
Ch. 18 Vector Time Series
(May 4, 2017)

1 Introduction

In dealing with economic variables often the value of one variables is not only related

to its predecessors in time but, in addition, it depends on past values of other variables.

This naturally extends the concept of univariate stochastic process to vector time se-

ries analysis. This chapter describes the dynamic interactions among a set of variables

collected in an (k × 1) vector yt.

Definition.
Let (S,F ,P) be a probability space and T an index set of real numbers and define the

k-dimensional vector function y(·, ·) by y(·, ·) : S × T → Rk. The ordered sequence of

random vector {y(·, t), t ∈ T } is called a k−dimensional vector stochastic process. �

1.1 First Two Moments of Stationary Vector Time Series

From now on in this chapter we follows convention to use yt in stead of y(·, t) to

indicate that we are considering discrete vector time series. The first two moments of
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a vector time series yt are

E(yt) = µt =


µ1t

µ2t

.

.

.
µkt

 , and Γt,j = E[(yt − µt)(yt−j − µt−j)′] for all t ∈ T .

If neither µt and Γt,j are function of t, that is, µt = µ and Γt,j = Γj, then we say

that yt is a covariance-stationary vector process.

Note that although γj = γ−j for a scalar stationary process, the same is not true of

a vector process:

Γj 6= Γ−j.

Instead, the correct relation is

Γ′j = Γ−j,

since

Γj = E[(yt+j − µ)(y(t+j)−j − µ)′]

= E[(yt+j − µ)(yt − µ)′],

and taking transpose,

Γ′j = E[(yt − µ)(yt+j − µ)′]

= E[(yt − µ)(yt−(−j) − µ)′] = Γ−j.

1.2 Vector White Noise Process

Like the univariate time series analysis, the basic building element of a vector ARMA

model is the vector white noise process.

r 2017 by Prof. Chingnun Lee 2 Ins.of Economics,NSYSU,Taiwan



Ch.18 Vector Time Series 1 INTRODUCTION

Definition.
A k × 1 vector process {εt, t ∈ T } is said to be a white-noise process if

(i). E(εt) = 0;

(ii). E(εtε
′
τ ) =

{
Ω if t = τ,
0 if t 6= τ,

where Ω is an (k × k) symmetric positive definite matrix. �

It is important to note that in general Ω is not necessary a diagonal matrix, since it

is the contemporaneous correlation among variables that called for the needs of vector

time series analysis.

1.3 Vector MA(q) Process

A vector moving average process of order q takes the form

yt = µ+ εt + Θ1εt−1 + Θ2εt−2 + ...+ Θqεt−q,

where εt is a vector white noise process and Θj denotes an (k × k) matrix of MA

coefficients for j = 1, 2, ..., q. The mean of yt is µ, and the variance is

Γ0 = E[(yt − µ)(yt − µ)′]

= E[εtε
′
t] + Θ1E[εt−1ε

′
t−1]Θ

′
1 + Θ2E[εt−2ε

′
t−2]Θ

′
2

+...+ ΘqE[εt−qε
′
t−q]Θ

′
q

= Ω + Θ1ΩΘ′1 + Θ2ΩΘ′2 + ...+ ΘqΩΘ′q,

with autocovariance (compares with γj of Ch. 14 on p.3) E[(yt − µ)(yt−j − µ)′],

Γj =


ΘjΩ + Θj+1ΩΘ′1 + Θj+2ΩΘ′2 + ...+ ΘqΩΘ′q−j for j = 1, 2, ..., q

ΩΘ′−j + Θ1ΩΘ′−j+1 + Θ2ΩΘ′−j+2 + ...+ Θq+jΩΘ′q for j = −1,−2, ...,−q
0 for |j| > q,

where Θ0 = Ik. Thus any vector MA(q) process is covariance-stationary.
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1.4 Vector MA(∞) Process

The vector MA(∞) process is written

yt = µ+ εt + Ψ1εt−1 + Ψ2εt−2 + ....

where εt is a vector white noise process and Ψj denotes an (k × k) matrix of MA

coefficients. Many of the results for scalar MA(∞) process with absolutely summable

coefficients go through for vector processes as well.

Definition.
For an (n×m) matrix H, the sequence of matrices {Hs}∞s=0 is absolutely summable if

each of its elements forms an absolutely summable scalar sequence. �

Example :

If ψ
(s)
ij denotes the row i, column j element of the moving average parameters matrix

Ψs associated with lag s, then the sequence {Ψs}∞s=0 is absolutely if

∞∑
s=0

|ψ(s)
ij | <∞ for i = 1, 2, ..., k and j = 1, 2, ..., k. �

Theorem.
Consider the infinite vector moving average process

yt = µ+ εt + Ψ1εt−1 + Ψ2εt−2 + ....,

where εt is a vector white noise process and {Ψl}∞l=0 is absolutely summable. Let yit

denote the ith element of yt, and let µi denote the ith element of µ. Then

(a). the autocovariance between the ith variable at time t and the jth variable s period

earlier, E(yit − µi)(yj,t−s − µj), exist and is given by the row i, column j element of

Γs =
∞∑
v=0

Ψs+vΩΨ′v for s = 0, 1, 2, ...;

(b). the sequence of matrices {Γs}∞s=0 is absolutely summable.
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Proof.:
(a). By definition

Γs = E(yt − µ)(yt−s − µ)′

or

Γs = E [εt + Ψ1εt−1 + Ψ2εt−2 + ...+ Ψsεt−s + Ψs+1εt−s−1 + ....]

[εt−s + Ψ1εt−s−1 + Ψ2εt−s−2 + ....]′

= ΨsΩΨ′0 + Ψs+1ΩΨ′1 + Ψs+2ΩΨ′2 + ...

=
∞∑
v=0

Ψs+vΩΨ′v for s = 0, 1, 2, ...

The row i, column j element of Γs is therefore the autocovariance between the ith

variable at time t and the jth variable s period earlier, E(yit − µi)(yj,t−s − µj).

(b). �
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2 Vector Autoregressive Process, V AR

A k-variate pth order vector autoregression, denoted V AR(p) is written as;

yt = c + Φ1yt−1 + Φ2yt−2 + ...+ Φpyt−p + εt, (18-1)

where c denotes an (k× 1) vector of constants and Φj an (k× k) matrix of autoregres-

sive coefficients for j = 1, 2, ..., p and εt is a vector white noise process.

2.1 Population Characteristics

Let ci denotes the ith element of the vector c and let φ
(s)
ij denote the row i, column

j element of the matrix Φs, then the first row of the vector system in (18-1) specifies

that

y1t = c1 + φ
(1)
11 y1,t−1 + φ

(1)
12 y2,t−1 + ...+ φ

(1)
1k yk,t−1

+φ
(2)
11 y1,t−2 + φ

(2)
12 y2,t−2 + ....+ φ

(2)
1k yk,t−2

+....+ φ
(p)
11 y1,t−p + φ

(p)
12 y2,t−p + ...+ φ

(p)
1k yk,t−p + ε1t.

