−1 − α(t − 1).

Moreover, under the null hypothesis that β = 1 and δ = 0,

ξt = Y0 + u1 + u2 + ...+ ut,

that is, ξt is the random walk as described in Lemma 1. Under the maintained

hypothesis, α = α0, β = 1, and δ = 0, which in (21) means that α∗ = 0,

β∗ = 1 and δ∗ = α0. The deviation of the OLS estimate from these true values

is given by

 α̃∗

β̃ − 1

δ̃∗ − α0

 =


T

T∑
t=1

ξt−1

T∑
t=1

t

T∑
t=1

ξt−1

T∑
t=1

ξ2
t−1

T∑
t=1

tξt−1

T∑
t=1

t
T∑
t=1

tξt−1

T∑
t=1

t2



−1 

T∑
t=1

ut

T∑
t=1

ξt−1ut

T∑
t=1

tut

 ,(21-22)

or in shorthand as

C = A−1f .

From Lemma 1, the order of probability of the individual terms in (22) is as

follows,

 α̃∗

β̃ − 1

δ̃∗ − α0

 =

 Op(T ) Op(T
3
2 ) Op(T

2)

Op(T
3
2 ) Op(T

2) Op(T
5
2 )

Op(T
2) Op(T

5
2 ) Op(T

3)

−1  Op(T
1
2 )

Op(T
1)

Op(T
3
2 )

 .
We define a rescaling matrices,

ΥT =

 T
1
2 0 0

0 T 1 0

0 0 T
3
2

 .
Multiplying the rescaling matrices on (22), we get

ΥTC = ΥTA−1ΥTΥ−1
T f =

[
Υ−1
T AΥ−1

T

]−1
Υ−1
T f (21-23)

Substituting the results of Lemma A.1 to (23), we establish that

b̃1 ⇒ Q−1h1, (21-24)
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where

b̃1 ≡

 T 1/2α̃∗

T (β̃ − 1)

T 3/2(δ̃∗ − α0)

 ,
Q ≡

 1
∫
W (r)dr 1/2∫

W (r)dr
∫

[W (r)]2dr
∫
rW (r)dr

1/2
∫
rW (r)dr 1/3


h1 ≡

 σW (1)
1
2
σ2{[W (1)]2 − 1}

σ[W (1)−
∫
W (r)dr]

 .
Thus, the asymptotic distribution of T (β̃ − 1) is given by the middle row of

(24), that is,

T (β̃ − 1)⇒
1/2{[W (1)− 2

∫ 1

0
W (r)dr][W (1) + 6

∫ 1

0
W (r)dr − 12

∫ 1

0
rW (r)dr]− 1}∫ 1

0
[W (r)]2dr − 4[

∫ 1

0
W (r)dr]2 + 12

∫ 1

0
W (r)dr

∫ 1

0
rW (r)dr − 12[

∫ 1

0
rW (r)dr]2

.

Note that this distribution does not depend on either α or σ; in particular, it

doesn’t matter whether or not the true value of α is zero. .

(b). The asymptotic distribution of the OLS-t statistics can be founded using sim-

ilar calculation as those in (17). Notice that

T 2 · σ̃2
β̃T

= T 2 · s2
T

[
0 1 0

]


T
T∑
t=1

ξt−1

T∑
t=1

t

T∑
t=1

ξt−1

T∑
t=1

ξ2
t−1

T∑
t=1

tξt−1

T∑
t=1

t
T∑
t=1

tξt−1

T∑
t=1

t2



−1  0
1
0



= s2
T

[
0 1 0

]  T 1/2 0 0
0 T 0
0 0 T 3/2



×


T

T∑
t=1

ξt−1

T∑
t=1

t

T∑
t=1

ξt−1

T∑
t=1

ξ2
t−1

T∑
t=1

tξt−1

T∑
t=1

t
T∑
t=1

tξt−1

T∑
t=1

t2



−1  T 1/2 0 0
0 T 0
0 0 T 3/2

 0
1
0


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= s2
T

[
0 1 0

]


1 T−3/2
T∑
t=1

ξt−1 T−2
T∑
t=1

t

T∑
t=1

T−3/2ξt−1

T∑
t=1

T−2ξ2
t−1

T∑
t=1

T−5/2tξt−1

T∑
t=1

T−2t
T∑
t=1

T−5/2tξt−1

T∑
t=1

T−3t2



−1  0
1
0



L−→ σ2
[

0 1 0
]  1 σ

∫
W (r)dr 1/2

σ
∫
W (r)dr σ2

∫
[W (r)]2dr σ

∫
rW (r)dr

1/2 σ
∫
rW (r)dr 1/3

−1  0
1
0


= σ2

[
0 1 0

]  1 0 0
0 σ 0
0 0 1

−1

×

 1
∫
W (r)dr 1/2∫

W (r)dr
∫

[W (r)]2dr
∫
rW (r)dr

1/2
∫
rW (r)dr 1/3

−1  1 0 0
0 σ 0
0 0 1

−1  0
1
0


=

[
0 1 0

]  1
∫
W (r)dr 1/2∫

W (r)dr
∫

[W (r)]2dr
∫
rW (r)dr

1/2
∫
rW (r)dr 1/3

−1  0
1
0


≡ Q.

From this result it follows that the asymptotic distribution of the OLS t test

of the hypothesis that β = 1 is given by

t̃T = T (β̃T − 1)÷ (T 2 · σ̃2
β̃T

)1/2 p−→ T (β̃T − 1)÷
√
Q.

This completes the proofs of Theorem 3. �

Again, this distribution does not dependent on α or σ. The small-sample dis-

tribution of the OLS t statistics under the assumption of Gaussian disturbance is

presented under case 4 in Table B.6. If this distribution were truly t, then a value

below −2.0 would be sufficient to reject the null hypothesis. However, Table B.6

reveals that, because of the nonstandard distribution, the t statistic must below

−3.4 before the null hypothesis of a unit root could be rejected.

The assumption that the true value of δ is equal to zero is again an auxiliary

hypothesis upon which the asymptotic properties of the test depend. Thus, as in

section 3.1.2, it is natural to consider the OLS F test of the joint null hypothesis

that δ = 0 and β = 1. Though this F test statistic is calculated in the usual way,

its asymptotic distribution is nonstandard, and the calculated F statistic should be

compared with the value under case 4 in Table B.7.
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Remark.
To derive the asymptotic distribution in this chapter, it is useful to use the following

result:[
α 0
0 β

] [
a b
c d

] [
α 0
0 β

]
=

[
α2a αβb
αβc β2d

]
.

�

The unit root tests are not confining themselves to the simple AR(1) process as

the original Dickey and Fuller (1979). There are four main directions in the literature

devoting to accommodating serially correlated errors and then to alleviating the size

distortion and lower power problems.

First, using long autoregressions to approximate serially correlated errors was

first suggested by Dickey and Fuller (1979) and further studied in Said and Dickey

(1984) and others. That is it is a parametric model that assume Yt in (8) is a AR(p)

process or ut is a ARMA(p, q) (Said-Dickey, 1984) process.

The second one is a non-parametric model that assume ut is a general process

which satisfy certain memory and moment constrains. Phillips (1987a) and Phillips

and Perron (1988) constructed consistent estimators of the long- and short-run vari-

ances of ut in (8) to remedy the influence of the nuisance parameter.

