Ch. 18 Vector Time Series

(May 4, 2017)

1 Introduction

In dealing with economic variables often the value of one variables is not only related
to its predecessors in time but, in addition, it depends on past values of other variables.
This naturally extends the concept of univariate stochastic process to vector time se-
ries analysis. This chapter describes the dynamic interactions among a set of variables

collected in an (k x 1) vector y;.

Definition.
Let (S, F,P) be a probability space and T an index set of real numbers and define the

k-dimensional vector function y(-,-) by y(+,-) : & x T — R*. The ordered sequence of

random vector {y(-,t),t € T} is called a k—dimensional vector stochastic process. W

1.1 First Two Moments of Stationary Vector Time Series

From now on in this chapter we follows convention to use y; in stead of y(-,t) to

indicate that we are considering discrete vector time series. The first two moments of
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a vector time series y,; are

M1t
Mot

E(y:) = pe = cand Tyj = El(y; — pe)(yi—j — me—j)']  forallt € T.

Mt |

If neither p, and T'; ; are function of ¢, that is, puy = p and I',; = T';, then we say
that y,; is a covariance-stationary vector process.
Note that although «; = v_; for a scalar stationary process, the same is not true of

a vector process:
r,#T_,.

Instead, the correct relation is
I‘;- =TI_,

since

T, = El(yu; — Y- — )]
= Bl(yrej —)(ye — ),

and taking transpose,

I = Ellye— ) (yer; — )]
= Elyi— 1)y —w)]=T-;

1.2  Vector White Noise Process

Like the univariate time series analysis, the basic building element of a vector ARM A

model is the vector white noise process.
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Definition.

A k x 1 vector process {e;, t € T} is said to be a white-noise process if

(7). E(g)=0;
. N Qoaft=rT,
(17). E(ee)) = { 0 ifttr
where © is an (k x k) symmetric positive definite matrix. [ |

It is important to note that in general €2 is not necessary a diagonal matrix, since it
is the contemporaneous correlation among variables that called for the needs of vector

time series analysis.

1.3 Vector MA(q) Process

A vector moving average process of order ¢ takes the form
Vi=p+e+ 01+ 0O o+ ...+ Oy,

where &; is a vector white noise process and ©; denotes an (k x k) matrix of MA

coefficients for 7 = 1,2,...,¢q. The mean of y,; is i, and the variance is
Ty = BElly: —wp)(y: —n)]
= FEleg)] + ©1FElg;_1e, 1|0 + OyE[e; o€} ,]|O)
+... + ©,E[e_se;_ 1O,
= Q+0,020) + 6,00, +..+ 6,00,

with autocovariance (compares with v; of Ch. 14 on p.3) El(y: — p)(ye—j — p)'],

@jﬂ + @j+19@’1 + @j+29@’2 4+ ...+ @qQ@;—j fO?" j = 1, 2, . q
=49 Q0 ;+0,00",,, +0,00" , ,+.+0,,00, forj= —l,—2,...,—q
0 for |j] > q,

where ®y = I;. Thus any vector M A(q) process is covariance-stationary.
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1.4 Vector M A(oo) Process
The vector M A(oo) process is written
Yi=p+e +Wig 1+ Wog o+ ...

where €; is a vector white noise process and W¥; denotes an (k x k) matrix of MA
coefficients. Many of the results for scalar M A(oo) process with absolutely summable

coefficients go through for vector processes as well.

Definition.

For an (n x m) matrix H, the sequence of matrices {H}3, is absolutely summable if
each of its elements forms an absolutely summable scalar sequence. ]
Crample|:

If wi(;) denotes the row 7, column j element of the moving average parameters matrix

W, associated with lag s, then the sequence {W,}2° is absolutely if

S WP <o fori=1,2,...k and j=1,2, ...,k |
s=0

Theotem.
Consider the infinite vector moving average process

Yi=p+ € +Wig 1+ Wagy o+ ...,

where &, is a vector white noise process and {¥,;}7°, is absolutely summable. Let y;;
denote the ith element of y,;, and let u; denote the ith element of p. Then
(a). the autocovariance between the ith variable at time ¢ and the jth variable s period

earlier, E(yit — f1:)(yj1—s — itj), exist and is given by the row ¢, column j element of

I, = Z U, QU fors=0,1,2,..;

v=0

(b). the sequence of matrices {I's}2°, is absolutely summable.
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Proof.:
(a). By definition
L = E(yt - /J’> (ths - l'l’)/

or

'y, = Fleg+Yie, 1+ Wy o+ ...+ Ve + W18 1+ ...
ler—s +Wigi_g 1 +Wogy o o+ ...]
= QU+ U, QU + U _ QU + .
= i U, QU fors=0,1,2,..
v=0

The row ¢, column j element of I'y is therefore the autocovariance between the ith

variable at time ¢ and the jth variable s period earlier, E(vyir — ;) (Yj—s — ;)

(b). n
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2 Vector Autoregressive Process, VAR

A k-variate pth order vector autoregression, denoted VAR(p) is written as;
yi=C+ Py 1+ Poys o+ ... + Py + &, (18-1)

where ¢ denotes an (k x 1) vector of constants and ®; an (k x k) matrix of autoregres-

sive coefficients for j = 1,2, ...,p and &; is a vector white noise process.

2.1 Population Characteristics

Let c¢; denotes the ith element of the vector ¢ and let ¢§;” denote the row 7, column
j element of the matrix ®,, then the first row of the vector system in (18-1) specifies
that

Yyu = 1+ ¢§11)y1,t71 + ¢§12)y2,t71 +.. (b&)yk,tq
+¢521)y1,t72 + ¢§22)y2,t72 +.t ¢ﬁ)yk,t72
(p) (p) (p)
T TN Yrtp T Pig Y2ip T o+ P Yhtp T Ere
Thus, a vector autoregression is a system in which each variable is regressed on a
constant and p of its own lags as well as on p lags of each of the other (k — 1) variables

in the VAR. Note that each regression has the same explanatory variables.

