Ch. 14 Stationary ARMA Process

(March 12, 2018)

A general linear stochastic model is described that suppose a time series to be
generated by a linear aggregation of random shock. For practical representation it is
desirable to employ models that use parameters parsimoniously. Parsimony may of-
ten be achieved by representation of the linear process in terms of a small number of
autoregressive and moving average terms. This chapter introduces univariate ARM A
process, which provide a very useful class of models for describing the dynamics of an
individual time series. The ARM A model is based on a principle in philosophy called
reductionism. The reductionism! believe that anything can be understood once upon
it is decomposed to its basic elements. Throughout this chapter we assume the time
index T tobe T ={... —2,-1,0,1,2,...}.

1 Preliminary

1.1 Restricting the Time-Heterogeneity of a Stochastic Process

In this notes, we use the concept of weak stationarity to meet the requirement of re-

stricting the time-heterogeneity of a stochastic process.

Definition. | (Weakly Stationary)

!Thales (636-546 BC) was thought to be the first one to use reductionism in his writing.
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A stochastic process {X;,t € T} is said to be (weakly) stationary if
E(Xy) = u forallt
s = El(Xe— 1) (Xies — 1)) = Vemg—s) = N5l VL, E—sET.
|

These suggest that weakly stationarity for {X;,¢ € T} implies that its mean and
variance o7 = 7y, = 7o are constant and free of ¢ and its autocovariance depends on

the interval |t — (¢ — s)|; not ¢ and t — s. Therefore, v, = v_.

1.2 Restricting the Memory of a Stochastic Process

In this notes, we use the concept of ergodicity to meet the requirement of restricting
the memory of a stochastic process.
In the context of weakly-stationary stochastic process, asymptotic uncorrelatedness

can be defined more intuitively in terms of the temporal covariance as follows:
Cov(Xy, Xiyr) =7 —0 as7— 0.

A stronger form of such memory restriction is so called ergodicity property. Ergod-
icity can be viewed as a condition which ensures that the memory of the process as

measured by v, “weakens by averaging overtime”.

Definition. | (ergodicity)
A weakly-stationary stochastic process {X;, t € T} is said to be ergodic if

1 T
i, (TZ;%) -0

The Ergodicity condition can be satisfied if?

o
D el < oo,
7=0
T

A7, |’yOTO| < 00, because Y27 (7 < Y07 |[v-| < oo, then limp_ oo (% >, ¥-) = 0. Further-
more since » >~ 1 |v-| < co is monotone increasing and bounded, it converges. Therefore 7, — 0 by
Cauchy Criterion.
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or

v — 0.

1.3  White Noise Process

The basic elements in this Notes is the “white noise process” (without ARCH) until
ARCH model is introduced in Ch. 26.

Definition. | (White Noise)

A stochastic process {X;, t € T} is said to be a white-noise process if

(a.) E(X:)=0;

o ift=rT;

(b'> E(XtX‘r> = { 0, ift+#r.

Hence, a white-noise process is both time-homogeneous, in view of the fact that it
is a weakly-stationary process, and has no memory. In the case where {X;, t € T} is
also assumed to be normal the process is also strictly stationary.

Despite its simplicity (or because of it) the concept of a white-noise process plays
a very important role in the context of parametric time-series models to be considered

next, as a basic building block.
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2 Moving Average Process

2.1 The First-Order Moving Average Process

A first order moving average process is defined as follows.

Definition. | (MA(1) Process)
A stochastic process {Y;, t € T} is said to be a first order moving average process
(MA(1)) if it can be expressed in the form

}/;f :M+5t+95t717

where 1 and 6 are constants and ¢; is a white-noise process. |

Remember that a white noise process {g;, t € T} is that
E(5t) =0
and

E(ges) =

o2 whent=s
0 whent#s °

2.1.1 Condition for Stationarity
The expectation of Y; is given by
E(Y,) =E(p+e+0e1) =p+ E(e) + 0E(g-1) = p, forallt €T.
The variance of Y; is
Yo = E(Yt — M)Z = E(€t + 68,5_1>2
= E(€? + 2957&615—1 + 0253_1)
= 02+ 0+ 0%
= (1+6%0%
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The first autocovariance is

n=EY—p)(Yier—pn) = E(e+0e1)(er-1 + Oe12)
= E(eiei 1 + 0l | +0ci_ o+ 0%y 161_5)
= 0+60°+0+0

= 0o’
Higher autocovariances are all zero:
v =BV = )Yy —p) = Ele + 0gi) (e +02j1) =0 forj>1.