Third, Perron and Ng (1996) considered a long-run variance estimator based on

estimation of a long autoregression, in which the order of the autoregression is chosen

according to the Akaike information criterion (AIC) or the Schwartz (Bayesian)

information criterion (BIC). Furthermore, the class of tests suggested by Ng and

Perron (2001) was designed to the tests of Perron and Ng (1996) by employing a

modified form of the AIC to determine suitable lag order for an autoregression.

Fourth, in the work of Wang (2017) which introduced a consistent estimator for

the ratio of long to short-run variances and then used it to modify the DF tests

(denoted as R-tests). By using Monte Carlo techniques, Wang (2017) showed that

the R-tests have improved size properties. The first two modifications of unit root

models are discussed in the following.
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3.2 Augmented Dickey-Fuller Test, Yt is AR(p) process

Instead of (8), suppose that the data were generated from an AR(p) process,

(1− φ1L− φ2L
2 − ...− φpLp)Yt = εt, (21-25)

where εt is i.i.d. sequence with zero mean and variance σ2 and finite fourth moment.

It is helpful to write the autoregression (25) in a slightly different form. To do so,

define

β ≡ φ1 + φ2 + ...+ φp

ζj ≡ −[φj+1 + φj+2 + ...+ φp], for j = 1, 2, ..., p− 1.

Notice that for any value of φ1, φ2, ..., φp, the following polynomials in L are

equivalent:

(1− βL)− (ζ1L+ ζ2L
2 + ...+ ζp−1L

p−1)(1− L)

= 1− βL− ζ1L+ ζ1L
2 − ζ2L+ ζ2L

3 − ...− ζp−1L
p−1 + ζp−1L

p

= 1− (β + ζ1)L− (ζ2 − ζ1)L2 − (ζ3 − ζ2)L3 − ...− (ζp−1 − ζp−2)Lp−1 − (−ζp−1)Lp

= 1− [(φ1 + φ2 + ...+ φp)− (φ2 + ...+ φp)]L− [−(φ3 + φ4 + ...+ φp) +

(φ2 + ...+ φp)]L
2 − ...− [−(φp) + (φp−1 + φp)]L

p−1 − (φp)L
p

= 1− φ1L− φ2L
2 − ...− φpLp.

Thus, the autoregression (25) can be equivalently be written

{(1− βL)− (ζ1L+ ζ2L
2 + ...+ ζp−1L

p−1)(1− L)}Yt = εt (21-26)

or

Yt = βYt−1 + ζ14Yt−1 + ζ24Yt−2 + ...+ ζp−14Yt−p+1 + εt. (21-27)

Example.
In the case of p = 3, (25) would be

Yt = φ1Yt−1 + φ2Yt−2 + φ3Yt−3 + εt

= (φ1 + φ2 + φ3)Yt−1 − (φ2 + φ3)[Yt−1 − Yt−2]− (φ3)[Yt−2 − Yt−3]

= βYt−1 + ζ14Yt−1 + ζ24Yt−2.

�
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Suppose that the process that generated Yt contain only a single unit root, that

is suppose one root of

(1− φ1z − φ2z
2 − ...− φpzp) = 0 (21-28)

is unity, then

1− φ1 − φ2 − ...− φp = 0, (21-29)

and all other root of (28) are outside the unit circle. Notice that (36) implies that

β = 1 in (26). Moreover, when β = 1, it would imply that

1− φ1L− φ2L
2 − ...− φpLp = (1− L)(1− ζ1L− ζ2L

2 − ...− ζp−1L
p−1)

and all the roots of (1− ζ1L− ζ2L
2 − ...− ζp−1L

p−1) = 0 would lie outside the unit

circle.

Under the null hypothesis that β = 1, expression (26) could then be written as

4Yt = ζ14Yt−1 + ζ24Yt−2 + ...+ ζp−14Yt−p+1 + εt. (21-30)

or

4Yt = ut (21-31)

where

ut = ψ(L)εt = (1− ζ1L− ζ2L
2 − ...− ζp−1L

p−1)−1εt.

That is, we may express this AR(p) with an unit root process as the AR(1) with an

unit root process as (31) but with serially correlated ut.

Dickey and Fuller (1979) propose a test of unit root in this AR(p) model and is

known as the Augmented Dickey-Fuller (ADF) test.

3.2.1 Constant Term but No Time Trend included in the Regression; True Process Is
a Autoregressive with no Drift

Assume that the initial sample is of size T+p, with observation numbered {Y−p+1, Y−p+2,

..., YT}, and conditional on the first p observations. We are interested in the prop-

erties of OLS estimation of

Yt = ζ14Yt−1 + ζ24Yt−2 + ...+ ζp−14Yt−p+1 + α + βYt−1 + εt

= x′tβ + εt (21-32)
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under the null hypothesis that α = 0 and β = 1, i.e. the DGP is

4Yt = ζ14Yt−1 + ζ24Yt−2 + ...+ ζp−14Yt−p+1 + εt, (21-33)

where β ≡ (ζ1, ζ2, ..., ζp−1, α, β)′ and xt ≡ (4Yt−1,4Yt−2, ...,4Yt−p+1, 1, Yt−1)′. The

asymptotic distribution of the OLS coefficients estimators, β̂T are in the following.

Theorem 4.
Let the data Yt be generated by (33), i.e. 4Yt = ζ14Yt−1 + ζ24Yt−2 + ... +

ζp−14Yt−p+1 + εt, then as T → ∞, for the regression model (32), Yt = ζ14Yt−1 +

ζ24Yt−2 + ...+ ζp−14Yt−p+1 + α + βYt−1 + εt,

ΥT (β̂T − β)
L−→
[

V 0
0 Q

]−1 [
h1

h2

]
=

[
V−1h1

Q−1h2

]
, (21-34)

where

ΥT =



√
T 0 . . . 0 0

0
√
T . . . 0 0

. . . . . . .

. . . . . . .

. . . . . . .

0 0 . . .
√
T 0

0 0 . . . 0 T


, V =


γ0 γ1 . . . γp−2

γ1 γ0 . . . γp−3

. . . . . .

. . . . . .

. . . . . .
γp−2 γp−3 . . . γ0

 ,

Q =

[
1 λ

∫
W (r)dr

λ
∫
W (r)dr λ2

∫
[W (r)]2dr

]
,

h1 ∼ Np−1(0,V), h2 ∼
[

σW (1)
1/2σλ{[W (1)]2 − 1}

]
, γj = E[(4Yt)(4Yt−j)]

and

λ = σ · ψ(1) = σ/(1− ζ1 − ζ2 − ...− ζp−1). (21-35)

�

The results reveals that in a regression of I(1) variables on I(1) and I(0) vari-

ables, the asymptotic distribution of the coefficient of I(1) and I(0) variables are

independent. Thus, the asymptotic distribution of
√
T (ζ̂j − ζj), j = 1, 2, .., p − 1

and T (β̂ − β) are independent. This results can be used for showing that the dis-

tribution of β̂T in the ADF regression is the Dickey-Fuller distribution (taking into

account of serially correlated in the ut, see (36)). Also the asymptotic distribution
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of
√
T (ζ̂j − ζj) is normal. Therefore, the limiting distribution of T (β̂ − β) is given

by the second element of[
T 1/2 0

0 T

] [
α̂− 0

β̂T − 1

]
L−→
[

1 λ
∫
W (r)dr

λ
∫
W (r)dr λ2

∫
[W (r)]2dr

]−1 [
σW (1)

1/2σλ{[W (1)]2 − 1}

]
≡
[
σ 0
0 σ/λ

] [
1

∫
W (r)dr∫

W (r)dr
∫

[W (r)]2dr

]−1 [
W (1)

1/2{[W (1)]2 − 1}

]
,

or

T (β̂T − 1)⇒ (σ/λ) ·
1/2{[W (1)]2 − 1} −W (1) ·

∫ 1

0
W (r)dr∫ 1

0
[W (r)]2dr −

[∫ 1

0
W (r)dr

]2 . (21-36)

The parameter (σ/λ) is the factor to correct the serial correlation in ut. When ut

is i.i.d., form (35) we have ζi = 0 and λ = σ, that is (σ/λ) = 1. This distribution is

back to simple Dickey-Fuller distribution. We are now in a position to propose the

ADF test statistics which correct for (σ/λ) and have the same distribution as DF .