Using lag operator notation, i.e., Ly; = y;_1,' (18-1) can be written in this form
[, — @, L — ®L* — ... — ®,LPly, =c + ¢
or
®(L)y: =c+ e (18-2)

Here ®(L) indicate an k x k matrix polynomial in the lag operator L. The row i,

column j elements of ®(L) is a scalar polynomial in L:

®(L);; =[5 — $VL — oD 12 — .. — P17,

ij

where 0;; is unity if ¢ = j and zero otherwise.

'Here, L is 1 x 1.
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Crample|.

For p =k = 2,

®(L)

10
01

10
01

}_
}_

I, - &L — $,L°
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L ¢21 ¢22

||

SV Py L
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2 2
" %
¢21 ¢22

|

1 S
A o

If the VAR(p) process is stationary, we can take expectation of both side of (18-1)

to calculate the mean p of the process:

p=c+ @ pu+Pu+..+P,u,

or

o = (Ik — (I)l — (I)g — ... <I>p)_1c.

Equation (18-1) can then be written in terms of deviations from the mean as

(ye— 1) = @1(yi1 — ) + Po(yro — ) + ... + Bp(yip — 1) + &1

(18-3)

2.1.1 Conditions for Stationarity

As in the case of the univariate AR(p) process, it is helpful to rewrite (18-3) in terms
of a VAR(1) process. Toward this end, define

[y
Yi-1 — 1
& = : (18-4)
L Yt—P+1 iy 4 (kpx1)
[ P, P, D b, , D, ]
I, 0 O 0 0
0 I, O 0 0
F=| 0 0 O 0 0 , (18-5)
| 0 0 O I 0 | (kpxkp)
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and

Vi =

L 0 J4 (kpx1)

The VAR(p) in (18-3) can then be rewritten as the following VAR(1):
& =F&  +vi, (18-6)
which implies
Eivs =Virs v 1 + Fivia o+ .+ F v + F9¢,, (18-7)

where

BE(vv') = { Q fort=s,

0 otherwise,

and
Q0 0 ]
0 0 0
Q:
(00 ... 0]

In order for the process to be covariance-stationary, the consequence of any given
g; must eventually die out. If the eigenvalues of F all lie inside the unit circle, then

the VAR turns out to be covariance-stationary.

Proposition.
The eigenvalues of the matrix F in (18-5) also satisfy

LA — @ N — @A — L~ B, | = 0. (18-8)
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Hence, a VAR(p) is covariance-stationary as long as |A\| < 1 for all the k& x p
eigenvalues of \ satisfying (18-8). Equivalently, the VAR is stationary if all values z
satisfying

I, — P12 — P22 — ... — P, =0
p

lie outside the unit circle.

2.1.2 Vector M A(oc) Representation

The first & rows of the vector system represented in (18-7) constitute a vector system:

Vites = M+ Eqs+Wigs 1+ Voo o+ ...+ W 164
+F (v — ) + FLo(yeor — ) + oo £ FL (Viepn — 1)

Here ®; = FY) and FV) denotes the upper left block of F/, where F is the matrix F
raised to the jth power.
If the eigenvalues of F' all lie inside the unit circle, then F* — 0 as s — co and y;

can be expressed as convergent sum of the history of e:
yi=p+e+Vig + W o+ Wig, 3+ ... = pu+ ¥ (L)e,. (18-9)

The moving average matrices W; could equivalently be calculated as follows. The
operator ®(L)(= I — &1L — ®5L% — ... — ®,L7) at (18-2) and ¥(L) at (18-9) are
related by

requiring that
L — &L — ®9L* — ... — ®,LF|[I;, + O, L+ WUy L? + .| = 1.
Setting the coefficient on L! equal to the zero matrix produces
v, — %, =0.
Similarly, setting the coefficient on L? equal to zero gives

Uy =0,¥, + Py,
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and in general for L*,
\I’S = @1\1’5_1 + ‘I)QlI’S_Q + ...+ ‘I)p\IIS_p fOT’ S = 1, 2, (18—10)

with ¥y =1, and ¥, = 0 for s < 0.
Note that the innovation in the M A(co) representation in (18-9) is &, the funda-
mental innovation for y,. There are alternative moving average representations based

on vector white noise process other than ;. Let H denote a nonsingular (k x k) matrix,

and define
u; = He; (Linear Combination of €).
Then certainly u; is white noise:

E(w) = 0 and

HQH' fort=r
E(ugur) = { 0 j”tor t#71 °

Moreover, from (18-9) we could write

y; = p+H 'He, + ¥, H 'He,_, + ¥, H 'He,_», + UsH 'He, 5 + ...
= p+Jow +Ju g +Jowy o +J3up 3+ ..,

where
J,=U H" (18-11)
One possible choice of H could be any matrix that diagonalize €2,
HQH' = D,

with D a diagonal matrix. For such a choice of H, the element of u; are uncorrelated

with one another:
E(utug) =HQH =D.

Thus, it is always possible to write a stationary VAR(p) process as a infinite moving

average of a white noise vector u; whose elements are mutually uncorrelated.
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2.1.3 Computation of Autocovariances of an Stationary VAR(p) Process

We now consider to express the second moments for y, following a VAR(p). Recall
that as in the univariate AR(p) process, the Yule-Walker equation are obtained by
postmultiplying (18-3) with (y;—; — p)" and taking expectations. For j = 0, using
r;=TI".