Thus, a vector autoregression is a system in which each variable is regressed on a

constant and p of its own lags as well as on p lags of each of the other (k− 1) variables

in the V AR. Note that each regression has the same explanatory variables.

Using lag operator notation, i.e., Lyt = yt−1,
1 (18-1) can be written in this form

[Ik −Φ1L−Φ2L
2 − ...−ΦpL

p]yt = c + εt

or

Φ(L)yt = c + εt. (18-2)

Here Φ(L) indicate an k × k matrix polynomial in the lag operator L. The row i,

column j elements of Φ(L) is a scalar polynomial in L:

Φ(L)ij = [δij − φ(1)
ij L

1 − φ(2)
ij L

2 − ...− φ(p)
ij L

p],

where δij is unity if i = j and zero otherwise.

1Here, L is 1× 1.
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Example .

For p = k = 2,

Φ(L) = I2 −Φ1L−Φ2L
2

=

[
1 0
0 1

]
−

[
φ
(1)
11 φ

(1)
12

φ
(1)
21 φ

(1)
22

]
L−

[
φ
(2)
11 φ

(2)
12

φ
(2)
21 φ

(2)
22

]
L2

=

[
1 0
0 1

]
−

[
φ
(1)
11 L φ

(1)
12 L

φ
(1)
21 L φ

(1)
22 L

]
−

[
φ
(2)
11 L

2 φ
(2)
12 L

2

φ
(2)
21 L

2 φ
(2)
22 L

2

]
. �

If the V AR(p) process is stationary, we can take expectation of both side of (18-1)

to calculate the mean µ of the process:

µ = c + Φ1µ+ Φ2µ+ ...+ Φpµ,

or

µ = (Ik −Φ1 −Φ2 − ...−Φp)
−1c.

Equation (18-1) can then be written in terms of deviations from the mean as

(yt − µ) = Φ1(yt−1 − µ) + Φ2(yt−2 − µ) + ...+ Φp(yt−p − µ) + εt. (18-3)

2.1.1 Conditions for Stationarity

As in the case of the univariate AR(p) process, it is helpful to rewrite (18-3) in terms

of a V AR(1) process. Toward this end, define

ξt =


yt − µ

yt−1 − µ
.
.
.

yt−p+1 − µ


(kp×1)

, (18-4)

F =



Φ1 Φ2 Φ3 . . . Φp−1 Φp

Ik 0 0 . . . 0 0
0 Ik 0 . . . 0 0
0 0 0 . . . 0 0
. . . . . . . .
. . . . . . . .
0 0 0 . . . Ik 0


(kp×kp)

, (18-5)
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and

vt =


εt
0
.
.
.
0


(kp×1)

.

The V AR(p) in (18-3) can then be rewritten as the following V AR(1):

ξt = Fξt−1 + vt, (18-6)

which implies

ξt+s = vt+s + Fvt+s−1 + F2vt+s−2 + ...+ Fs−1vt+1 + Fsξt, (18-7)

where

E(vtv
′
s) =

{
Q for t = s,
0 otherwise,

and

Q =


Ω 0 . . . 0
0 0 . . . 0
. . . . . .
. . . . . .
. . . . . .
0 0 . . . 0

 .

In order for the process to be covariance-stationary, the consequence of any given

εt must eventually die out. If the eigenvalues of F all lie inside the unit circle, then

the V AR turns out to be covariance-stationary.

Proposition.
The eigenvalues of the matrix F in (18-5) also satisfy∣∣Ikλp −Φ1λ

p−1 −Φ2λ
p−2 − ...−Φp

∣∣ = 0. (18-8)

�
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Hence, a V AR(p) is covariance-stationary as long as |λ| < 1 for all the k × p

eigenvalues of λ satisfying (18-8). Equivalently, the V AR is stationary if all values z

satisfying∣∣Ik −Φ1z −Φ2z
2 − ...−Φpz

p
∣∣ = 0

lie outside the unit circle.

2.1.2 Vector MA(∞) Representation

The first k rows of the vector system represented in (18-7) constitute a vector system:

yt+s = µ+ εt+s + Ψ1εt+s−1 + Ψ2εt+s−2 + ...+ Ψs−1εt+1

+Fs
11(yt − µ) + Fs

12(yt−1 − µ) + ....+ Fs
1p(yt−p+1 − µ).

Here Ψj = F
(j)
11 and F

(j)
11 denotes the upper left block of Fj, where Fj is the matrix F

raised to the jth power.

If the eigenvalues of F all lie inside the unit circle, then Fs → 0 as s→∞ and yt

can be expressed as convergent sum of the history of ε:

yt = µ+ εt + Ψ1εt−1 + Ψ2εt−2 + Ψ3εt−3 + ... = µ+ Ψ(L)εt. (18-9)

The moving average matrices Ψj could equivalently be calculated as follows. The

operator Φ(L)(= Ik − Φ1L − Φ2L
2 − ... − ΦpL

p) at (18-2) and Ψ(L) at (18-9) are

related by

Ψ(L) = [Φ(L)]−1,

requiring that

[Ik −Φ1L−Φ2L
2 − ...−ΦpL

p][Ik + Ψ1L+ Ψ2L
2 + ...] = Ik.

Setting the coefficient on L1 equal to the zero matrix produces

Ψ1 −Φ1 = 0.

Similarly, setting the coefficient on L2 equal to zero gives

Ψ2 = Φ1Ψ1 + Φ2,
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and in general for Ls,

Ψs = Φ1Ψs−1 + Φ2Ψs−2 + ...+ ΦpΨs−p for s = 1, 2, ... (18-10)

with Ψ0 = Ik and Ψs = 0 for s < 0.

Note that the innovation in the MA(∞) representation in (18-9) is εt, the funda-

mental innovation for yt. There are alternative moving average representations based

on vector white noise process other than εt. Let H denote a nonsingular (k×k) matrix,

and define

ut = Hεt (Linear Combination of ε).

Then certainly ut is white noise:

E(ut) = 0 and

E(utu
′
τ ) =

{
HΩH′ for t = τ

0 for t 6= τ
.

Moreover, from (18-9) we could write

yt = µ+ H−1Hεt + Ψ1H
−1Hεt−1 + Ψ2H

−1Hεt−2 + Ψ3H
−1Hεt−3 + ...

= µ+ J0ut + J1ut−1 + J2ut−2 + J3ut−3 + ....,

where

Js = ΨsH
−1. (18-11)

One possible choice of H could be any matrix that diagonalize Ω,

HΩH′ = D,

with D a diagonal matrix. For such a choice of H, the element of ut are uncorrelated

with one another:

E(utu
′
t) = HΩH′ = D.