Theorem 5.
Let the data Yt be generated by (33), i.e. 4Yt = ζ14Yt−1 + ζ24Yt−2 + ... +

ζp−14Yt−p+1 + εt, then as T → ∞, for the regression model (32), Yt = ζ14Yt−1 +

ζ24Yt−2 + ...+ ζp−14Yt−p+1 + α + βYt−1 + εt,

(a).

T (β̂T − 1)

1− ζ̂1 − ζ̂2 − ...− ζ̂p−1

⇒
1/2{[W (1)]2 − 1} −W (1) ·

∫ 1

0
W (r)dr∫ 1

0
[W (r)]2dr −

[∫ 1

0
W (r)dr

]2 ,

(b).

tT =
(β̂T − 1)

{s2
Te′p+1(

∑
xtx′t)

−1ep+1}1/2
⇒

1/2{[W (1)]2 − 1} −W (1) ·
∫ 1

0
W (r)dr{∫ 1

0
[W (r)]2dr −

[∫ 1

0
W (r)dr

]2
}1/2

,

where ep+1 = [0 0 ...0 1]′.

Proof.

(a). From (36) we have

T · (λ/σ)(β̂T − 1)⇒
1/2{[W (1)]2 − 1} −W (1) ·

∫ 1

0
W (r)dr∫ 1

0
[W (r)]2dr −

[∫ 1

0
W (r)dr

]2 . (21-37)
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Recall from (35) that

λ/σ = (1− ζ1 − ζ2 − ...− ζp−1)−1.

Since ζ̂j is consistent from (34), this magnitude is clearly consistently estimated

by

λ̂/σ = (1− ζ̂1 − ζ̂2 − ...− ζ̂p−1)−1. (21-38)

It follows that

[T (β̂T − 1) · (λ/σ)]− [T (β̂T − 1) · (λ̂/σ)]

= T (β̂T − 1) · [(λ/σ)− (λ̂/σ)]

= Op(1) · op(1) = op(1).

Thus [T (β̂T − 1) · (λ̂/σ)] and [T (β̂T − 1) · (λ/σ)] have the same asymptotic

distribution. This complete the proof of part (a).

(b). To prove art (b), we first multiply the numerator and denominator of tT by T

results in

tT =
T (β̂T − 1)

{s2
Te′p+1ΥT (

∑
xtx′t)

−1ΥTep+1}1/2
. (21-39)

But

e′p+1ΥT (
∑

xtx
′
t)
−1ΥTep+1 = e′p+1

[
Υ−1
T (
∑

xtx
′
t)Υ

−1
T

]−1

ep+1

L−→ e′p+1

[
V−1 0
0 Q−1

]
ep+1

=
1

λ2 ·
{∫ 1

0
[W (r)]2dr −

[∫ 1

0
W (r)dr

]2
} .

(21-40)
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Hence from (36) and (40),

tT
L−→ (σ/λ)

1/2{[W (1)]2 − 1} −W (1) ·
∫ 1

0
W (r)dr∫ 1

0
[W (r)]2dr −

[∫ 1

0
W (r)dr

]2

÷


σ2

λ2 ·
{∫ 1

0
[W (r)]2dr −

[∫ 1

0
W (r)dr

]2
}


1/2

=
1/2{[W (1)]2 − 1} −W (1) ·

∫ 1

0
W (r)dr{∫ 1

0
[W (r)]2dr −

[∫ 1

0
W (r)dr

]2
}1/2

. �

This is the same distribution as in (19). Thus, the usual t test of β = 1 for OLS

estimation of AR(p) can be compared with Theorem 2 and use case 2 of Table B.6

without any correction for the fact ut is serially correlated (or 4Y are included in

the regression).

3.3 Augmented Dickey-Fuller Test, Yt is a ARMA(p, q) process

The fact that the distribution of β̂T in the ADF regression is the Dickey-Fuller

distribution has been extended by Said and Dickey (1984) to the more general case

in which, under the null hypothesis, the series of first difference are of the general

ARMA(p, q) form with unknown p and q. They showed that a regression model,

such as (39), is still valid for testing the unit root null under the presence of the

serial correlations of error, if the number of lags 4Y included as regressor increase

with the sample size at a controlled rate T 1/3. Essentially the moving terms are

being approximated by including enough autoregressive terms.

Consider the general ARIMA(p, 1, q) model is defined by

Yt = βYt−1 + ut, (21-41)

where

(1− φ1L− φ2L
2 − ...− φpLp)ut = (1 + θ1L+ θ2L

2 + ...+ θqL
q)εt (21-42)

with Y0 = 0, εt is i.i.d. and β = 1.
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(41) and (42) is equivalently written as

(1− φ1L− φ2L
2 − ...− φpLp)4Yt = (1 + θ1L+ θ2L

2 + ...+ θqL
q)εt. (21-43)

Therefore, (30) as a special case of (43) in which θj = 0, j = 1, 2, ..., q. Rewrite (43)

as

η(L)4Yt = εt (21-44)

where η(L) = (1 − η1L − η2L
2 − ....) = (1 + θ1L + θ2L

2 + ... + θqL
q)−1(1 − φ1L −

φ2L
2 − ...− φpLp). That is,

4Yt = η14Yt−1 + η24Yt−2 + η34Yt−3 + ....+ εt

or

Yt = Yt−1 + η14Yt−1 + η24Yt−2 + η34Yt−3 + ....+ εt. (21-45)

This motives us to estimate the coefficient in (45) by regression Yt on Yt−1,4Yt−1,4Yt−2,

...,4Yt−k where k is a suitably chosen integer. To get consistent estimator of the

coefficient in (45) it is necessary to let k as a function of T .

Consider a truncated version of (45)

Yt = α + βYt−1 + η14Yt−1 + η24Yt−2 + ...+ ηk4Yt−k + etk (21-46)

= x′tβ + etk,

where β ≡ (α, β, ζ1, ζ2, ..., ζk)
′ and xt ≡ (1, Yt−1,4Yt−1,4Yt−2, ...,4Yt−k)′. Notice

that etk is not a white noise. In this case, the limiting distribution of t statistics of

the coefficient on the lagged Yt−1 (i.e., β̂T ) from OLS estimation of has the same

Dickey-Fuller t-distribution as when ut is i.i.d..