Since the mean and the autocovariances are not functions of time, an M A(1) pro-

cess is weakly-stationary regardless of the value of 6.

2.1.2 Conditions for Ergodicity

It is clear that the condition?®
D vyl = (1+6%) + 1007 < o0
=0

is satisfied. Thus the M A(1) process is ergodic for any finite value of 6.

2.1.3 The Dependence Structure

The jth autocorrelation of a weakly-stationary process is defined as its jth autoco-
variance divided by the variance

i

r; = —.

T %

By Cauchy-Schwarz inequality, we have |r;| <1 for all j.

From above results, the autocorrelation of an M A(1) process is

1, when 7 =0

o 0o? _ 6 h =1
Ti =\ +6502 — (v WHenj =

0, when j > 1

3See p.10 of Chapter 12.
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The autocorrelation 7; can be plotted as a function of j. This plot is usually called

autocogram.

Crample. | (Autocogram of M A(1) process) See the plots of p.50 of Hamilton. [ |

2.1.4 The Conditional First Two Moments of M A(1) process

Let F;_; denote the information set available at time ¢ — 1. The conditional mean of
ug is
EY|Fi-1) = FEleg+ 0gi1|Fi ]
= Ocgi1 + Elet|Fi]
= 01,  (since E(g]|Fi—1) =0)
and from this result, it implies that the conditional variance of Y; is
ol = Var(Yy|F,_1)
= E{lY,— EY|F1)P|Fiz1}
— BEIF)
2

= 0.

While the conditional mean of Y; depends upon the information at t — 1, however,
the conditional variance does not. Engle (1982) propose a class of models where the

variance does depend upon the past and argue for their usefulness in economics. See

Chapter 26.

2.2 The g-th Order Moving Average Process

A stochastic process {Y;, t € T} is said to be a moving average process of order

q (MA(q)) if it can be expressed in this form
}/:f = W +é& + 91575_1 + 92575—2 + ...+ gqgt—q

q
= UK + Z 9]'675—]"
=0
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where p, 0y, 01,05, ...,0, are constants with 0y = 1 and ¢, is a white-noise process.

2.2.1 Conditions for Stationarity

The expectation of Y; is given by

E(Y;)) = E(p+e+biei1+0c 0+ ...+ 0,c)
= p+E(e) +01E(ei1) + BE(e—2) + ... + 0,E(s1—y)
= pu+0+...+0
= pu, forallteT.

The variance of Y; is

Yo = E(th — ,LL)2 = E(gt + 91615,1 + 925,}72 + ...+ Hqé‘t,q)z
= 0’40707+ 030" + ...+ 0207
= (146746, +...+6)0°

because €;’s are uncorrelated.

For j < g, the jth autocovariance of M A(q) process is

vo= ElY— )Yy — )]
= El(er +bieio1+ Orgra+ ...+ 0451—4)
X(€ i+ Hlst—j—l + 925t—j—2 +...+86 5t—j—q)]
= E[Q 5t —j + 9J+191€t —j—1 + 6J+202€t —j—2 to quq—jef—q]'
Terms involving €’s at different dates have been dropped because their product has

expectation zero, and 6, is defined to be unity. For j > ¢, there are no ¢’s with

common dates in the definition of ~;, and so the expectation is zero. Thus,

L [9] + 9]'-1—191 + 9j+202 + ...+ 9q9q_j]02 fOT'j = 1, 2, ey
= 0 forj>q

Since the mean and the autocovariances are not functions of time, an M A(q) pro-

cess is weakly-stationary regardless of the value of 6;,i = 1,2, .., q.
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Crample.
For an M A(2) process,
Yo = (1+6;+063)0°
7= (61 + 6261)07,
2 = (0)0”
W = =m0 =

2.2.2 Conditions for Ergodicity

It is clear that the condition
>yl < oo
j=0

is satisfied. Thus the M A(q) process is ergodic for any finite value of 0;,i = 1,2, ... ¢q

2.2.3 The Dependence Structure

The autocorrelation function is zero after ¢ lags. See the plots of p.50.