Ly = Elyi—p)(ye—n)
= 1 E(yi — )yt —p)' + LB (yio — u)(y: — )
o+ @ E(yip — ) (ye — 1) + Eeu(ye — p)f
= ®T_ +®T 4. +8T_,+Q
= &I + ®,T5 + ... + @, + Q

and for j > 0,
F] = @1:[‘]',1 + q)gl—‘j,z + + q)p]-—‘jfp' (18—12)

These equations may be used to compute the I'; recursively for j > p if ®4,...,®, and
I')_1,....,I'y are known.

To obtain the initial I',_1,...,T'g, we proceed as follows. Let & be as defined in
(18-4) and let ¥ denote the variance of &,

3 = E(é’téé)
([ y: — |
Y1 — K

= FE X[ (ye—mw) (Yio1— ) (Viepr1 — 1) |
L L Yt—pr1 — B ] )
Ly Iy | i
Fll F() Fp—?

B I‘;_l I‘;_2 . . . FO ]

Post-multiplying (18-4) by its own transpose and taking expectation gives

El&&i] = Bl(F&1 +vi)(F&1 + V)] = FE(§ & )F' + E(vivy)
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or
Y=FXF +Q. (18-13)
From the result of vec operator on p. 13 of Ch. 1, we have
vec(X) = (FQF) - vec(X) + vec(Q) = A - vec(X) + vec(Q), (18-14)
where
A= (F®F).

Let r = kp, so that F is an (r x r) matrix and A is an (r? x r?) matrix. Equation
(18-14) has the solution

vee(X) = [I2 — Al tvec(Q), (18-15)

provided that the matrix [I,2 — A] is nonsingular. Thus, the I';, j = —p+1,...,p—1
are obtained from (18-15).

Crample |
Consider the three-dimensional VAR(1) process
05 0 0
Y+ =2¢C —+ 01 01 03 Yi-1 + Et,
0 02 0.3
225 0 0
with E(ee}) = Q = 0 1.0 05
0 05 0.74
For this process the reverse characteristic polynomial is
1 00 05 0 0 1—-0.52 0 0
det 01 0[—-]0101 03]z = det| —01z 1-0.1z —-0.32
0 01 0 02 0.3 0 —-0.2z 1-03z

= (1-0.52)(1— 0.4z —0.032%).
The roots of this polynomial are easily seen to be
21 =2, 2z =2.1525, z3 = —15.4858.

They are obviously all greater than 1 in absolute value. Therefore the process is

stationary.
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We next obtain the M A(co) coefficients from this VAR(1) process using the relation

as described in equation (18-10).

[ 0.5

0 0 025 0 0
\IIOZIg, \Ill - @1‘1’0: 01 01 03 ,\IJQI(I’l‘Illz OO]_ 007 012 ;
| 0 02 03 0.02 0.08 0.15
[ 0.125 0 0
U = &P, = | 0.037 0.031 0.057 | , ¥, =....
| 0.018 0.038 0.069
We finally calculate the autocovariance of this process. From (18-15) we have
vee(X) = wvee(Ty) = [Ig — ®; @ ®1] 'vec()
[ 0.75 0 0 0 0 0 0 0 0
—-0.05 095 —0.15 0 0 0 0 0 0
0 —-0.1 0.8 0 0 0 0 0 0
—0.05 0 0 0.95 0 0 —0.15 0 0
= -0.01 —-0.01 -0.03 -0.01 0.99 -0.03 —0.03 -0.03 —0.09
0 —0.02 —0.03 0 —-0.02  0.97 0 —-0.06 —0.09
0 0 0 —0.01 0 0 0.85 0 0
0 0 0 —-0.02 —-0.02 —-0.06 —-0.03 097 —0.09
|0 0 0 0 —0.04 —0.06 0 —0.060 0.91
[ 2.25 ] [ 3.000 ]
0 0.161
0 0.019
0 0.161
x| 1.0 | =| 1.172
0.5 0.674
0 0.019
0.5 0.674
| 0.74 | | 0.954 |
It follows that
3.000 0.161 0.019 1.5000 0.080 0.009
'y = 0.161 1.172 0.674 | 't =®,I'o=| 0.322 0.3365 0.355
0.019 0.674 0.954 0.038 0.437 0.421
0.75 0.040 0.005
s = &,I'h=1| 0194 0.173 0.163 | ,I's=......
0.076 0.198 0.197
|
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Crevcise 1.
Consider the two-dimensional VAR(2) process

. [05 01 [0 e
Y= 04 05 Y17 025 o |Y2T 0

0.09 0
0 0.04
(a). Check whether this process is stationary or not.

(b). Find the coefficient matrices in its M A(oco) representation, ¥;, j = 0,1, 2, 3.

(c). Find its autocovariance matrices I';, 7 = 0,1, 2, 3. [ |

with E(ee}) = Q2 = [ } . Please

2.1.4 Linear Forecast

From (18-9) we see that y;_; is a linear function of €;_;, &,_;_1,... each is uncorrelated
with €,4; for 7 = 0,1, ... It follows that &,y is uncorrelated with y;_; for any j > 0.

Thus, the linear forecast of y;; on the basis of y;, y;_1,...is given by

Yerre = o+ Po(y: — ) + Po(yi1 — p) + . + Pp(Yipr1 — 1),

and €;,1 can be interpreted as the fundamental innovation for y;. 1, that is, the error
in forecasting y;, 1 on the basis of a linear function of a constant and y;, y;_1,... Moregenally,
it follows from (18-7) that a forecast of y;.s on the basis of y;,y;—1,... will take the

form

Yitslt = 1+ Fi)(ye— )+ F (v — )+ + Fg;;)(yt—p-&-l — ).