Thus, it is always possible to write a stationary V AR(p) process as a infinite moving

average of a white noise vector ut whose elements are mutually uncorrelated.
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2.1.3 Computation of Autocovariances of an Stationary V AR(p) Process

We now consider to express the second moments for yt following a V AR(p). Recall

that as in the univariate AR(p) process, the Yule-Walker equation are obtained by

postmultiplying (18-3) with (yt−j − µ)′ and taking expectations. For j = 0, using

Γj = Γ′−j,

Γ0 = E(yt − µ)(yt − µ)′

= Φ1E(yt−1 − µ)(yt − µ)′ + Φ2E(yt−2 − µ)(yt − µ)′

+...+ ΦpE(yt−p − µ)(yt − µ)′ + Eεt(yt − µ)′

= Φ1Γ−1 + Φ2Γ−2 + ...+ ΦpΓ−p + Ω

= Φ1Γ
′
1 + Φ2Γ

′
2 + ...+ ΦpΓ

′
p + Ω

and for j > 0,

Γj = Φ1Γj−1 + Φ2Γj−2 + ...+ ΦpΓj−p. (18-12)

These equations may be used to compute the Γj recursively for j ≥ p if Φ1,...,Φp and

Γp−1,...,Γ0 are known.

To obtain the initial Γp−1, ...,Γ0, we proceed as follows. Let ξt be as defined in

(18-4) and let Σ denote the variance of ξt,

Σ = E(ξtξ
′
t)

= E




yt − µ

yt−1 − µ
.
.
.

yt−p+1 − µ

×
[

(yt − µ)′ (yt−1 − µ)′ . . . (yt−p+1 − µ)′
]′


=


Γ0 Γ1 . . . Γp−1
Γ′1 Γ0 . . . Γp−2
.
.
.

Γ′p−1 Γ′p−2 . . . Γ0

 .

Post-multiplying (18-4) by its own transpose and taking expectation gives

E[ξtξ
′
t] = E[(Fξt−1 + vt)(Fξt−1 + vt)

′] = FE(ξt−1ξ
′
t−1)F

′ + E(vtv
′
t)
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or

Σ = FΣF′ + Q. (18-13)

From the result of vec operator on p. 13 of Ch. 1, we have

vec(Σ) = (F⊗ F) · vec(Σ) + vec(Q) = A · vec(Σ) + vec(Q), (18-14)

where

A ≡ (F⊗ F).

Let r = kp, so that F is an (r × r) matrix and A is an (r2 × r2) matrix. Equation

(18-14) has the solution

vec(Σ) = [Ir2 −A]−1vec(Q), (18-15)

provided that the matrix [Ir2 −A] is nonsingular. Thus, the Γj, j = −p + 1, ..., p− 1

are obtained from (18-15).

Example .

Consider the three-dimensional V AR(1) process

yt = c +

 0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

yt−1 + εt,

with E(εtε
′
t) = Ω =

 2.25 0 0
0 1.0 0.5
0 0.5 0.74

.

For this process the reverse characteristic polynomial is

det

 1 0 0
0 1 0
0 0 1

−
 0.5 0 0

0.1 0.1 0.3
0 0.2 0.3

 z
 = det

 1− 0.5z 0 0
−0.1z 1− 0.1z −0.3z

0 −0.2z 1− 0.3z


= (1− 0.5z)(1− 0.4z − 0.03z2).

The roots of this polynomial are easily seen to be

z1 = 2, z2 = 2.1525, z3 = −15.4858.

They are obviously all greater than 1 in absolute value. Therefore the process is

stationary.
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We next obtain the MA(∞) coefficients from this V AR(1) process using the relation

as described in equation (18-10).

Ψ0 = I3, Ψ1 = Φ1Ψ0 =

 0.5 0 0
0.1 0.1 0.3
0 0.2 0.3

 , Ψ2 = Φ1Ψ1 =

 0.25 0 0
0.01 0.07 0.12
0.02 0.08 0.15

 ,
Ψ3 = Φ1Ψ2 =

 0.125 0 0
0.037 0.031 0.057
0.018 0.038 0.069

 ,Ψ4 = ....

We finally calculate the autocovariance of this process. From (18-15) we have

vec(Σ) = vec(Γ0) = [I9 −Φ1 ⊗Φ1]
−1vec(Ω)

=



0.75 0 0 0 0 0 0 0 0
−0.05 0.95 −0.15 0 0 0 0 0 0

0 −0.1 0.85 0 0 0 0 0 0
−0.05 0 0 0.95 0 0 −0.15 0 0
−0.01 −0.01 −0.03 −0.01 0.99 −0.03 −0.03 −0.03 −0.09

0 −0.02 −0.03 0 −0.02 0.97 0 −0.06 −0.09
0 0 0 −0.01 0 0 0.85 0 0
0 0 0 −0.02 −0.02 −0.06 −0.03 0.97 −0.09
0 0 0 0 −0.04 −0.06 0 −0.060 0.91



−1

×



2.25
0
0
0

1.0
0.5
0

0.5
0.74


=



3.000
0.161
0.019
0.161
1.172
0.674
0.019
0.674
0.954


.

It follows that

Γ0 =

 3.000 0.161 0.019
0.161 1.172 0.674
0.019 0.674 0.954

 Γ1 = Φ1Γ0 =

 1.5000 0.080 0.009
0.322 0.3365 0.355
0.038 0.437 0.421


Γ2 = Φ1Γ1 =

 0.75 0.040 0.005
0.194 0.173 0.163
0.076 0.198 0.197

 ,Γ3 = ......

�
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Exercise 1.
Consider the two-dimensional V AR(2) process

yt = c +

[
0.5 0.1
0.4 0.5

]
yt−1 +

[
0 0

0.25 0

]
yt−2 + εt,

with E(εtε
′
t) = Ω =

[
0.09 0

0 0.04

]
. Please

(a). Check whether this process is stationary or not.

(b). Find the coefficient matrices in its MA(∞) representation, Ψj, j = 0, 1, 2, 3.

(c). Find its autocovariance matrices Γj, j = 0, 1, 2, 3. �

2.1.4 Linear Forecast

From (18-9) we see that yt−j is a linear function of εt−j, εt−j−1,... each is uncorrelated

with εt+1 for j = 0, 1, ... It follows that εt+1 is uncorrelated with yt−j for any j ≥ 0.

Thus, the linear forecast of yt+1 on the basis of yt, yt−1,...is given by

ŷt+1|t = µ+ Φ1(yt − µ) + Φ2(yt−1 − µ) + ...+ Φp(yt−p+1 − µ),

and εt+1 can be interpreted as the fundamental innovation for yt+1, that is, the error

in forecasting yt+1 on the basis of a linear function of a constant and yt, yt−1,...Moregenally,

it follows from (18-7) that a forecast of yt+s on the basis of yt,yt−1,... will take the

form

ŷt+s|t = µ+ F
(s)
11 (yt − µ) + F

(s)
12 (yt−1 − µ) + ...+ F

(s)
1p (yt−p+1 − µ).