2.3 The Infinite-Order Moving Average Process

A stochastic process {Y;, t € T} is said to be an infinite-order moving average

process (M A(c0)) if it can be expressed in this form

=pu+ Z Qi€i—j = b+ ©oet + P1E1-1 + Pagi—2 + ..... (14-1)
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where 11, ©g, 01, P2, ..., are constants with ¢y = 1 and &, is a white-noise process.*

2.3.1 Convergence of Infinite Series

Before we discuss the statistical properties of a M A(co) process, we need an under-
standing of the theory of convergence of an infinite series.

Let {a;} be a sequence of numbers. Then the formal sum
ap+ay+ax+---+a,+---

or
o
PL
j=0

is called an infinite series. The number ag, aq, ..., a,, ... are its terms, and the numbers
Sn = Y5 ay its partial sums.
If lim .S,, exists, its value S is called the sum of the series. In this case, we say

that the series converges and we write

o
SEZaj < 0.
=0

If lim S,, does not exists, we say that the series diverges.

Theotem.

Suppose that > a; converges. Them lima; = 0.

*Consider a M A(00) process Y; = Y- fju;—; where uy is a white noise with variance o7.. Without
loss of generality, if By # 0, we can simply define

Et—j = Pout—j,
QDJ = 6]6(;17 j:1727"'7

and obtain the representation

o0
Y, = 5 Yi€t—j,
3=0

where g = 1 and ¢, is uncorrelated (0, 8202) random variables.
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Proof.

Note first that, if lim S,, = S, then lim S, 1 = S. Now a; = S; — 5,1, so
lim a; = hm(S] — ijl) = lim Sj — lim Sj,1 =5-5=0. [ |

This does not say that, if lima; = 0, then Y a; converges.” Indeed this is not
correct. It says that convergence of ) a; implies a; — 0. Hence if a; does not tend to
zero, the series cannot converge. Thus, in a given series ) a;, we can examine lim a;.
However, if lim a; = 0, we have no information about convergence of divergence; but
if lima; # 0, either because it fail to exist or because it exists and has another value,

then > a; diverges.

Theotem. ((Cauchy Criterion)®
A necessary and sufficient condition that a series ) | a; converges is that, for each ¢ > 0,
there exist an N(s) for which’

]aj+1+aj+2+---+am]<g me>]>N [ |

Series of positive terms are interesting because the study of their convergence is

comparatively simple and can be used directly in M A(oo )process.

Definition.

A sequence {a;} is said to be square-summable if

[ee]

E a2 < oo
j )

Jj=0

whereas a sequence {a;} is said to be absolute-summable if

(e}

Z]aj]<oo. [ |

J=0

°For example, the series >~ (1/n) is diverge, but iths nth term goes to zero as n — 0.

6The Cauchy Criterion is an assertion about the behavior of the terms of a sequence. It says that
far out in the sequence all of them are close to each other.

"This implies that lim(a;j+1 + aj42 + ... + @) = 0 = lim(a;41) + lim(a;42) + ... 4+ lim(a,,) = 0,
which is satisfied from the theorem above that if ) a; converges, then lima; = 0.
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Absolute summability implies square-summability, but the converse does not hold.

Proof.
First we show that absolute summability implies square-summability. Suppose that

{a;}52, is absolutely summable. Then there exists an N < oo such that |a;[ < 1 for
all j > N® implying that o} < |a,| for all j > N. Then

Za a+2a5<2a —I—Z|aj|
j j=N 7=0

J=0 J
But Zjv_ol a3 is finite, since N is finite, and > 27 \ |a;| is finite, since {a;} is absolutely

=2

-1

I
=)

summable. Hence Z —0 @5 2 < oo. It can verified that the converse is not true by con-

sidering > °7, j77. [ |

Given two absolutely summable sequences {a;} and {b;}, then the sequence {a; + b;}
and {a;b;} are absolutely summable. It is also apparent that > |a;| + > [b;| < oc.