2.2  Estimation: MLE for an Unrestricted VAR

Consider the estimation of the following k-dimensional Gaussian V AR(p) process, i.e.
ye=C+ ®1yi1+ Poyr o+ ... + Ppyip + &, (18-16)
where €; ~ i.i.d. N(0,Q) and all the roots of det(I — ®12 — Pz — ... — ®,2P) =0

lie outside the unit circle. In this case, the parameters to be estimated are @ =
[C, @1, ceey @p, Q]
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Suppose that we have a sample of size (T + p), as in the scalar AR process, the sim-
plest approach is to condition on the first p observations (denoted y_pi1,¥—p+2, ---, Yo)
and to base estimation on the last T" observations (denoted yi,ys, ...,y7). The objective

is then to form the conditional likelihood

fYT,YT_l,...,Yl\YO,Y_I,...,Y_,,+1 <YT7 Yr-1,-- YI|YO7 Y1, Y—p+1;5 9) (18-17)

and maximize with respect to 8. VAR are invariably estimated on the basis of the
conditional likelihood function (18-17) rather than the full-sample unconditional likeli-
hood. For brevity, we will hereafter refer to (18-17) simply as the “likelihood function”

and the value of @ that maximize (18-17) as the “maximum likelihood estimator”.

2.2.1 The Conditional Likelihood Function for a Vector Autoregression

The likelihood function is calculated in the same way as for a scalar autoregression.
Conditional on the value of y observed through date t — 1, the value of y for date ¢ is

equal to a constant
C+Piyi1+Poyr o+ ...+ Py (18-18)

plus a N(0, ) variables. Thus, for ¢t > 1,

Vel Vi1, Y1, Y0, Y15 - Y—pt1 ~ N(€c + @1y, + Poyr o + ... + Bpyi—p, Q).
(18-19)

It will be convenient to use a more compact expression for the conditional mean
(18-18). Let x; ((kp+ 1) x 1) denote a vector containing a constant terms and p lags

of each of the elements of y;:

1
Yi-1
Yi—2

Xt

yt—p
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Let X, denote the (k x (kp + 1)k) matrix
[x, 0 . . . 0]
0 xx 0. . O
Xt = )
0 . . .0 x|

and let the ((kp + 1)k x 1) vector B=vec [(c, @1, ..., ®,)'] = vec(0*'), it is easy to see
that

Xy - B=c+ @y, 1+ Poyr o+ ...+ Py p. (18-20)

Crample|.

To see the above result, for example £ = 2 and p = 1, then we have

1 P11 P12 Y,t—1
= b, = 1= ’ .
¢ [ Ca } ’ ! [ P21 P22 ] b Y [ Yo,t—1 ]

In this case, x; = [1 Y141 Y] and 6% = { 2 gi zz }
Therefore
X, — I yi4-1 y2e-1 O 0 0
’ 0 0 0 I yre—1 vt
and
e ]
ool |0
B =vec(0™) =vec | ¢ ¢m | = C
P12 P22 dan
| P22 |
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It is easy to see that

C1
b1
X I yii-1 Y201 0 0 0 b12
X_ = ’ )
7 [ 0 0 0 1 Yr—1 Y2,t—1 Co
P2
| P22 |
— C1 + (bllyl,tfl + ¢12y2,t71
C2 + ¢21y1t 1 + ¢2292,t—1
= (bll ¢12 Y1,t—1
¢21 ¢22 Y2,t—1
= Cc+ @lytfl- -

Using this notation, (18-19) can be written more compactly as
yt|yt—17 Yi-1,-,Y0,Y-1, -, Y—p+1 ™~ N(Xt/ﬁa Q) (18_21)
Thus, the conditional density of the tth observation is

fYt|Yt,1,Yt,2,‘.,Y,p+1 (Yt|}’t71, Yi—2, s Y—p+1; 9)
= (27) 272 expl(—1/2) (v — XeB) Q7 (y1 — XeB))-
The log likelihood function of the fully sample y7, yr_1, ..., y1 conditioned on yo,y_1, ..., Y—p+1

is therefore
L(0) = (=Tk/2)In(27) + (T/2) 1n|ﬂ_1| (1/2) Z [ Xt,B )Q~ ( Xt,B) )

(18-22)

222 MLE of B

The MLE of 8 is the value 8 maximize (18-22). At first glance it is not a trivial work
to find B However, at a close look, X is a special matrix as the matrix X in Section
5.1 of Ch. 10, i.e. x1; = X9t = ... = X4, O the same regressors. Therefore ﬁ is simply

obtained from OLS regression of y;; on x; from the results of SURE model.
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2.2.3 MLE of

When evaluated at the MLE 3, the log likelihood (18-22) is
T
L*(,08) = (=Tk/2)In(27) + (T/2) In |Q71 — (1/2) Zé;sz—lét, (18-23)

where ét =¥t — Xt/é
Differentiate (18-23) with respect to 27! (see p.23 of Ch 1) we obtain

oL (Q,8) Hln |0 L oel1e
ot - I e WAL e

= (T/2)Q¥ — (1/2) Z

The likelihood is maximized when this derivative is set to zero, or when
T
— /1) &
t=1
Since €2 is symmetric, we have
T
(1/T) Z -/
also. The row 7, column j elements of Q is
T
gij = (1/T) Z Eit€it,

which is the average product of the OLS residual for variable ¢ and the OLS residual

for variable j.

2.2.4 Likelihood Ratio Tests about the Lag Order of VAR

To perform a likelihood ratio test, we need to calculate the maximum value achieved
for (18-22). Thus consider

£, B8) = (=Tk/2) In(27) + (T/2) In |Q7Y| — (1/2) XT: (18-24)
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The last term in (18-24) is

T s 1
(1/2) Z e e, = (1/2)trace Z AV
t=1 Lt=1 J

T
= (1/2)trace Zﬂ_létég
=1

A~

= (1/2)trace Q’l(TQ)]
= (1/2)trace(T - 1)
= Tk/2.