2.2 Estimation: MLE for an Unrestricted V AR

Consider the estimation of the following k-dimensional Gaussian V AR(p) process, i.e.

yt = c + Φ1yt−1 + Φ2yt−2 + ...+ Φpyt−p + εt, (18-16)

where εt ∼ i.i.d. N(0,Ω) and all the roots of det(Ik −Φ1z −Φ2z
2 − ... −Φpz

p) = 0

lie outside the unit circle. In this case, the parameters to be estimated are θ =

[c,Φ1, ...,Φp,Ω].
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Suppose that we have a sample of size (T +p), as in the scalar AR process, the sim-

plest approach is to condition on the first p observations (denoted y−p+1,y−p+2, ...,y0)

and to base estimation on the last T observations (denoted y1,y2, ...,yT ). The objective

is then to form the conditional likelihood

fYT ,YT−1,...,Y1|Y0,Y−1,...,Y−p+1(yT ,yT−1, ...,y1|y0,y−1, ...,y−p+1;θ) (18-17)

and maximize with respect to θ. V AR are invariably estimated on the basis of the

conditional likelihood function (18-17) rather than the full-sample unconditional likeli-

hood. For brevity, we will hereafter refer to (18-17) simply as the “likelihood function”

and the value of θ that maximize (18-17) as the “maximum likelihood estimator”.

2.2.1 The Conditional Likelihood Function for a Vector Autoregression

The likelihood function is calculated in the same way as for a scalar autoregression.

Conditional on the value of y observed through date t− 1, the value of y for date t is

equal to a constant

c + Φ1yt−1 + Φ2yt−2 + ...+ Φpyt−p (18-18)

plus a N(0,Ω) variables. Thus, for t ≥ 1,

yt|yt−1,yt−1, ..,y0,y−1, ..,y−p+1 ∼ N(c + Φ1yt−1 + Φ2yt−2 + ...+ Φpyt−p, Ω).

(18-19)

It will be convenient to use a more compact expression for the conditional mean

(18-18). Let xt ((kp + 1)× 1) denote a vector containing a constant terms and p lags

of each of the elements of yt:

xt ≡



1
yt−1
yt−2
.
.
.

yt−p


.
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Let Ẍt denote the (k × (kp+ 1)k) matrix

Ẍt =



x′t 0 . . . 0
0 x′t 0 . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . 0 x′t


,

and let the ((kp + 1)k × 1) vector β=vec [(c,Φ1, ...,Φp)
′] ≡ vec(θ∗′), it is easy to see

that

Ẍt · β = c + Φ1yt−1 + Φ2yt−2 + ...+ Φpyt−p. (18-20)

Example .

To see the above result, for example k = 2 and p = 1, then we have

c =

[
c1
c2

]
, Φ1 =

[
φ11 φ12

φ21 φ22

]
, yt−1 =

[
y1,t−1
y2,t−1

]
.

In this case, x′t = [1 y1,t−1 y2,t−1] and θ∗ =

[
c1 φ11 φ12

c2 φ21 φ22

]
.

Therefore

Ẍt =

[
1 y1,t−1 y2,t−1 0 0 0
0 0 0 1 y1,t−1 y2,t−1

]
,

and

β = vec(θ∗′) = vec

 c1 c2
φ11 φ21

φ12 φ22

 =


c1
φ11

φ12

c2
φ21

φ22

 .
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It is easy to see that

Ẍtβ =

[
1 y1,t−1 y2,t−1 0 0 0
0 0 0 1 y1,t−1 y2,t−1

]


c1
φ11

φ12

c2
φ21

φ22


=

[
c1 + φ11y1,t−1 + φ12y2,t−1
c2 + φ21y1,t−1 + φ22y2,t−1

]
=

[
c1
c2

]
+

[
φ11 φ12

φ21 φ22

] [
y1,t−1
y2,t−1

]
= c + Φ1yt−1. �

Using this notation, (18-19) can be written more compactly as

yt|yt−1,yt−1, ..,y0,y−1, ..,y−p+1 ∼ N(Ẍtβ, Ω). (18-21)

Thus, the conditional density of the tth observation is

fYt|Yt−1,Yt−2,..,Y−p+1(yt|yt−1,yt−2, ...,y−p+1;θ)

= (2π)−k/2|Ω−1|1/2 exp[(−1/2)(yt − Ẍtβ)′Ω−1(yt − Ẍtβ)].

The log likelihood function of the fully sample yT ,yT−1, ...,y1 conditioned on y0,y−1, ...,y−p+1

is therefore

L∗(θ) = (−Tk/2) ln(2π) + (T/2) ln |Ω−1| − (1/2)
T∑
t=1

[
(yt − Ẍtβ)′Ω−1(yt − Ẍtβ)

]
.

(18-22)

2.2.2 MLE of β

The MLE of β is the value β̂ maximize (18-22). At first glance it is not a trivial work

to find β̂. However, at a close look, Ẍt is a special matrix as the matrix Ẍt in Section

5.1 of Ch. 10, i.e. x1t = x2t = ... = xMt, or the same regressors. Therefore β̂ is simply

obtained from OLS regression of yit on xt from the results of SURE model.
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2.2.3 MLE of Ω

When evaluated at the MLE β̂, the log likelihood (18-22) is

L∗(Ω, β̂) = (−Tk/2) ln(2π) + (T/2) ln |Ω−1| − (1/2)
T∑
t=1

ε̂′tΩ
−1ε̂t, (18-23)

where ε̂t = yt − Ẍtβ̂.

Differentiate (18-23) with respect to Ω−1 (see p.23 of Ch 1) we obtain

∂L∗(Ω, β̂)

∂Ω−1
= (T/2)

∂ ln |Ω−1|
∂Ω−1

− (1/2)
T∑
t=1

∂ε̂′tΩ
−1ε̂t

∂Ω−1

= (T/2)Ω′ − (1/2)
T∑
t=1

ε̂tε̂′t.

The likelihood is maximized when this derivative is set to zero, or when

Ω̂′ = (1/T )
T∑
t=1

ε̂tε̂′t.

Since Ω is symmetric, we have

Ω̂ = (1/T )
T∑
t=1

ε̂tε̂′t

also. The row i, column j elements of Ω̂ is

σ̂ij = (1/T )
T∑
t=1

ε̂itε̂jt,

which is the average product of the OLS residual for variable i and the OLS residual

for variable j.