Theorem 6. (Said-Dickey ADF ):

Let the data Yt be generated by (41) and (42) and the regression model be (46). We

assume that T−1/3k → 0 and there exist c > 0, r > 0 such that ck > T 1/r, then as

T →∞,

tT =
(β̂T − 1)

{s2
Te′k+1(

∑
xtx′t)

−1ek+1}1/2

L−→
1/2{[W (1)]2 − 1} −W (1) ·

∫ 1

0
W (r)dr{∫ 1

0
[W (r)]2dr −

[∫ 1

0
W (r)dr

]2
}1/2

,

where ek+1 = [0 1 ...0 0]′. �
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The intuition behind that k should be a function of T is clear from the fact

etk = ζk+14Yt−k−1 + ζk+24Yt−k−2 + ...+ εt.

Then as k →∞

etk − εt = ζk+14Yt−k−1 + ζk+24Yt−k−2 + ...
p−→ 0

from the absolute summability of ζj, i.e
∑∞

j=0 |ζj| < ∞ which imply ζj → 0 and

ζk+14Yt−k−1 + ζk+24Yt−k−2 + ... −→ 0. Then, it is expected that a ARIMA(p, 1, q)

process here would have the same asymptotic result with the ARIMA(p, 1, 0) pro-

cess. Therefore, the asymptotic result should be derived under the condition that

k → ∞. However, it can not increase quickly then T , i.e. we need the condition

that T−1/3k → 0.

3.3.1 Choice of Lag-Length in the ADF Test

It has been observed that the size and power properties of the ADF test are sensitive

to the number of lagged terms (k) used. Several guidelines have been suggested for

the choice of k. Ng and Perron (1995) examine these in details. The guidelines are:

(a). Rule for fixing k at an arbitrary level independent of T . Overall, choosing a

fixed k is not desirable from their detailed simulation.

(b). Rule for fixing k as a function of T . A rule commonly used is the one suggested

by Schwert (1989) which is to choose

k = Int{c(T/100)1/d}.

Schwert suggest c = 12 and d = 4. The problem with such a rule is that it

need not be optional for all p and q in the ARMA(p, q).

(c). Information based rules. The information criteria suggest choosing k to mini-

mize an objective function that trades off parsimony against reduction in sum

of squares. The objective function is of the form (see also p.5 of Ch. 16)

Ik = log σ̂2
k + k

CT
T
.

The Akaike information criterion (AIC) choose CT = 2. The Schwarz Bayesian

information criterion (BIC) chooses CT = log T . Ng and Perron argue that

both AIC and BIC are asymptotically the same with ARMA(p, q) models and

that both of them choose k proportional to log T .
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(d). Sequential rules. Hall (1994) discusses a general to specific rule which is

to start with a large value of k (kmax). We test the significance of the last

coefficient and reduce k iteratively until a significant statistic is encountered.�

Ng and Perron (1995) compare AIC, BIC, and Hall’s general to specific approach

through a Monte Carlo study. The major conclusions are:

(a). Both AIC and BIC choose very small value of k (e.g. k = 3). This results

in high size distortions, especially with MA errors (Remark: The intuition

behind this conclusion is that with MA error, this model is AR(∞), if you use

too small lagged value, your model look not very much like a AR(∞), and since

this asymptotic results is derived from k → ∞, your finite sample distribu-

tion is far away from the asymptotic distribution and results in size distortion.)

(b). Hall’s criterion tends to choose higher values of k. The higher the kmax is, the

higher is the chosen value of k. This results in the size being at the nominal

level, but of course with a loss of power. (Remark: Unit root test statistics

sa far we have derived is the distribution under the null. On the other side,

we can derive the test statistics under the alternative hypothesis of stationary

or fractional difference process. Theses test statistics should go to −∞, say,

against the left-tailed hypothesis, when the alternative hypothesis is true to

be able to consistently reject the null hypothesis, or what is called power is

one. A common results is that the asymptotic distribution of the unit root test

statistics under the alternative hypothesis is function of k, and with precisely,

(T/k), say. For a fixed T , (T/K) is smaller with a larger k. This cause the unit

roots distribution tend to −∞ more slower under the alternative hypothesis

and has a lower power. See Lee and Schmidt (1996) and Lee and Shie (2004).)�

What this study suggests is that Hall’s general to specific methods is preferable

to the others. DeJong et al. (1992) show that increasing k typically results in a

modest decrease in power but a substantial decrease in size distortion. If this is the

case the information criteria are at a disadvantage because they result in a choice

of very small value of k. However, Stock (1994) propose opposite evidence arguing

in favor of BIC compared with Hall’s method.
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3.4 Phillips-Perron Test, ut is mixing process

In contrast to ADF where a AR(1) unit root process has been extend to AR(p) and

ARMA(p, q) with a unit root, Phillips (1987) and Phillips and Perron (1988) extend

the random walk (AR(1) process with a unit root) to a general setting that allows for

weakly dependent and heterogeneously distributed innovations. The model Phillips

(1987) consider are

Yt = βYt−1 + ut, (21-47)

β = 1 (21-48)

where Y0 = 0 (not necessary in Phillips’s original paper), β = 1 and ut is a weakly

dependent and heterogeneously distributed innovations sequence to be specified be-

low.

We consider the three least square regressions

Yt = β̆Yt−1 + ŭt, (21-49)

Yt = α̂ + β̂Yt−1 + ût, (21-50)

and

Yt = α̃ + β̃Yt−1 + δ̃

(
t− 1

2
T

)
+ ũt, (21-51)

where β̆, (α̂, β̂), and (α̃, δ̃, β̃) are the conventional least-squares regression coeffi-

cients. Phillips (1987) and Phillips and Perron (1978) were concerned with the lim-

iting distribution of the regression in (49), (50), and (51) (β̆, (α̂, β̂), and (α̃, δ̃, β̃))

under the null hypothesis that the data are generated by (47) and (48).

So far, we have assumed that the sequence ut used to construct WT is i.i.d..

Nevertheless, just as we can obtain central limit theorems when ut is not necessary

i.i.d., so also can we obtain FCLT when ut is not necessary i.i.d.. Here we present

a version of FCLT, due to McLeish (1975), under a very weak assumption on ut.

Theorem 7. (McLeish)

Let ut satisfies that

(a). E(ut) = 0,

(b). supt E|ut|γ <∞ for some γ > 2,

(c). λ2 = limT→∞E[T−1(
∑
ut)

2] exists and λ2 > 0, and
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(d). ut is strong mixing with mixing coefficients αm that satisfy
∑∞

1 α
1−2/γ
m <∞,

then WT =⇒ W , where WT (r) ≡ T−1/2
∑[Tr]

t=1 ut/λ. �

These conditions (a)–(d) allow for both temporal dependence (by mixing) and

heteroscedasticity (as long as λ2 = limT→∞E[T−1(
∑
ut)

2] exist) in the process ut.

(Hint: When ut is an i.i.d. process, then λ2 = limT→∞E[T−1(
∑
ut)

2] = σ2, and this

result is back to (10).)

We first provide the following asymptotic results of the sample moments which

are useful to derive the asymptotics of the OLS estimator.

Lemma.
Let ut be a random sequence that satisfies the assumptions in Theorem 7, and if

suptE|ut|γ+η <∞ for some η > 0,

yt = u1 + u2 + ...+ ut for t = 1, 2, ..., T, (21-52)

with y0 = 0. Then

(a) T−
1
2

T∑
t=1

ut
L−→ λW (1),

(b) T−2
T∑
t=1

Y 2
t−1 =⇒ λ2

∫ 1

0
[W (r)]2dr,

(c) T−
3
2

T∑
t=1

Yt−1 =⇒ λ
∫ 1

0
W (r)dr,

(d) T−1
T∑
t=1

u2
t

p−→ σ2
u = T−1

T∑
t=1

E(u2
t ).