Substituting this into (18-24) produces
ﬁ*(Q,B) = (=Tk/2)In(27) + (T/2) In |7} — (Tk/2).
Suppose we want to test the null hypothesis that was generated from a Gaussian
VAR with pg lags against the alternative specification of p; > py lags. Then we may
estimate the model with M LFE under Hy of py lags and under H; of p; lags and obtains

the maximum value for the log likelihood value

L= (—Tk/2)In(27) + (T/2) In |5t — (Tk/2).
and

L= (=Tk/2)In(2r) + (T/2) n|Q7Y — (Tk/2),

respectively.
Twice the log likelihood ratio is then (see p. 4 of Ch.1)

2(L7 — £5) = T(n|Q) - T(ln|$g")

= Tln( Al )—Tln( Al )
€24 €20

= —Tln|Q1|+Tln|Qg|
= T{In|Q| — In ||}

Under the null hypothesis, this asymptotically has a x? distribution with degrees

of freedom equal to the number of restrictions imposed under Hj.

Crample|
See the example on page 297 of Hamilton. [ |
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2.25 AIC and BIC in VAR

We postulate that the true process VAR is a k-dimensional autoregression of order py.
Abstracting from deterministic regressors (such as seasonal dummies or intercepts),

the most common used lag-order selection criteria are:

A 2
AIC = In|Q(p)| + =(Kp),
A InT
BIC = In[Q(p)|+ T(k‘QP),
where T" is the effective sample size and Q(p) is the maximum likelihood estimate of
the innovation covariance matrix €2 (see Sin and White (1996) for further discussion
of the theoretical rationale for these criteria). The lag order estimate p is chosen to

minimize the value of the criterion function for {p: 1 < p < p}.

2.3 Bivariate Granger Causality Tests
2.3.1 Definitions of Causality

Granger (1969) has defined a concept of causality which, under suitable conditions, is
fairly easy to deal with in the context of VAR models. Therefore it has become quite
popular in recent years. The idea is that a cause can not come after the effect. Thus,
if a variable Y affect a variable X, the former should help improving the predictions
of the latter variable.

To formalize this idea, we said that Y fail to Granger cause X if for all s > 0 the
mean squares error of a forecast of Xy, based on (X, X;_1,...) is the same as the
MSE of a forecast of X, that use both (X;, X;_1,...) and (Y}, X;_1, ...). If we restrict

ourselves to linear functions, Y fails to Granger-cause X if

~ ~

MSE[E(Xyys| Xy, Xoo1,...)] = MSE[E(Xpys| Xe, Xot1, -, Yo, Yion, ).
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2.3.2  Alternative Implications of Granger Causality, VAR

In a bivariate VAR describing X and Y, Y does not Granger-cause X if the coefficients

Xea ], o2 0 Xeo ],
Y, 4 (2) (2) Y, o

21 22

®; are lower triangular for all j:
= 1 1
Y €2 ¢§1) éz)

(p) 0 thp n Ext
Y;t—p 5% '

11
From the first row of this system, the optimal one-period-ahead forecast of = de-

_I_

b

pends only on its own lagged values and not on lagged y:
MSE[E(Xe1|Xe, Xeots ooy Vi, YViers )] = 1+ 00 Xe + 00 Xoy + o+ ¢§?thp+1-

By induction, the same is true of an s-period-ahead forecast. Thus for the bivariate

VAR, y does not Granger-cause X if ®; is lower triangular for all j.

2.3.3 Alternative Implications of Granger Causality, VM A

Recall from (18-10) that
\Ils = @1\:[/3,1 + @2‘1’5,2 + ...+ (bp\Ilsfp fO?“ S = 1, 2,

with ¥y = I}, and ¥, = 0 for s < 0. This expression implies that if ®; is lower triangu-
lar for all j, then the moving average matrices Wy for the fundamental representation
will be lower triangular for all s. Thus if y fails to Granger-cause z, then the VM A(o0)

representation can be written as
|:Xt‘|_|:ﬂl}+|:wll(l/) 0 1{5)@]
Y: 2 V(L) ¥a(L) eyt |’

V(L) =9 + DL+ 9D L+ P L+

J

where

with {9 = {0 =1 and {7 = 0.
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2.3.4 Econometric Tests for Granger Causality

A simple approach to test whether a particular series Y “Granger Cause” X can be
based on the VAR. To implement this test, we assume a particular autoregressive lag

length p and estimate
Xi=a+taXi g +mXi o+ . +0pXe p + 1Yo + BYeo+ o+ BY, +uy
(18-25)
by OLS. We then conduct a F' test of the null hypothesis
Hy:pr=p0=..=p5,=0.

Recalling section 4.2.1 of Chapter 6, one way to implement this test is to calculate

the sum of the squared residuals from (18-25),
T
RSS, = iy,
=1

and compare this with the sum of squared residuals of an univariate autoregression for

Lty
T
RSS, =Y ¢,
t=1
where

Xt = 60 + ’?lXt—l + ’S/QXt_g + ...+ ’S/pXt—p + (& (18—26)

is also estimated by OLS. If
g = (RSS, — RSS,)/p
~ RSS,/(T—2p—1)
is greater than 5% critical value of an F(p, T — 2p — 1) distribution, then we reject the

null hypothesis that Y does not Granger-cause X; that is, if S is sufficiently large, we

conclude that Y does Granger-cause X.