Broof.

D lag bl <Y (ol + [bs]) = Z|a]| +Z |b;] < o0, (14-2)
7=0 7=0 7=0

Z\%b | = Z Jallbs) <> (lagl + b])? (14-3)
7=0 7=0

Of course, 22 (laj| + [b])* < oo since (|a;| + [b;])? is the square of an absolutely

summable sequence. |

8Since by assumption {a;} is absolute summable, then |a;| — 0.
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The covolution of two absolutely summable sequence {a;} and {b;} defined by

o0
;=Y arbipr,
k=0

is absolutely summable.

Proof.

Dol <D0 lanllbyerl <D larl D 1bs| < oo (14-4)
=0 =0 k=0 k=0 s=0
|
If Y |a;| converges, so does ) a;. [

2.3.2 Is This a Well Defined Random Sequence?

We first show that the infinte sequence in (14-1) generate a well defined covariance-

stationary process provided that

o0
Z g0]2~ < Q.
j=0

If the coefficients of the M A(c0) in (14-1) is square-summable, then Z;‘.FZO p;E4—j con-

verges in mean square to some random variable Z; (Say) as T — oo.

Proof.
The Cauchy criterion states that Zfzo ©j€¢—j converges in mean square to some ran-

dom variable Z; as T' — oo if and only if,” for any ¢ > 0, there exists a suitably large

9Since here we require that Z; being a covariance-stationary process, we use the convergence in
mean square error of Cauchy criterion which guarantee the existence of second moments of Y;.
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N such that for any integer M > N

2

M N
E Y ey =) wEg| <s (14-5)
=0 =0

In words, once N terms have been summed, the difference between that sum and the
one obtained from summing to M is a random variable whose mean and variance are
both arbitrarily close to zero.

Now the left hand side of (14-5) is simply

Elomer—m + om-16—pm41 + oo + S0N+1€t—N—1]2

= (¢h T Phr o PR
M N

-l 14
§=0 §=0

But if 377 % < oo, then by the Cauchy criterion the right side of (14-6) may be made
as small as desired by a suitable large N. Thus the M A(c0) is well defined sequence
since the infinity series > 2 @je;—; converges in mean squares. So the M A(oo) process

Yi(= p+ Z;) is a well defined random variable with finite second moment. |

2.3.3 Check Stationarity

Assume the M A(oo) process to be with absolutely summable coefficients. Then the
expectation of Y; is given by

EY;) = Tlglgo E(p+ ot + p16-1 + p2gi-2 + . + PrE1T)

= K

and the variance of Y} is

% = E(Y;—p)?

= lim E(poe +¢reim + paeir + oo+ preer)’

Jim (95 + @7 + @5 + oo + o7)0”
< 00. (From the assumption of absolutely summable coef ficients)
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For j > 0, the autocovariance is

v, = E(Y,—p)(Yie; —p)
= (@00 + @jr101 + Pirape + Pipaps + ... )0

o0

_ 22:

= 0 Pj+k Pk
k=0

< > @ikl
k=0
< 00. (from (14 — 3))
Thus, E(Y;) and +; are both finite and independent of ¢t. The M A(co) process with

absolute-summable coefficients is weakly-stationary.

2.3.4 Check Ergodicity

Moreover, an M A(oc) process with absolutely summable coefficients has absolutely

summable autocovariances:

o0
> vl < 0.
=0

The absolute summability of the moving average coefficients implies that the process

is ergodic.

Broof.

From the results of (14-4) or recall the autocovariance of an M A(o0) is
v =0 Z Pj+kPk-
k=0
Then

’%‘| = o

Z Pj+kPk
k=0

oo

o’ ‘90j+k90k| )
k=0

IN
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and

Z il < o® Z Z |05k Pk]
=0

=0 k=0

= 0222 |2k Ikl

j=0 k=0
o0 o0

= UQZ’%’Z\%M|~
k=0 j=0

But there exists an M < oo such that » 77 ;] < M, and therefore > 2 [0 x| < M
for k =0,1,2,..., meaning that

D il < 0D oM < o*M? < oo
j=0 k=0

Hence, the M A(co) process with absolute-summable coefficients is ergodic. |
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3 Autoregressive Process

3.1 The First-Order Autoregressive Process

A stochastic process {Y;, t € T} is said to be a first order autoregressive process
(AR(1)) if it can be expressed in the form

Yi=c+ oY1+,

where ¢ and ¢ are constants and ¢; is a white-noise process.