2.2.4 Likelihood Ratio Tests about the Lag Order of VAR

To perform a likelihood ratio test, we need to calculate the maximum value achieved

for (18-22). Thus consider

L∗(Ω̂, β̂) = (−Tk/2) ln(2π) + (T/2) ln |Ω̂−1| − (1/2)
T∑
t=1

ε̂′tΩ̂
−1ε̂t. (18-24)
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The last term in (18-24) is

(1/2)
T∑
t=1

ε̂′tΩ̂
−1ε̂t. = (1/2)trace

[
T∑
t=1

ε̂′tΩ̂
−1ε̂t

]

= (1/2)trace

[
T∑
t=1

Ω̂−1ε̂tε̂
′
t

]
= (1/2)trace

[
Ω̂−1(T Ω̂)

]
= (1/2)trace(T · Ik)

= Tk/2.

Substituting this into (18-24) produces

L∗(Ω̂, β̂) = (−Tk/2) ln(2π) + (T/2) ln |Ω̂−1| − (Tk/2).

Suppose we want to test the null hypothesis that was generated from a Gaussian

V AR with p0 lags against the alternative specification of p1 > p0 lags. Then we may

estimate the model with MLE under H0 of p0 lags and under H1 of p1 lags and obtains

the maximum value for the log likelihood value

L∗0 = (−Tk/2) ln(2π) + (T/2) ln |Ω̂−10 | − (Tk/2).

and

L∗1 = (−Tk/2) ln(2π) + (T/2) ln |Ω̂−11 | − (Tk/2),

respectively.

Twice the log likelihood ratio is then (see p. 4 of Ch.1)

2(L∗1 − L∗0) = T (ln |Ω̂−11 |)− T (ln |Ω̂−10 |)

= T ln

(
1

|Ω̂1|

)
− T ln

(
1

|Ω̂0|

)
= −T ln |Ω̂1|+ T ln |Ω̂0|

= T{ln |Ω̂0| − ln |Ω̂1|}.

Under the null hypothesis, this asymptotically has a χ2 distribution with degrees

of freedom equal to the number of restrictions imposed under H0.

Example .

See the example on page 297 of Hamilton. �
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2.2.5 AIC and BIC in VAR

We postulate that the true process VAR is a k-dimensional autoregression of order p0.

Abstracting from deterministic regressors (such as seasonal dummies or intercepts),

the most common used lag-order selection criteria are:

AIC = ln |Ω̂(p)|+ 2

T
(k2p),

BIC = ln |Ω̂(p)|+ lnT

T
(k2p),

where T is the effective sample size and Ω̂(p) is the maximum likelihood estimate of

the innovation covariance matrix Ω (see Sin and White (1996) for further discussion

of the theoretical rationale for these criteria). The lag order estimate p̂ is chosen to

minimize the value of the criterion function for {p : 1 ≤ p ≤ p̄}.

2.3 Bivariate Granger Causality Tests

2.3.1 Definitions of Causality

Granger (1969) has defined a concept of causality which, under suitable conditions, is

fairly easy to deal with in the context of V AR models. Therefore it has become quite

popular in recent years. The idea is that a cause can not come after the effect. Thus,

if a variable Y affect a variable X, the former should help improving the predictions

of the latter variable.

To formalize this idea, we said that Y fail to Granger cause X if for all s > 0 the

mean squares error of a forecast of Xt+s based on (Xt, Xt−1, ...) is the same as the

MSE of a forecast of Xt+s that use both (Xt, Xt−1, ...) and (Yt, Xt−1, ...). If we restrict

ourselves to linear functions, Y fails to Granger-cause X if

MSE[Ê(Xt+s|Xt, Xt−1, ...)] = MSE[Ê(Xt+s|Xt, Xt−1, ..., Yt, Yt−1, ...)].
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2.3.2 Alternative Implications of Granger Causality, V AR

In a bivariate V AR describing X and Y , Y does not Granger-cause X if the coefficients

Φj are lower triangular for all j:[
Xt

Yt

]
=

[
c1
c2

]
+

[
φ
(1)
11 0

φ
(1)
21 φ

(1)
22

][
Xt−1
Yt−1

]
+

[
φ
(2)
11 0

φ
(2)
21 φ

(2)
22

][
Xt−2
Yt−2

]
+ ...

+

[
φ
(p)
11 0

φ
(p)
21 φ

(p)
22

][
Xt−p
Yt−p

]
+

[
εXt
εY t

]
.

From the first row of this system, the optimal one-period-ahead forecast of x de-

pends only on its own lagged values and not on lagged y:

MSE[Ê(Xt+1|Xt, Xt−1, ..., Yt, Yt−1, ...)] = c1 + φ
(1)
11Xt + φ

(2)
11Xt−1 + ...+ φ

(p)
11Xt−p+1.

By induction, the same is true of an s-period-ahead forecast. Thus for the bivariate

V AR, y does not Granger-cause X if Φj is lower triangular for all j.

2.3.3 Alternative Implications of Granger Causality, VMA

Recall from (18-10) that

Ψs = Φ1Ψs−1 + Φ2Ψs−2 + ...+ ΦpΨs−p for s = 1, 2, ...

with Ψ0 = Ik and Ψs = 0 for s < 0. This expression implies that if Φj is lower triangu-

lar for all j, then the moving average matrices Ψj for the fundamental representation

will be lower triangular for all s. Thus if y fails to Granger-cause x, then the VMA(∞)

representation can be written as[
Xt

Yt

]
=

[
µ1

µ2

]
+

[
ψ11(L) 0
ψ21(L) ψ22(L)

] [
εXt
εY t

]
,

where

ψij(L) = ψ
(0)
ij + ψ

(1)
ij L+ ψ

(2)
ij L

2 + ψ
(3)
ij L

3 + ....

with ψ
(0)
11 = ψ

(0)
22 = 1 and ψ

(0)
21 = 0.
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2.3.4 Econometric Tests for Granger Causality

A simple approach to test whether a particular series Y “Granger Cause” X can be

based on the V AR. To implement this test, we assume a particular autoregressive lag

length p and estimate

Xt = c1 + α1Xt−1 + α2Xt−2 + ...+ αpXt−p + β1Yt−1 + β2Yt−2 + ....+ βpYt−p + ut

(18-25)

by OLS. We then conduct a F test of the null hypothesis

H0 : β1 = β2 = ... = βp = 0.

Recalling section 4.2.1 of Chapter 6, one way to implement this test is to calculate

the sum of the squared residuals from (18-25),

RSSu =
T∑
t=1

û2t ,

and compare this with the sum of squared residuals of an univariate autoregression for

xt,

RSSr =
T∑
t=1

ê2t ,

where

Xt = ĉ0 + γ̂1Xt−1 + γ̂2Xt−2 + ...+ γ̂pXt−p + et (18-26)

is also estimated by OLS. If

S ≡ (RSSr −RSSu)/p
RSSu/(T − 2p− 1)

is greater than 5% critical value of an F (p, T − 2p− 1) distribution, then we reject the

null hypothesis that Y does not Granger-cause X; that is, if S is sufficiently large, we

conclude that Y does Granger-cause X.