Crevcise 2.
Please specify a bivariate VAR model for Taiwan’s GDP and Stock Index from LR

test and from this model to test the Granger-causality between these two variables. B
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2.4 The Impulse-Response Function
In equation (18-9) a VAR can be written in vector M A(oco) form as
Ye= 1 + &+ ‘Illet—l -+ \I’2€t_2 + ‘Ilgéft_g + ... (18—27)

Thus, the matrix ¥, has the interpretation

O0Yits
Oe,

= lIlsa

that is, the row ¢, column j element of W, identifies the consequence of a one-unit
increase in the jth variables’s innovation at date t (¢;,) for the values of the ith variable
at time t + s (Y;:4s), holding all other innovations at all date constant.
A plot of the row i, column j element of Wy,
a}/;,t+s

18-28
8€j’t ’ ( )

as a function of s is called the impulse response function. It describe the response of
Yit+s to one-time impulse in Y}, with other variables dated ¢ or earlier held constant.

Suppose that we are told that date ¢ value of the first observation in the autore-
gression, Y74, was higher than expected, so that €, is positive. How does this cause to

revise our forecast of Y; ;s 7 In other word, what is the response of

Nigrs
ey ’
when we consider that the elements of €; are contemporaneously correlated with one
another, the fact that eq; is positive gives us some useful new information about the
value of €y,...,.e5;. This implication has further implications for the value of Y; .
Thus, we would think the impulse response function so defined in (18-28) is a special
case when F(g.e)) = € is a diagonal matrix.
Of course in general €2 is not diagonal. However we may proceed as in section 2.1.2
of this chapter to find matrices A and D such that

Q = ADA’, (18-29)

where A is a lower triangular matrix with 1s along the principal diagonal and D is a
diagonal matrix with positive entries along the principal diagonal.

Using this matrix A we can construct an (k x 1) vector u; from

u; = A71€t. (18-30)
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then we see that the elements of u; are uncorrelated with each other:

B(wuy) = [A7E(ee;) AT
= [ATY]Q[A]
— [AJADA'[A]"
= D.

From (18-11) we have

dyi
y_JIFS =W, A
ou;
or
M Oyt,t+s  OYl,i+s W1,t4s ]
ouq Ousg oot 8uk
ay2,t+s 8y2,t+5 31/2 OY2,t+s
ouq Ousg oot 8uk
= [ W.a WY.a, . . P, } ,
8yk¢,t+s 8yk,t+s 8yk,t+s
L ou1 Ousg T : Ouy, i
where a; are the jth column of A.
A plot (how many figures ?) of
Jy:
Yits _ \pa, (18-31)
8 . J
th

as a functions of s is known as an orthogonalized impulse — response function.

For a given observed sample of size T', we would estimate the autoregressive co-
efficients ®,, @2,..,@10 by CSS (or conditional M LE; that is, OLS from each single
equation) and construct W, from (18-10). OLS estimation would also provided the
estimate Q = (1/T) 3./, é,,. Matrices A and D satisfying & = ADA’ could then
be constructed from €. The sample estimate of (18-31) is then

\Ilsaj.

Another popular form is also implemented and reported. Recall that D is a diagonal
matrix whose (j, j) element is the variance of u ;. Let D'/2 denote the diagonal matrix
whose (7, j) element is the standard deviation of uj. Note that (18-29) could be written

as

Q = AD'’D'?A’ = PP/, (18-32)
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Response to CholeskyOne S.D. Innovations 95.0% Marginal confidence bands
Response ofP to P Response of P to UN Response of P to FF

b o oo g e 2 =

B8 BRESS
L b b b boooo e
s B R ¥R 8

Response ofUN to P Response of UN to UN Response of UN to FF

Response of FF to P Response ofFF to UN Response of FFio FF

20 22 24 2 4 & B W 12 14 8 B B B M B 6 2z 4 & & W 12 14 18 18 20 22 24

Figure (18-1). Example of Impulse Response Function

where
P = AD'?

Expression (18-32) is the Cholesky decomposition of the matrix Q. Note that, like A,
the (k x k) matrix P is lower triangular and has standard deviation of u; along its
principal diagonal.

In place of u; defined in (18-30), some researcher use
Vi = P_IEt = D_1/2A_1€t = D_I/Qut.

Thus, vj; is just u;; divided by its standard deviation \/d—” A one-unit increase in v
is the same as one-standard-deviation increase in ;.

In place of the dynamic multiplier Oy; ¢+5/0uj;, these researchers then report Qy; 145 /0v;;.
Denote the jth column of P by p;, we have

O0Yits
ant

= U,p; (18-33)

from the results of (18-31). We also note that

1/2
p; = Ad)? = a;\/d;;,

where djl./2 is the jth column of D'/2.
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2.5 Forecast Error Variance Decomposition
The forecast error of a VAR s periods into the future would be
Yits = Virslt = Et4s T Wi1€pps-1 + Yoy o+ ... + Wy 16441
The mean-squared error of this s-period-ahead forecast is thus

MSE(S}H-SH) = E[(yt-i-s - yt+s|t>(}’t+s - S’t+s|t),]
= Q+ 9, QU] + U, + ... +¥,_ QU . (18-34)

Let us now consider how each of the orthogonalized disturbance (uyy, ..., ug;) contributes
to this MSE. Write (18-30) as

Er = Aut = ajUy + Aot + ... + apUgt.
Then

Q = El(gg))

= a;a)Var(uy) +asa,Var(ug) + ... + agal,Var(ug).

Substituting this result into (18-34), the M SE of the s-period-ahead forecast can be

written as the sums of k terms, one arising from each of the disturbance w;q;

MSE($141) Z {(Var(uy) - [aja) + ®1a;a, 0] + Uoa;a, @) + ...+ ¥,_ja2,0, ]}
(18-35)

With this expression, we can calculate the contribution of the jth orthogonalized

innovation to the M SFE of the s-period-ahead forecast:
Var(uj,) - [aja) + W12 %) + Wra;ai W) + ... + ¥, a;a, 0 ] (18-36)

The ration of (18-36) to M SE (18-35) is called the forecast error variance decomposi-
tion.
Alternatively, recalling that p,; = Adjl-/ 2= a;\/Var(uj), we may express the MSE

as

k
MSE(§1ys0) = Y _[p;p; + W1p;p; ¥} + Uop,pi W, + ... + U, 1p;pj ¥, _ ]
7=1
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also.