(e) T−1
T∑
t

Yt−1ut =⇒ 1
2
{λ2[W (1)2]− σ2

u},

(f) T−
3
2

T∑
t=1

tut =⇒ λ[W (1)−
∫ 1

0
W (r)dr],

(g) T−
5
2

T∑
t=1

tYt−1 =⇒ λ
∫ 1

0
rW (r)dr,

(h) T−3
T∑
t=1

tY 2
t−1 =⇒ λ2

∫ 1

0
r[W (r)]2dr.

A joint weak convergence for the sample moments given above to their respective

limits is easily established and will be used below.

Proof.
Proofs of items (a), (b), (c), (f), (g) and (h) are analogous to those proofs at Lemma
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1. Item (d) is the results of LLN for a mixing process.

(e). For a random walk, Y 2
t = (Yt−1 + ut)

2 = Y 2
t−1 + 2Yt−1ut + u2

t , implying

that Yt−1ut = (1/2){Y 2
t − Y 2

t−1 − u2
t} and then

∑T
t=1 Yt−1ut = (1/2){Y 2

T − Y 2
0 } −

(1/2)
∑T

t=1 u
2
t . Recall that Y0 = 0, and thus it is convenient to write

∑T
t=1 Yt−1ut =

1
2
Y 2
T − 1

2

∑T
t=1 u

2
t . From items (a) we know that T−1Y 2

T (= (T−1/2
∑T

t=1 us)
2 L−→

λ2W 2(1) and
∑T

t=1 u
2
t

p−→ σ2
u by LLN (MacLeish); then,

∑T
t=1 Yt−1ut =⇒ 1

2
{λ2[W (1)2]−

σ2
u}. �

3.4.1 No Constant Term or Time Trend in the Regression; True Process Is a Random
Walk

We first consider the case that no constant term or time trend in the regression

model, but true process is a random walk. The asymptotic distributions of OLS

unit root coefficients estimator and t-ratio test statistics are in the following.

Theorem 8.
Let the data Yt be generated by (47) and (48); and ut be a random sequence that

satisfies the assumptions in Theorem 7, and if suptE|ut|γ+η < ∞ for some η > 0,

then as T →∞, for the regression model (49),

T (β̆T − 1)⇒ 1/2([W (1)2]− σ2
u/λ

2)∫ 1

0
[W (r)]2dr

and

t =
(β̆T − 1)

σ̆β̆T
⇒ (λ/2σu){[W (1)]2 − σ2

u/λ
2}

{
∫ 1

0
[W (r)]2dr}1/2

,

where σ̆2
β̆T

= [s2
T ÷
∑T

t=1 Y
2
t−1]1/2 and s2

T denote the OLS estimate of the disturbance

variance:

s2
T =

T∑
t=1

(Yt − β̆TYt−1)2/(T − 1).

Proof.
Since the deviation of the OLS estimate from the true value is characterized by

T (β̆T − 1) =

T−1
T∑
t=1

Yt−1ut

T−2
T∑
t=1

Y 2
t−1

, (21-53)
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which is a continuous function function of Lemma 2’s (b) and (e), it follows that

under the null hypothesis that β = 1, the OLS estimator β̆ is characterized by

T (β̆T − 1)⇒ 1/2{λ2[W (1)2]− σ2
u}

λ2
∫ 1

0
[W (r)]2dr

=
1/2([W (1)2]− σ2

u/λ
2)∫ 1

0
[W (r)]2dr

. (21-54)

To prove second part of this theorem, We first note since β̆ is a consistent esti-

mator of β from (53), s2
T is a consistent estimator of σ2

u, from the analogous proofs

as in Theorem 2. Then, we can express the t statistics alternatively as

tT = T (β̆T − 1)

{
T−2

T∑
t=1

Y 2
t−1

}1/2

÷ (s2
T )1/2

or

tT =
T−1

∑T
t=1 Yt−1ut{

T−2
∑T

t=1 Y
2
t−1

}1/2

(s2
T )1/2

,

which is a continuous function function of Lemma 2’s (b) and (e), it follows that

under the null hypothesis that β = 1, the asymptotic distribution of OLS t statistics

is characterized by

tT
L−→ (1/2){[λ2W (1)]2 − σ2

u}{
λ2
∫ 1

0
[W (r)]2dr

}1/2

(σ2
u)

1/2

=
(λ/2σu){[W (1)]2 − σ2

u/λ
2}

{
∫ 1

0
[W (r)]2dr}1/2

. (21-55)

This complete the proof of this Theorem. �

Theorem 8 extends (14) and (17) to the very general case of weakly depen-

dent and heterogeneously distributed data. When ut is a i.i.d. sequence, λ2 =

T−1E[(
∑
ut)

2] = T−1
∑
E(u2

t ) = σ2
u, and we see that the results of Theorem 8

reduces to those of Theorem 2.

Several interesting things are noteworthy to the asymptotic distribution results

for the least squares estimators, (54). First, note that the scale factor here is T ,

not
√
T as it previously has been. Thus, β̆ is “collapsing” to its limits at a much

faster rate than before. This is sometimes called superconsistency. Next, note that

the limiting distribution is no longer normal; instead, we have a distribution that is

somewhat complicated function of a Wiener process. When σ2
u = λ2 (independence)

we have the distribution of J.S. White (1958, p.1196), apart from an incorrect scaling

there, as noted by Phillips (1987). For σ2
u = λ2, this distribution is also that

tabulated by Dickey and Fuller (1979) in their famous work on testing for unit root.

In the regression setting studied in previous chapters the existence of serial cor-

relation in ut in the presence of a lagged dependent variable regressor leads to the
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inconsistency of β̆ for β0 as discussed in Chapter 10. Here, however, the situation

is quite different. Even though the regressor is a lagged dependent variables, β̆ is

consistent for β0 = 1 despite the fact that condition (c) and (d) of Theorem 7 permit

ut to display considerable correlation.

The effect of the serial correlation is that σ2
u 6= λ2. This results is a shift of the

location of the asymptotic distribution away from zero (since E(W (1)2−σ2
u/λ

2) 6= 0

where E(W (1)2) = E(χ2
(1)) = 1) relative to the σ2

u = λ2 case of no serial correlation).

Despite this effect of the serial correlation in ut, we no longer have the serious adverse

consequence of the inconsistency of β̆.

One way of understanding why this is so is succinctly expressed by Phillips (1987,

p.283):

Intuitively, when the data generating process has a unit root,

the strength of the single as measured by the sample variation

of the regressor Yt−1 dominates the noise by a factor of O(T ), so

that the effect of any regressor-error correlation are annihilated

in the regression as T →∞.

Note that , however, even when σ2
u = λ2 the asymptotic distribution given in (54)

is not centered about zero, so an asymptotic bias is still present. The reason for

this is that there generally exist a strong (negative) correlation between W (1)2 and

(
∫ 1

0
[W (r)2]dr)−1, resulting from the fact that W (1)2 and W (r)2 are highly correlated

for each r. Thus, even though E(W (1)2−σ2
u/λ

2) = 0 with σ2
u = λ2, we do not have

E
[

1/2([W (1)2]−σ2
u/λ

2)∫ 1
0 [W (r)]2dr

]
= 0. See Abadir (1995) for further details.