Exercise 2.
Please specify a bivariate V AR model for Taiwan’s GDP and Stock Index from LR

test and from this model to test the Granger-causality between these two variables.�
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2.4 The Impulse-Response Function

In equation (18-9) a V AR can be written in vector MA(∞) form as

yt = µ+ εt + Ψ1εt−1 + Ψ2εt−2 + Ψ3εt−3 + .... (18-27)

Thus, the matrix Ψs has the interpretation

∂yt+s
∂ε′t

= Ψs;

that is, the row i, column j element of Ψs identifies the consequence of a one-unit

increase in the jth variables’s innovation at date t (εj,t) for the values of the ith variable

at time t+ s (Yi,t+s), holding all other innovations at all date constant.

A plot of the row i, column j element of Ψs,

∂Yi,t+s
∂εj,t

, (18-28)

as a function of s is called the impulse response function. It describe the response of

yi,t+s to one-time impulse in Yj,t with other variables dated t or earlier held constant.

Suppose that we are told that date t value of the first observation in the autore-

gression, Y1,t, was higher than expected, so that ε1t is positive. How does this cause to

revise our forecast of Yi,t+s ? In other word, what is the response of

∂Yi,t+s
∂ε1t

, i = 1, 2, .., k,

when we consider that the elements of εt are contemporaneously correlated with one

another, the fact that ε1t is positive gives us some useful new information about the

value of ε2t,...,εkt. This implication has further implications for the value of Yi,t+s.

Thus, we would think the impulse response function so defined in (18-28) is a special

case when E(εtε
′
t) = Ω is a diagonal matrix.

Of course in general Ω is not diagonal. However we may proceed as in section 2.1.2

of this chapter to find matrices A and D such that

Ω = ADA′, (18-29)

where A is a lower triangular matrix with 1s along the principal diagonal and D is a

diagonal matrix with positive entries along the principal diagonal.

Using this matrix A we can construct an (k × 1) vector ut from

ut = A−1εt. (18-30)
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then we see that the elements of ut are uncorrelated with each other:

E(utu
′
t) = [A−1]E(εtε

′
t)[A

−1]′

= [A−1]Ω[A′]−1

= [A−1]ADA′[A′]−1

= D.

From (18-11) we have

∂yt+s
∂u′t

= ΨsA

or 

∂y1,t+s

∂u1

∂y1,t+s

∂u2
. . . ∂y1,t+s

∂uk
∂y2,t+s

∂u1

∂y2,t+s

∂u2
. . . ∂y2,t+s

∂uk

. . . . . .

. . . . . .

. . . . . .
∂yk,t+s

∂u1

∂yk,t+s

∂u2
. . .

∂yk,t+s

∂uk


=
[

Ψsa1 Ψsa2 . . .Ψsak
]
,

where aj are the jth column of A.

A plot (how many figures ?) of

∂yt+s
∂ujt

= Ψsaj (18-31)

as a functions of s is known as an orthogonalized impulse− response function.

For a given observed sample of size T , we would estimate the autoregressive co-

efficients Φ̂1, Φ̂2,..,Φ̂p by CSS (or conditional MLE; that is, OLS from each single

equation) and construct Ψ̂s from (18-10). OLS estimation would also provided the

estimate Ω̂ = (1/T )
∑T

t=1 ε̂tε̂
′
t. Matrices Â and D̂ satisfying Ω̂ = ÂD̂Â′ could then

be constructed from Ω̂. The sample estimate of (18-31) is then

Ψ̂sâj.

Another popular form is also implemented and reported. Recall that D is a diagonal

matrix whose (j, j) element is the variance of ujt. Let D1/2 denote the diagonal matrix

whose (j, j) element is the standard deviation of ujt. Note that (18-29) could be written

as

Ω = AD1/2D1/2A′ = PP′, (18-32)
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Figure (18-1). Example of Impulse Response Function

where

P = AD1/2.

Expression (18-32) is the Cholesky decomposition of the matrix Ω. Note that, like A,

the (k × k) matrix P is lower triangular and has standard deviation of ut along its

principal diagonal.

In place of ut defined in (18-30), some researcher use

vt = P−1εt = D−1/2A−1εt = D−1/2ut.

Thus, vjt is just ujt divided by its standard deviation
√
djj. A one-unit increase in vjt

is the same as one-standard-deviation increase in ujt.

In place of the dynamic multiplier ∂yi,t+s/∂ujt, these researchers then report ∂yi,t+s/∂vjt.

Denote the jth column of P by pj, we have

∂yt+s
∂vjt

= Ψspj (18-33)

from the results of (18-31). We also note that

pj = Ad
1/2
j = aj

√
djj,

where d
1/2
j is the jth column of D1/2.
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2.5 Forecast Error Variance Decomposition

The forecast error of a V AR s periods into the future would be

yt+s − ŷt+s|t = εt+s + Ψ1εt+s−1 + Ψ2εt+s−2 + ...+ Ψs−1εt+1.

The mean-squared error of this s-period-ahead forecast is thus

MSE(ŷt+s|t) = E[(yt+s − ŷt+s|t)(yt+s − ŷt+s|t)
′]

= Ω + Ψ1ΩΨ′1 + Ψ2ΩΨ′2 + ...+ Ψs−1ΩΨ′s−1. (18-34)

Let us now consider how each of the orthogonalized disturbance (u1t, ..., ukt) contributes

to this MSE. Write (18-30) as

εt = Aut = a1u1t + a2u2t + ...+ akukt.

Then

Ω = E(εtε
′
t)

= a1a
′
1V ar(u1t) + a2a

′
2V ar(u2t) + ...+ aka

′
kV ar(ukt).

Substituting this result into (18-34), the MSE of the s-period-ahead forecast can be

written as the sums of k terms, one arising from each of the disturbance ujt;

MSE(ŷt+s|t) =
k∑
j=1

{
V ar(ujt) · [aja′j + Ψ1aja

′
jΨ
′
1 + Ψ2aja

′
jΨ
′
2 + ...+ Ψs−1aja

′
jΨ
′
s−1]
}
.

(18-35)

With this expression, we can calculate the contribution of the jth orthogonalized

innovation to the MSE of the s-period-ahead forecast:

V ar(ujt) · [aja′j + Ψ1aja
′
jΨ
′
1 + Ψ2aja

′
jΨ
′
2 + ...+ Ψs−1aja

′
jΨ
′
s−1]. (18-36)

The ration of (18-36) to MSE (18-35) is called the forecast error variance decomposi-

tion.

Alternatively, recalling that pj = Ad
1/2
j = aj

√
V ar(ujt), we may express the MSE

as

MSE(ŷt+s|t) =
k∑
j=1

[pjp
′
j + Ψ1pjp

′
jΨ
′
1 + Ψ2pjp

′
jΨ
′
2 + ...+ Ψs−1pjp

′
jΨ
′
s−1]
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also.