3.1.1 Check Stationarity and Ergodicity
Write the AR(1) process in lag operator form:
Y, =c+ ¢LY; + ¢4,
then
(1—-0¢L)Y;, =c+ey.
In the case |¢| < 1, we know from the properties of lag operator in last chapter that
(1—¢L)y ' =14+ ¢L+ ¢*L* + ...,
thus

Y, = (c+e) - (1+oL+¢?L*+...)
= (c+oLe+ ¢*L*c+ ..)+ (g1 + ¢Le, + ¢*LPe, + ...)
= (c+oc+d*c+..)+ (e + per_1 + P*ero+...)

c
= ﬂ +er+ de1 + ¢Pea + ..

This can be viewed as an MA(co) process with ¢; given by ¢/. When |¢| < 1, this
AR(1) is an M A(o0) with absolute summable coefficient:

ol = D16 = - < oo
Llol=2 1% =1

Therefore, the AR(1) process is stationary and ergodic provided that |¢| < 1.
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3.1.2 The Dependence Structure

The expectation of Y, is given by!°

C
EY;) = E (W et dleg + Pea + )
C

1-¢

I
=

The variance of Y; is
Y% = B, —p)?
= Ee+¢'ern + %0+ ....)°
= (1+¢*+¢*+..)0?

1
- <1 —¢2) -

For j > 0, the auto-covariance is

v o= B —p) (Y — )
= E(Et ‘I’ ¢15t_1 + ¢25t_2 + ‘I’ ¢j€t—j + ¢j+1€t_j_1 ‘I— ¢j+25t_j_2 + )
X(Eft_j + ¢15t—j—1 + ¢25t—j—2 + )
— (¢J + ¢j+2¢j+4 + “‘)02
= ¢+ ¢*+¢*+..)07

¢j
- (1 —¢2> -

= ¢V-1

It follows that the autocorrelation function would be

Ty = ﬁ :¢]7
Yo

which follows a pattern of geometric decay as the plot on p.50 of Hamilton.

0T herefore, it is noted that while j is the mean of a M A process, the constant ¢ is not the mean
of a AR process.
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3.1.3 An Alternative Way to Calculate the Moments of a Stationary AR(1) Process

Assume that the AR(1) process under consideration is weakly-stationary, then taking

expectation on both side we have
B(Y;) = ¢+ 0B(Yi-1) + E(e1).
Since by assumption that the process is stationary,

E(Y) = B(Yi) = .

Therefore,
p=c+ou+0
or
o
N— 1_¢a

reproducing the earlier result.

To find a higher moments of Y; in an analogous manner, we rewrite this AR(1) as
Vi=ul—9¢)+¢Yi1+e
or
(Y ) = G(Yir — 1) + 21 (14-7)
For j > 0, multiply (Y;—; — u) on both side of (14-7) and take expectation:
v o= ElYi— )Yy — p)]

= GE[(Yier — )Yy — w)] + E[(Yiej — p)ed]
= ¢7j-1+ E[(Yie; — p)ed).

Next we consider the term E[(Y,_; — p)e;]. When j = 0, multiply &, on both side

of (14-7) and take expectation we obtain:
E((Y: — p)ed] = E[p(Yio1 — pled + E(e7).

Recall from (14-7) that Y;_; — p is a linear function of €,_1,&;_o, ... :
Vi1 — p=¢1+ @2+ ¢z + ...

we have

Elp(Yio1 — p)e] = 0.
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Therefore,
B(Y; — p)e = E() = 0%,

and when j > 0, it is obvious that E(Y;_; — u)e; = 0.