3.4.2 Estimation of λ2 and σ2
u

The limiting distribution given in Theorem 8 depend on unknown parameters σ2
u

and λ2. Theses distributions are therefore not directly useable for statistical testing.

However, both theses parameters may be consistently estimated and the estimates

may be used to construct modified statistics whose limiting distribution are inde-

pendent of (λ2, σ2
u). As we shall see, these new statistics provide very general tests

for the presence of a unit root in (47).

As shown in Lemma 2 (d), T−1
∑T

t=1 u
2
t → σ2

u. This provides us with the simple

estimator

s2
u = T−1

T∑
t=1

(Yt − Yt−1)2 = T−1

T∑
t=1

u2
t ,
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which is consistent for σ2
u under the null hypothesis β = 1. Since β̆ → 1 by Theorem

8 we may also use s̆2
u = T−1

∑T
1 (Yt − β̆Yt−1)2 as a consistent estimator of σ2

u.

Consistent estimation of λ2 = limT→∞ T
−1E(

∑T
1 ut)

2 is more difficult. We start

by defining

λ2
T = T−1E

(
T∑
1

ut

)2

= T−1

T∑
1

E(u2
t ) + 2T−1

T−1∑
τ=1

T∑
t=τ+1

E(utut−τ )

and by introducing the approximate

λ2
T l = T−1

T∑
1

E(u2
t ) + 2T−1

l∑
τ=1

T∑
t=τ+1

E(utut−τ ).

We shall call l the lag truncation number. For large T and large l < T , λ2
T l may

be expected to very close to λ2
T if the total contribution in λ2

T of covariance such as

E(utut−τ ) with long lags τ > l is small. This will be true if ut satisfies the assump-

tion in Theorem 7. Formally, we have the following lemma.

Lemma 3.
If the sequence ut satisfies the assumption in Theorem 7 and if l → ∞ as T → ∞,

then λ2
T − λ2

T l → 0 as T →∞. �

This lemma suggests that under suitable conditions on the rate at which l→∞
as T →∞ we may proceed to estimate λ2 from finite sample of data by sequentially

estimating λ2
T l. We define

s2
T l = T−1

T∑
1

u2
t + 2T−1

l∑
τ=1

T∑
t=τ+1

utut−τ . (21-56)

The following result establishes that s2
T l is a consistent estimator of λ2.

Theorem 9.
If ut satisfies all the assumptions in Theorem 7 except that part (b) is replaced by

the stronger moment condition: suptE|ut|2γ < ∞, for some γ > 2, when l → ∞ as

T →∞ such that l = o(T 1/4), then s2
T l → λ2. �
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According to this result, if we allow the number of estimated autocovariances to

increase as T → ∞ but control the rate of increase so that l = o(T 1/4), then s2
T l

yields a consistent estimator of λ2. Inevitably the choice of l will be an empirical

matter.

Rather than using the first difference ut = Yt − Yt−1 in the construction of s2
T l,

we could have used the residuals ŭt = Yt − β̆Yt−1 from the least squares regression.

Since β̆ → 1, this estimator is also consistent for λ2 under the null hypothesis β = 1.

We remark that s2
T l is not constrained to be nongative as it presently defined

in (56). When there are large negative sample serial covariance, s2
T l can take on

negative values. Newey and West (1987) have suggested a modification to variance

estimator such as s2
T l which ensures that they are nonnegative. In the present case,

the modification yield:

s̆2
T l = T−1

T∑
1

ŭ2
t + 2T−1

l∑
τ=1

wτl

T∑
t=τ+1

ŭtŭt−τ , (21-57)

where

wT l = 1− τ/(l + 1), (21-58)

which put a higher weight on more recent autocovariances.

3.4.3 New Tests for a Unit Root

The consistent estimator s̆2
u and s̆2

T l may be used to develop new tests for unit roots

that apply under very general conditions. We define the statistics:

Zβ̆ = T (β̆ − 1)− 1/2(s̆2
T l − s̆2

u)(
T−2

∑T
1 Y

2
t−1

) (21-59)

and

Zt̆ = tT · (s̆2
u/s̆

2
T l)

1/2 − 1/2(s̆2
T l − s̆2

u)

s̆T l(T−2

T∑
1

Y 2
t−1

)1/2
−1

. (21-60)

Here, Zβ̆ is a transformation of the standardized estimator T (β̆ − 1) and Zt̆ is a

transformation of the regression t statistics as in (54). The limiting distribution of

Zβ̆ and Zt̆ are given by the following results.

Theorem 10. (Phillips 1987)

If the condition of Lemma 3 are satisfied, then as T →∞,
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(a).

Zβ̆ ⇒
1/2{[W (1)]2 − 1}∫ 1

0
[W (r)]2dr

(b).

Zt̆ ⇒
1/2{[W (1)]2 − 1}
{
∫ 1

0
[W (r)]2dr}1/2

under the null hypothesis that data is generated by (47) and (48).

Proof.

(a). From (54) we already have

T (β̆T − 1)⇒ 1/2([W (1)2]− σ2
u/λ

2)∫ 1

0
[W (r)]2dr

and from Lemma 2 (b) and Theorem 9 we have

1/2(s2
T l − s2

u)

T−2
∑T

1 Y
2
t−1

⇒ 1/2(λ2 − σ2
u)

λ2
∫ 1

0
[W (r)]2dr

≡ 1/2(1− σ2
u/λ

2)∫ 1

0
[W (r)]2dr

.

Therefore, the test statistics Zβ̆ is distributed as

Zβ̆ = T (β̆T − 1)− 1/2(s̆2
T l − s̆2

u)

T−2
∑T

1 Y
2
t−1

⇒ 1/2([W (1)2]− σ2
u/λ

2 − 1 + σ2
u/λ

2)∫ 1

0
[W (r)]2dr

≡ 1/2([W (1)2]− 1)∫ 1

0
[W (r)]2dr

.

(b). From (55) and the consistency s̆2
u and s̆2

T l we have

tT · (s̆2
u/s̆

2
T l)

1/2 ⇒ 1/2{[W (1)]2 − σ2
u/λ

2}
{
∫ 1

0
[W (r)]2dr}1/2

. (21-61)

Consider the following statistics:

1/2(s̆2
T l − s̆2

u)

s̆T l

[
T−2

∑T
1 Y

2
t−1

]1/2
⇒ 1/2(λ2 − σ2

u)

λ2
{∫ 1

0
[W (r)]2dr

}1/2
≡ 1/2(1− σ2

u/λ
2){∫ 1

0
[W (r)]2dr

}1/2
.

(21-62)
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Combining (61) and (62) we have

Zt̆ = tT · (s̆2
u/s̆

2
T l)

1/2 − 1/2(s̆2
T l − s̆2

u)

s̆T l

[
T−2

∑T
1 Y

2
t−1

]1/2

⇒ 1/2([W (1)2]− σ2
u/λ

2 − 1 + σ2
u/λ

2){∫ 1

0
[W (r)]2dr

}1/2

≡ 1/2([W (1)2]− 1){∫ 1

0
[W (r)]2dr

}1/2
. �

Theorem 10 demonstrate that the limiting distribution of the two statistics Zβ̆
and Zt̆ are invariant within a very wide class of weakly dependent and possibly

heterogeneously distributed innovation ut. More, the limiting distribution of Zβ̆ is

identical to that of T (β̆− 1) when λ2 = σ2
u, so that the statistical tables reported in

the section labeled Case 1 in Table B.5 are still useable.