Crercise 3.
Please plot the impulse response function and forecast error variance decomposition
from a bivariate VAR(4) model with Taiwan’s GDP and Stock Index data set (first

difference of the data may be necessary). |
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3 Appendix: Collection of Results Between Least Square and
MLE Estimators

In this section, we collect the results of the relation between the least square and the
MLE estimators under linear regression model. In this setting, we allow the sample to

be time series data—sub ¢, or cross section data—sub ¢, or both.

3.1 OLS and MLE under Ideal Conditions, sub ¢ or sub ¢
Let the linear regression model
Vi =x,B8+¢, t=1,2,..,T.

Collect the sample in matrix form, this relationship is written as

Yi X €1
Y, X/g €2
y = ’ = ' B8+ ' =X3+e, (18-37)
L YT ) | Xép ] | €T |
where y is T' x 1 vector, X is an T' x k matrix with rows x}, 3 =[5, 52, , fx] and

g isan T x 1 vector with element &, We assume that € ~ N(0,c*I7).

3.1.1 OLS Estimation of 3

Let us first consider the Ordinary Least Square estimator (OLS) which is the value for
(B that minimizes the sum of squared errors denoted as SSE (or residuals, remember
the principal of estimation at Ch. 3)

SSEB) = (y—XB)(y —XB)

T

= Y (v -xB)> (18-38)

t=1
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MLE ESTIMATORS

3.1.2 MLE Estimation of 3

From (18-37) it is apparent that the sample joint density is
~ N(XB,o°1), i,e,

y

fly,X;B,0%)

= (2n) T e { - Sy - XB) (0D v - X6

= 2 T (0?) T e {—i<y - XB)(y - xm} |

the log-likelihood function therefore is

InL(B3,0%y)

202

L In(270?) — L(y - XB)(y — XB) (18-39)
2 202
T - ,

-3 In(27o?) — 53 ;(Yt — x/08)? (18-40)
T 1 «

—5 ln(27r02) — @ Z(é‘?)

t=1

From (18-38),(18-39) and (18-40), the results that OLS estimators of 3 is identical to

that of MLE is clear.

Crample|

The conditional log likelihood function of an AR(1) process. See eq.(5.2.27) on p.122

of Hamilton (1994)..

3.2 GLS and MLE under Known Nonspherical Disturbance, sub t or sub ¢

Let the linear regression model

Vi=xi8+¢, t=1,2,..,T.
Collect the sample in matrix form, this relationship is written as
B %] e
Ys XY €2
y= = B+ = X8 +e, (18-41)
L YT ] | X,T i | ErT i
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where y is T' x 1 vector, X is an T x k matrix with rows x}, B = [f1, 52, -, Bk and €
is an T' x 1 vector with element &;. We assume that € ~ N(0,0?€2) with a known €.

3.2.1 GLS Estimation of 3
Since by assumption €2 is known, it can find a matrix P such that
PP=Q"

Let us consider the Generalized Least Square estimator (GLS) which is the value for 3

that minimizes the Sum of Squared Errors denoted as SSE of the transformed equation

SSE(B) = (Py—PXB)(Py - PXg)
= [Py = X3)]'[(P(y — XB)]
y — XB)P'P(y — XB) (18-42)

(
= (y-XB)Q 'y -XB) (18-43)

7’é Z(Y;f_X; )2’

t=1

where
Py = PX3 + Pe,
which satisfy

E(Pe)(Pe) = o’I7.

3.2.2 MLE Estimation of 3
From (18-41) it is apparent that the sample joint density is
y ~ N(XB,0°Q), i,e,
P XiBoo?) = (2m) Pl o {5y - X8 () v - X6) |

= (2n) T TR e { oy - XBYR - X6)
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the log-likelihood function therefore is

mL(B,0%X,y) = —3In(2no?) — SIn|f2] — o (y ~ XBYR(y — XB)

0-2
(18-44)
T
T oo 1 1 ,
# —5n@2r0%) — 5] — o— > (Y, —x,8).

t=1

From (18-43) and (18-44), the results that GLS estimators of 3 is identical to that of
MLE is clear.

3.3 Feasible GLS and MLE under Unknown Nonspherical Disturbance,
sub ¢ or sub ¢

Let the linear regression model
K:X2,6+Et, t:1,2,...,T.

Collect the sample in matrix form, this relationship is written as

v X e
Y, X/g €2
y=1| | = B+ | =XB+e, (18-45)
L YT ) | Xép ] | Er ]
where y is T' x 1 vector, X is an T' x k matrix with rows x}, 3 =[5, 52, -+, fx] and

g is an T x 1 vector with element £;. We assume that € ~ N (0, 0%Q). Here Q = Q(0)

and 0 is a vector of few unknown parameters.

3.3.1 FGLS Estimation of 3

Since by assumption €2 is unknown, it cannot find a matrix P such that

PP=Q"
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The Feasible Generalized Least Square estimator (FGLS) is
B=(XQX)X'Oty, (18-46)

~

where  is a consistent estimator of €2, i.e. Q = () in which § - 6.