Exercise 3.
Please plot the impulse response function and forecast error variance decomposition

from a bivariate VAR(4) model with Taiwan’s GDP and Stock Index data set (first

difference of the data may be necessary). �
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3 Appendix: Collection of Results Between Least Square and

MLE Estimators

In this section, we collect the results of the relation between the least square and the

MLE estimators under linear regression model. In this setting, we allow the sample to

be time series data–sub t, or cross section data–sub i, or both.

3.1 OLS and MLE under Ideal Conditions, sub t or sub i

Let the linear regression model

Yt = x′tβ + εt, t = 1, 2, ..., T.

Collect the sample in matrix form, this relationship is written as

y =


Y1
Y2
.
.
.
YT

 =


x′1
x′2
.
.
.

x′T

β +


ε1
ε2
.
.
.
εT

 = Xβ + ε, (18-37)

where y is T × 1 vector, X is an T × k matrix with rows x′t, β = [β1, β2, · · · , βk]′ and

ε is an T × 1 vector with element εt. We assume that ε ∼ N(0, σ2IT ).

3.1.1 OLS Estimation of β

Let us first consider the Ordinary Least Square estimator (OLS) which is the value for

β that minimizes the sum of squared errors denoted as SSE (or residuals, remember

the principal of estimation at Ch. 3)

SSE(β) = (y −Xβ)′(y −Xβ)

=
T∑
t=1

(Yt − x′tβ)2. (18-38)
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3.1.2 MLE Estimation of β

From (18-37) it is apparent that the sample joint density is

y ∼ N(Xβ, σ2I), i, e,

f(y,X;β, σ2) = (2π)−T/2|σ2I|−1/2 exp

{
−1

2
(y −Xβ)′(σ2I)−1(y −Xβ)

}
= (2π)−T/2(σ2)−T/2 exp

{
− 1

2σ2
(y −Xβ)′(y −Xβ)

}
,

the log-likelihood function therefore is

lnL(β, σ2; y) = −T
2

ln(2πσ2)− 1

2σ2
(y −Xβ)′(y −Xβ) (18-39)

= −T
2

ln(2πσ2)− 1

2σ2

T∑
t=1

(Yt − x′tβ)2 (18-40)

= −T
2

ln(2πσ2)− 1

2σ2

T∑
t=1

(ε2t ).

From (18-38),(18-39) and (18-40), the results that OLS estimators of β is identical to

that of MLE is clear.

Example .

The conditional log likelihood function of an AR(1) process. See eq.(5.2.27) on p.122

of Hamilton (1994).. �

3.2 GLS and MLE under Known Nonspherical Disturbance, sub t or sub i

Let the linear regression model

Yt = x′tβ + εt, t = 1, 2, ..., T.

Collect the sample in matrix form, this relationship is written as

y =


Y1
Y2
.
.
.
YT

 =


x′1
x′2
.
.
.

x′T

β +


ε1
ε2
.
.
.
εT

 = Xβ + ε, (18-41)
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where y is T × 1 vector, X is an T × k matrix with rows x′t, β = [β1, β2, · · · , βk]′ and ε

is an T × 1 vector with element εt. We assume that ε ∼ N(0, σ2Ω) with a known Ω.

3.2.1 GLS Estimation of β

Since by assumption Ω is known, it can find a matrix P such that

P′P = Ω−1.

Let us consider the Generalized Least Square estimator (GLS) which is the value for β

that minimizes the Sum of Squared Errors denoted as SSE of the transformed equation

SSE(β) = (Py −PXβ)′(Py −PXβ)

= [P(y −Xβ)]′[(P(y −Xβ)]

= (y −Xβ)′P′P(y −Xβ) (18-42)

= (y −Xβ)′Ω−1(y −Xβ) (18-43)

6=
T∑
t=1

(Yt − x′tβ)2,

where

Py = PXβ + Pε,

which satisfy

E(Pε)(Pε)′ = σ2IT .

3.2.2 MLE Estimation of β

From (18-41) it is apparent that the sample joint density is

y ∼ N(Xβ, σ2Ω), i, e,

f(y,X;β, σ2) = (2π)−T/2|σ2Ω|−1/2 exp

{
−1

2
(y −Xβ)′(σ2Ω)−1(y −Xβ)

}
= (2π)−T/2(σ2)−T/2|Ω|−1/2 exp

{
− 1

2σ2
(y −Xβ)′Ω−1(y −Xβ)

}
,
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the log-likelihood function therefore is

lnL(β, σ2; X,y) = −T
2

ln(2πσ2)− 1

2
ln |Ω| − 1

2σ2
(y −Xβ)′Ω−1(y −Xβ)

(18-44)

6= −T
2

ln(2πσ2)− 1

2
ln |Ω| − 1

2σ2

T∑
t=1

(Yt − x′tβ)2.

From (18-43) and (18-44), the results that GLS estimators of β is identical to that of

MLE is clear.

3.3 Feasible GLS and MLE under Unknown Nonspherical Disturbance,
sub t or sub i

Let the linear regression model

Yt = x′tβ + εt, t = 1, 2, ..., T.

Collect the sample in matrix form, this relationship is written as

y =


Y1
Y2
.
.
.
YT

 =


x′1
x′2
.
.
.

x′T

β +


ε1
ε2
.
.
.
εT

 = Xβ + ε, (18-45)

where y is T × 1 vector, X is an T × k matrix with rows x′t, β = [β1, β2, · · · , βk]′ and

ε is an T × 1 vector with element εt. We assume that ε ∼ N(0, σ2Ω). Here Ω = Ω(θ)

and θ is a vector of few unknown parameters.

3.3.1 FGLS Estimation of β

Since by assumption Ω is unknown, it cannot find a matrix P such that

P′P = Ω−1.
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The Feasible Generalized Least Square estimator (FGLS) is

β̌ = (X′Ω̂−1X)−1X′Ω̂−1y, (18-46)

where Ω̂ is a consistent estimator of Ω, i.e. Ω̂ = Ω(θ̂) in which θ̂
p−→ θ̂.

3.3.2 MLE Estimation of β

From (52) it is apparent that the sample joint density is

y ∼ N(Xβ, σ2Ω), i, e,

f(y,X;β, σ2Ω) = (2π)−T/2|σ2Ω|−1/2 exp

{
−1

2
(y −Xβ)′(σ2Ω)−1(y −Xβ)

}
= (2π)−T/2(σ2)−T/2|Ω|−1/2 exp

{
− 1

2σ2
(y −Xβ)′Ω−1(y −Xβ)

}
,

the log-likelihood function therefore is

lnL(β, σ2Ω; y,X) = −T
2

ln(2πσ2)− 1

2
ln |Ω| − 1

2σ2
(y −Xβ)′Ω−1(y −Xβ).

(18-47)

Since the MLE of β is the value to satisfy the FOC in (18-47), which is possible

highly nonlinear. From (18-46) and (18-47), the results that FGLS estimators of β is

not identical to that of MLE is clear.

Example .