The limiting distribution of Zt̆ given in Theorem 11 is also identical to that of

regression tT statistics when λ2 = σ2
u. This is, in fact, the limiting distribution of the

t statistics when the innovation ut is i.i.d.(0, σ2). Therefore, the statistical tables

reported in the section labeled Case 1 in Table B.6 are still useable.

Phillips and Perron (1988) further analysis the asymptotic results of estimator

OLS when the regression contains a constant (β̂) or a constant and a time trend

(β̃) under the assumption that true data generating process is (47) and (48).

Theorem 11. (Phillips and Perron 1988):

If the condition of Lemma 3 are satisfied, then as T →∞,

(a).

Zβ̂ = T (β̂ − 1)− 1/2(ŝ2
T l − ŝ2

u)

T−2
∑T

1 (Yt−1 − Ȳ−1)2
,

(b).

Zt̂ = t̂T · (ŝ2
u/ŝ

2
T l)

1/2 − 1/2(ŝ2
T l − ŝ2

u)

ŝT l(T−2

T∑
1

(Yt−1 − Ȳ−1)2

)1/2
−1

,
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(c).

Zβ̃ = T (β̃ − 1)− T 6

24DX

(s̃2
T l − s̃2

u),

(d).

Zt̃ = t̃T · (s̃2
u/s̃

2
T l)

1/2 − T 3(s2
T l − s2

u)

4
√

3D
1/2
x sT l

,

the limiting distribution of the above four test statistics, Z’s, are identical to those

of distribution when λ2 = σ2
u, where Ȳ−1 =

∑T−1
1 Yt/(T − 1) and Dx = det(X ′X)

and the regressors are X = (1, t, Yt−1), ŝ2
u = T−1

∑T
1 (Yt − α̂ − β̂Yt−1)2, ŝ2

T l =

T−1
∑T

1 û
2
t +2T−1

∑l
τ=1wτl

∑T
t=τ+1 ûtût−τ , s̃

2
u = T−1

∑T
1 [Yt−α̃−β̃Yt−1−δ̃(t− 1

2
T )]2,

and s̃2
T l = T−1

∑T
1 ũ

2
t + 2T−1

∑l
τ=1wτl

∑T
t=τ+1 ũtũt−τ . �

Exexcise 1.
Reproduce Case 4 at Table B.5 and B.6 on Hamilton (1994)’s p.762 and 763, re-

spectively. Two things to be noted:

(1). Confirms that the same results is obtained from non-gaussian i.i.d.

(2). The parameter α will not affect this distribution (so using α = 0 and α = 10000

will get identical results).

(3). The parameter σ2 will not affect this distribution (so using σ2 = 1 and σ2 = 10

will get identical results.) �

Exexcise 2.
Reproduce Table 1 of Phillips and Perron (1988, p.344) from which you will have

the chance to have your own unit root test’s (ADF and PP ) program in Gauss and

the chance to see what are size distortion and the problem arrising from the lake of

power of unit root tests. �
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3.5 Phillips-Perron Test, ut is a MA(∞) process

Hamilton (1994, Ch. 17) has parameterized the Phillips-Perron test by assuming

that the innovation in (54) to be

ut = ϕ(L)εt =
∞∑
j=0

ϕjεt−j, (21-63)

where εt is a white noise process (0, σ2
ε) and)

∑∞
j=0 j · |ϕj| <∞.

3.5.1 Beveridge-Nelson Decomposition

Since (70) is a subcase of the assumption in Theorem 7 (McLeish), all we have to

shown is that the ”long-run” variance in Theorem 7, λ2, here is equal to σ2
ε · ϕ2(1)

(Hamilton, p.505, eq. 17.5.10.). To do this, we need the Beveridge-Nelson Decom-

position.

Theorem 12 (Beveridge-Nelson (B-N) Decomposition):

Let

ut = ϕ(L)εt =
∞∑
j=0

ϕjεt−j, (21-64)

where εt is a white noise process (0, σ2
ε) and

∑∞
j=0 j · |ϕj| <∞.

Then

u1 + u2 + ...+ ut = ϕ(1)(ε1 + ε2 + ...+ εt) + ξt − ξ0,

where ϕ(1) ≡
∑∞

j=0 ϕj, ξt =
∑∞

j=0 αjεt−j, αj = −(ϕj+1 + ϕj+2 + ϕj+3 + ...) and∑∞
j=0 |αj| < ∞. (Therefore, ξt is a stationary process since it is a MA(∞) with

absolute summable coefficients.)

Proof:
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Observe that

t∑
s=1

us =
t∑

s=1

∞∑
j=0

ϕjεs−j

= {ϕ0εt + ϕ1εt−1 + ϕ2εt−2 + ...+ ϕtε0 + ϕt+1ε−1 + ...}

+{ϕ0εt−1 + ϕ1εt−2 + ϕ2εt−3 + ...+ ϕt−1ε0 + ϕtε−1 + ...}

+{ϕ0εt−2 + ϕ1εt−3 + ϕ2εt−4 + ...+ ϕt−2ε0 + ϕt−1ε−1 + ...}

+...+ {ϕ0ε1 + ϕ1ε0 + ϕ2ε−1 + ...}

= ϕ0εt + (ϕ0 + ϕ1)εt−1 + (ϕ0 + ϕ1 + ϕ2)εt−2 + ...

+(ϕ0 + ϕ1 + ϕ2 + ...+ ϕt−1)ε1 + (ϕ1 + ϕ2 + ...+ ϕt)ε0

+(ϕ2 + ϕ3 + ...+ ϕt+1)ε−1 + ....

= (ϕ0 + ϕ1 + ϕ2 + ...)εt − (ϕ1 + ϕ2 + ϕ3 + ...)εt

+(ϕ0 + ϕ1 + ϕ2 + ...)εt−1 − (ϕ2 + ϕ3 + ϕ4 + ...)εt−1

+(ϕ0 + ϕ1 + ϕ2 + ...)εt−2 − (ϕ3 + ϕ4 + ϕ5 + ...)εt−2 + ...

+(ϕ0 + ϕ1 + ϕ2 + ...)ε1 − (ϕt + ϕt+1 + ϕt+2 + ...)ε1

+(ϕ1 + ϕ2 + ϕ3 + ...)ε0 − (ϕt+1 + ϕt+2 + ϕt+3 + ...)ε0

+(ϕ2 + ϕ3 + ϕ4 + ...)ε−1 − (ϕt+2 + ϕt+3 + ϕt+4 + ...)ε−1 + ...

or

t∑
s=1

us = ϕ(1) ·
t∑

s=1

εs + ξt − ξ0,

where

ξt = −(ϕ1 + ϕ2 + ϕ3 + ...)εt − (ϕ2 + ϕ3 + ϕ4 + ...)εt−1

−(ϕ3 + ϕ4 + ϕ5 + ...)εt−2 − ...

ξ0 = −(ϕ1 + ϕ2 + ϕ3 + ...)ε0 − (ϕ2 + ϕ3 + ϕ4 + ...)ε−1

−(ϕ3 + ϕ4 + ϕ5 + ...)ε−2...