3.3.2 MLE Estimation of 3
From (52) it is apparent that the sample joint density is
y ~ N(X‘B7 O-QQ)’ /I:? 67

FeXiBo') = (20 P e { v - XB) () v - X6

1
_ (QW)_T/Q(OQ)_T/2’Q|_1/2eXp o
202

(y —=XByQ ' (y - Xﬁ)} :
the log-likelihood function therefore is
T 1 1
InL(B,0°Q;y,X) = 3 In(270?) — 5 In |0 — ﬁ(y - XB)Q (y - XP).
o
(18-47)

Since the MLE of 3 is the value to satisfy the FOC in (18-47), which is possible
highly nonlinear. From (18-46) and (18-47), the results that FGLS estimators of 3 is
not identical to that of MLE is clear.

Crample|
The exact log-likelihood function of an AR process. See eq.(5.2.9) on p.119 of Hamilton
(1994). [ |

3.4 System of Equations: GLS and MLE Under Known Nonspherical
Disturbance, sub ¢ and sub 7, SURE Model

An alternative way of developing the SURE estimator—which does not involve Kro-

necker products — is to write the M equations together as

yt = Xt/g + é.tu t= 1727 "'7T7

® 2017 by Prof. Chingnun Lee 32 Ins.of Economics,NSYSU,Taiwan



3 APPENDIX: COLLECTION OF RESULTS BETWEEN LEAST SQUARE AND

Ch.18 Vector Time Series MLE ESTIMATORS
where
- _ [ x;, 0 . . . 0 ] -
Yit ’ B
0 x5, O 0
Yot 2 B2
Vi = . ) Xt = , B=
_yl\/[t_ _0 OX/]V[t_ _BM_
and
B 7 [ o1 o1 o |
€1t
091 099 Oo2Mm
€t
E(été:2> =F ' [ E1it €2t - .« . EMt } = = Q.
EMt
- - L OM1 OMM |
If the T" equation are stacked in the usual way, we have
y=XB+¢, (18-48)
where
7l X, oL
Y2 €2
y = , X = , and € =
L YT | T L €T |
The covariance matrix of the disturbance in the stacked equation is
o
)
EEe) = E| [ g, &, gl }
[ Q 0 0
0 Q 0
= =IrQ=A,
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and we assume that e is normally distributed and € (and therefore A) is known.

3.4.1 GLS Estimation of 3
Since by assumption €2 is known, it can find a matrix P such that
PP=A"'=I;2Q"

Let us consider the Generalized Least Square estimator (GLS) which is the value
for B that minimizes the sum of squared errors denoted as SSFE of the transformed

equation
SSE(B) = (Py—PXp)(Py—PXp)
= [P -%8)] [P - %)
= (- XB)P'P(y —XB)
XB)A Ny — XB)

(¥ -
= ) _Fi—-XB)Q (5. - XuB), (18-49)

t=1

where
Py = PX3 + P¢&
satisfy

E(P&)(P&) = Ly

3.4.2 MLE Estimation of 3
From (18-48) it is apparent that the sample joint density is
¥ o~ NXB,A), ie,

f(an75) (2m)"MT2|A| 72 exp

5@ X8y (W) - X))

{
= (n) A e {5 - XA - X6)
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the log-likelihood function therefore is

. MT 1 1 . .
mL(B; X, §) = ———In(2r) - 5In[A]| = (¥ - XB)A7N(§ — XB)
MT T 1 & , .
= —— (2 - Sh|Qf -2 > G -XB)yQ (3 — XiB)
t=1
MT T 1 < y .
= —— - In(2n) + 5 In Q7Y - 3 > G -XpByQ(§ - XiB).

t=1

(18-50)

From (18-49) and (18-50), the results that GLS estimators of 3 is identical to that
of MLE is clear.

3.5 System of Equations: FGLS and MLE under Unknown Nonspherical
Disturbance, sub ¢ and sub 7, SURE Model, VAR

An alternative way of developing the SURE estimator—-which does not involve Kro-

necker products — is to write the M equations together as

o =X B+&, t=1,2.T,

where
-, _
- it - X3, O .o 0 - 38, -
/
0 x50 0. . O
Yot B2
Yt = ) Xt = ) /8 =
Ynri , B
- = L O 0 XMt - -
and
- c A 011 12 . . . O1M
1t
021 O22 . . . Oapm
€t
.o oo, .
E(€t€t):E [5125 Eot .« . . EMt j| = . . Coe . . = Q0.
EMt
- - _O'M1 . Ce UMM_
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If the T" equation are stacked in the usual way, we have

y=XB+¢, (18-51)
where
R X, [ &1 |
Y2 €2
y = , X = . , and € =
| V1 Xr | €T

The covariance matrix of the disturbance in the stacked equation is

€1
€
E(Ee) = FE ' [é"l g, . . . é‘i_,}
_é.T_
[ Q 0 . 0 |
o Q . 0
= . =IrQ=A,
0 . ... Q]

and we assume that e is normally distributed and Q = €(60). Here, 6 is a vector of

few unknown parameters.

3.5.1 FGLS Estimation of 3
Since by assumption €2 is unknown, it cannot find a matrix P such that
PP=A"
The Feasible Generalized Least Square estimator (FGLS) is
B=XATX)'X'A Y, (18-52)

~

where A is a consistent estimator of A, i.e., A = A(6) in which 8 -2 6.
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3.5.2 MLE Estimation of 3

From (18-51), the log-likelihood function therefore is

In L(3, 2(6):9) =~ In(2m) + 5 I [97(0)] — 5 3" (5 - KBy (0)5, - XiB).

t=1

(18-53)

Since the MLE of B (and 0) is the value to satisfy the FOC in (18-53), which is
possible highly nonlinear. From (18-52) and (18-53), the results that GLS estimators
of B is not identical to that of MLE is clear.

Crample|.
The first look of condition log likelihood function of an VAR(p) process. See eq.(11.1.10)
on p.293 of Hamilton (1994). [

e —
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End of this Chapter
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