The exact log-likelihood function of an AR process. See eq.(5.2.9) on p.119 of Hamilton

(1994). �

3.4 System of Equations: GLS and MLE Under Known Nonspherical
Disturbance, sub t and sub i, SURE Model

An alternative way of developing the SURE estimator–which does not involve Kro-

necker products – is to write the M equations together as

ÿt = Ẍtβ + ε̈t, t = 1, 2, ..., T,
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where

ÿt =


y1t
y2t
.
.
.
yMt

 , Ẍt =



x′1t 0 . . . 0
0 x′2t 0 . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . 0 x′Mt


, β =


β1

β2

.

.

.
βM


and

E(ε̈tε̈
′
t) = E


ε1t
ε2t
.
.
.
εMt


[
ε1t ε2t . . . εMt

]
=



σ11 σ12 . . . σ1M
σ21 σ22 . . . σ2M
. . . . . .
. . . . . .
. . . . . .
. . . . . .

σM1 . . . . σMM


= Ω.

If the T equation are stacked in the usual way, we have

ÿ = Ẍβ + ε̈, (18-48)

where

ÿ =


ÿ1

ÿ2

.

.

.
ÿT

 , Ẍ =


Ẍ1

.

.

.

ẌT

 , and ε̈ =


ε̈1
ε̈2
.
.
.
ε̈T

 .

The covariance matrix of the disturbance in the stacked equation is

E(ε̈ε̈′) = E


ε̈1
ε̈2
.
.
.
ε̈T


[
ε̈′1 ε̈′2 . . . ε̈′T

]

=



Ω 0 . . . 0
0 Ω . . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . . Ω


= IT ⊗Ω = Λ,
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and we assume that ε is normally distributed and Ω (and therefore Λ) is known.

3.4.1 GLS Estimation of β

Since by assumption Ω is known, it can find a matrix P such that

P′P = Λ−1 = IT ⊗Ω−1.

Let us consider the Generalized Least Square estimator (GLS) which is the value

for β that minimizes the sum of squared errors denoted as SSE of the transformed

equation

SSE(β) = (Pÿ −PẌβ)′(Pÿ −PẌβ)

=
[
P(ÿ − Ẍβ)

]′ [
P(ÿ − Ẍβ)

]
= (ÿ − Ẍβ)′P′P(ÿ − Ẍβ)

= (ÿ − Ẍβ)′Λ−1(ÿ − Ẍβ)

=
T∑
t=1

(ÿt − Ẍtβ)′Ω−1(ÿt − Ẍtβ), (18-49)

where

Pÿ = PẌβ + Pε̈

satisfy

E(Pε̈)(Pε̈)′ = IMT .

3.4.2 MLE Estimation of β

From (18-48) it is apparent that the sample joint density is

ÿ ∼ N(Ẍβ,Λ), i, e,

f(ÿ, Ẍ;β) = (2π)−MT/2|Λ|−1/2 exp

{
−1

2
(ÿ − Ẍβ)′(Λ)−1(ÿ − Ẍβ)

}
= (2π)−MT/2|Λ|−1/2 exp

{
−1

2
(ÿ − Ẍβ)′Λ−1(ÿ − Ẍβ)

}
,
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the log-likelihood function therefore is

lnL(β; Ẍ, ÿ) = −MT

2
ln(2π)− 1

2
ln |Λ| − 1

2
(ÿ − Ẍβ)′Λ−1(ÿ − Ẍβ)

= −MT

2
ln(2π)− T

2
ln |Ω| − 1

2

T∑
t=1

(ÿt − Ẍtβ)′Ω−1(ÿt − Ẍtβ)

= −MT

2
ln(2π) +

T

2
ln |Ω−1| − 1

2

T∑
t=1

(ÿt − Ẍtβ)′Ω−1(ÿt − Ẍtβ).

(18-50)

From (18-49) and (18-50), the results that GLS estimators of β is identical to that

of MLE is clear.

3.5 System of Equations: FGLS and MLE under Unknown Nonspherical
Disturbance, sub t and sub i, SURE Model, VAR

An alternative way of developing the SURE estimator–which does not involve Kro-

necker products – is to write the M equations together as

ÿt = Ẍtβ + ε̈t, t = 1, 2, ..., T,

where

ÿt =


y1t
y2t
.
.
.
yMt

 , Ẍt =



x′1t 0 . . . 0
0 x′2t 0 . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . 0 x′Mt


, β =


β1

β2

.

.

.
βM


and

E(ε̈tε̈
′
t) = E


ε1t
ε2t
.
.
.
εMt


[
ε1t ε2t . . . εMt

]
=



σ11 σ12 . . . σ1M
σ21 σ22 . . . σ2M
. . . . . .
. . . . . .
. . . . . .
. . . . . .

σM1 . . . . σMM


= Ω.
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If the T equation are stacked in the usual way, we have

ÿ = Ẍβ + ε̈, (18-51)

where

ÿ =


ÿ1

ÿ2

.

.

.
ÿT

 , Ẍ =


Ẍ1

.

.

.

ẌT

 , and ε̈ =


ε̈1
ε̈2
.
.
.
ε̈T

 .

The covariance matrix of the disturbance in the stacked equation is

E(ε̈ε̈′) = E


ε̈1
ε̈2
.
.
.
ε̈T


[
ε̈′1 ε̈′2 . . . ε̈′T

]

=



Ω 0 . . . 0
0 Ω . . . 0
. . . . . .
. . . . . .
. . . . . .
. . . . . .
0 . . . . Ω


= IT ⊗Ω = Λ,

and we assume that ε is normally distributed and Ω = Ω(θ). Here, θ is a vector of

few unknown parameters.

3.5.1 FGLS Estimation of β

Since by assumption Ω is unknown, it cannot find a matrix P such that

P′P = Λ−1.

The Feasible Generalized Least Square estimator (FGLS) is

β̌ = (Ẍ′Λ̂−1Ẍ)−1Ẍ′Λ̂−1ÿ, (18-52)

where Λ̂ is a consistent estimator of Λ, i.e., Λ̂ = Λ(θ̂) in which θ̂
p−→ θ.
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3.5.2 MLE Estimation of β

From (18-51), the log-likelihood function therefore is

lnL(β,Ω(θ); ÿ) = −MT

2
ln(2π) +

T

2
ln |Ω−1(θ)| − 1

2

T∑
t=1

(ÿt − Ẍtβ)′Ω−1(θ)(ÿt − Ẍtβ).

(18-53)

Since the MLE of β (and θ) is the value to satisfy the FOC in (18-53), which is

possible highly nonlinear. From (18-52) and (18-53), the results that GLS estimators

of β is not identical to that of MLE is clear.

Example .

The first look of condition log likelihood function of an V AR(p) process. See eq.(11.1.10)

on p.293 of Hamilton (1994). �

The Long Gallery of Social Science Building, NSYSU.

End of this Chapter
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