This theorem states that for any serial correlated process ut that satisfy (71),

its partial sum (
∑
ut) can be write as the sum of a random walk (ϕ(1)

∑
εt) and

a stationary process, ξt and a initial condition ξ0. Notice that ξt is stationary from

the fact that ξt =
∑∞

j=0 αjεt−j, where αj = −(ϕj+1 + ϕj+2 + ...) and {αj}∞j=0 is
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absolutely summable:

∞∑
j=0

|αj| = |ϕ1 + ϕ2 + ϕ3 + ...|+ |ϕ2 + ϕ3 + ϕ4 + ...|+ |ϕ3 + ϕ4 + ϕ5 + ...|+ ...

≤ {|ϕ1|+ |ϕ2|+ |ϕ3|+ ...}+ {|ϕ2|+ |ϕ3|+ |ϕ4|+ ...}+ {|ϕ3|+ |ϕ4|+ |ϕ5|+ ...}+ ...

= |ϕ1|+ 2|ϕ2|+ 3|ϕ3|+ ...

=
∞∑
j=0

j · |ϕj|,

which is bounded by the assumptions in Theorem 12.

3.5.2 The Equality of Long-Run Variance in Phillips’s and Hamilton’s Assumption

We now show that the long run variance E(T−1(
∑
ut)

2) in Theorem 7 is equal to

ϕ(1)2σ2
ε (Hamilton’s p.505, (17.5.10). From B-N Decomposition we see that

u1 + u2 + ...+ uT = ϕ(1)(ε1 + ε2 + ...+ εT ) + ξT − ξ0,

therefore,

λ2 = T−1E[(u1 + u2 + ...+ uT )2]

= T−1E{[ϕ(1)2(ε1 + ε2 + ...+ εT )2] + ξ2
T + ξ2

0 + 2[ϕ(1)(ε1 + ε2 + ...+ εT ) · ξT ]

−2[ϕ(1)(ε1 + ε2 + ...+ εT ) · ξ0]− 2[ξT ξ0]}

= T−1

[
(ϕ(1)2Tσ2

ε) + E(ξ2
T ) + E(ξ2

0) + 2

(
ϕ(1)σ2

ε

T−1∑
j=0

αj

)
− 0− σ2

ε

∞∑
j=0

αjαT+j

]
→ ϕ(1)2σ2

ε

from the stationarity of ξT and absolute summability of αj. (We have to show that∑∞
j=0 |αj| <∞ imply

∑∞
j=0 αj <∞ and

∑∞
j=0 αjαT+j <∞.)

Therefore, the results of Hamilton is all the same with those of Phillips as long

as we replace λ2 with ϕ(1)2σ2
ε .
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4 Issues in Unit Root Testing

4.1 Size Distortion and Low Power of Unit Root Tests

Schwart (1989) first presented Monte-Carlo evidence to point out the size distortion

problem of the commonly used unit root test. He argued that the distribution of

the Dickey-Fuller tests is far different from the distribution (this is the meaning

of size-distortion, the distribution under the null hypothesis is not what you have

expected, and therefore the 5% critical value is misleading) reported by Dickey and

Fuller if the underlying distribution contains a moving-average component. He also

suggests that the Phillips and Perron (PP) test suffer from size distortions when the

MA parameters is large, which is the case with many economic time series as noted

by Schwert (1989). The test with the least size distortion is the Said-Dickey (1984)

high-order autoregression t-test. Whereas Schwert complained the size distortion of

unit root tests, DeJong et al. complained about the low power of unit root tests,

DeJong et al. (1992) argued about that the unit root tests have low power against

possible trend-stationary alternatives. Similar problems about size distortions and

low power were noticed by Agiakoglou and Newbold (1992).

The poor power problem is not unique to the unit root tests. Cochrane argue

that any test of the hypothesis θ = θ0 has arbitrarily low power against alternative

θ0− ε in small sample, but in many cases the difference between θ0 and θ0− ε
would not be considered important from the statistical or economic per-

spective. (For example, the expected value of a population height is 170 or 171.)

But the low power problem is particular disturbing in the unit root case because of

the discontinuity of the distribution theory near unit root. (unit root test statistics

has different asymptotic distribution under the null and the alternative.)

Mention must be made of a paper by Gonzalo and Lee (1996) who complain

about the repetition of the phrase ”lack of power unit root test”. They show nu-

merically that the lack of power and size distortion of the Dickey-Fuller tests for

unit roots are similar to and in many situations even smaller than the lack of power

and size distortions of the standard student t-tests for stationary roots in an au-

toregressive model. But arguments like this miss the important point. There is no

discontinuity of inference in the latter case but there is in the case of unit root tests.

Thus, the consequences of lack of power are vastly different in the two cases.

There have been several solutions to the problems of size distortion and low power

of the ADF and PP tests. Some of these are modifications of the ADF and PP
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tests and others are new tests. See Maddala and Kim (1999) p.103 for a good survey.

4.2 Tests With Stationarity as Null, the KPSS

Kwiatkowski, Phillips, Schmidt, and Shin (1992), which is often referred to as

KPSS, start with the model

Yt = ψ + δt+ ζt + εt,

where εt is a stationary process and ζt is a random walk given by

ζt = ζt−1 + ut, ut ∼ i.i.d.(0, σ2
u).

The null hypothesis of stationarity is formulated as

H0 : σ2
u = 0 or ζt is a constant.

The KPSS test statistics for this hypothesis is given by

LM =

∑T
t=1 S

2
t

s̃2
T l

,

where

s̃2
T l = T−1

T∑
t=1

et + 2T−1

l∑
τ=1

wτl

T∑
t=τ+1

etet−τ

is a consistent estimator of long run variance limT→∞ T
−1E(S2

T ). Here Wτl is an

optimal weighting function that corresponds to the choice of a spectral window.

KPSS use the Bartlett window, as suggested by Newey and West (1987),

wτl = 1− τ

l + 1
,

and et are the residuals from the regression of Yt on a constant and a time trend

(remember that LM test statistics is constructed under the null hypothesis), and St

is the partial sum of et defined by

St =
T∑
i=1

ei, t = 1, 2, ..., T.

For consistency of s̃2
T l, it is necessary that l→∞ as T →∞. The rate l = o(T 1/2) is

usually satisfactory. KPSS derive the asymptotic distribution of the LM statistic

and tabulate the critical values by simulation.

For testing the null of level stationarity instead of trend stationarity the test is

constructed the same way except that et is obtained as the residual from a regression
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of Yt on an intercept only. The test is an upper tail test.

It has been suggested (see, e.g., KPSS, p.176 and Choi, 1994, p.721) that the

tests using stationarity as null can be used for confirmatory analysis, i.e., to confirm

our conclusions about unit roots. However, if both tests fail to reject the respective

nulls or both reject the respective nulls, we do not have a confirmation.

4.3 Panel Data Unit Root Tests

The principle motivation behind panel data unit root tests is to increase the power

of unit root tests by increasing the sample size. An alternative route of increasing

the sample size by using long time series data, it is argued, causes problems arising

from structural changes. However, it is not clear whether this is more of a problem

than cross-sectional heterogeneity, a problem with the use of panel data.

It is often argued that the commonly used unit root tests such as ADF and PP

are not very powerful, and that using panel data you get a more power test. See

Maddala and Kim (1999), p.134 for a good survey.
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