Therefore we the results that
Yo = ¢n+o* forj=0
Y1 = gb’YOa fOTj - 17

and

Vo= V-1, forj>1.

That is

Yo = ¢py0+ 0’

0.2

1— 2’

we need first moment () to solve .

3.2 The Second-Order Autoregressive Process

A stochastic process {Y;, t € T} is said to be a second order autoregressive process
(AR(2)) if it can be expressed in the form

Yi=c+ oY1+ p2Yi o+ <y,

where ¢, ¢; and ¢, are constants and ¢; is a white-noise process.

3.2.1 Check Stationarity and Ergodicity

Write the AR(2) process in lag operator form:

Y = c+ ¢ LY; + ¢ L?Y; + &,
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then
(1 - (]51[/ - ¢2L2)n =C+ &.

In the case that all the roots of the polynomial (1 — ¢1L — ¢ L?) = 0 lies outside the
unit circle, there exist a polynomial ¢(L) such that

o(L) = (1 —¢1L— L)' = o+ 1L+ 2 L* + ...,
with

(o]
> il < 0.
7=0

Proof.
From the results of last chapter, ¢; here is equal to cl)\{ + 62)\%, where ¢; + ¢ = 1 and

A1, g are the reciprocal of the roots of the polynomial (1 —¢; L — ¢ L?) = 0. Therefore,
A1 and Ag lie inside the unit circle. See Hamilton, p. 33, [2.3.23].

D leil = Dl + e
j=0 j=0
< > e+ e
j=0 j=0
< el DO IMI el DN
Jj=0 =0
< 00. [ |

Thus
Y, = (c+e) - (1+oL+pl?+...)
= (cH+@iLe+ aLl%c+..) + (e + o1 Le, + o LPey + ...)
(c+ pic+ @ac+...) + (e + pres_1 + Pagi_g + ...)
= c(l+@1+@5+..)+ (et + pr&-1 + Pagr_a + ...)

c
m + &+ 1641 + P22+ ..y

® 2018 by Prof. Chingnun Lee 20 Ins.of Economics,NSYSU,Taiwan




Ch.14 ARMA Process 3 AUTOREGRESSIVE PROCESS

where the constant term is from the fact that substituting 1 into the identity
(1 — leL — ¢2L2)_1 =1 + ngL + (,02[/2 + ...

This can be viewed as an M A(oo) process with absolute summable coefficient
Therefore, the AR(2) process is stationary and ergodic provided that all the roots
of (1 —¢1L — ¢*L?) = 0 lies outside the unit circle.

3.2.2 The Dependence Structure

Assume that the AR(2) process under consideration is weakly-stationary, then taking

expectation on both side we have
E(Y:) =c+ o1 E(Yiq) + 2 E(Y; o) + E(gy).
Since by assumption that the process is stationary,
E(Y;) = E(Yi1) = B(Yi2) = .
Therefore,

p=c+ orpt + +dap + 0

or
B c
ST
To find the higher moment of Y; in an analogous manner, we rewrite this AR(2) as
Yi=p(l = 1= d2) + ¢V + +02Y 0 + &
or

(Y = p) = o1 (Yier — ) + 2 (Yo — 1) + &4 (14-8)
For j > 0, multiply (Y;—; — u) on both side of (14-8) and take expectation:
o= Bl =)V — p)]

= i E[(Yir — W) (Yeey — )] + 02 E[(Yiez — ) (Yiey — p)] + E[(Yi—; — p)ed]
G1Vj—1 + Pavi—a + E[(Yij — p)ed].
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Next we consider the term E[(Y;—; — p)e]. When j = 0, multiply &; on both side
of (14-8) and take expectation:

E((Y: = wed] = Elp1(Yir — ped] + Elga(Yia — p)ei] + E(e7).
Recall that Y;_; — p is a linear function of £;,_1,&;_9, ..., we have
El¢1(Yio1 — plee =0
and obviously E[¢9(Y;—o2 — p)e:] = 0, also. Therefore,
E(Y; - p)ey = B(e}) = 0%,

and when j > 0, it is obvious that E(Y;_; — p)e, = 0.
Finally we have the results that

Yo = O+ Gaye + 02, forj=0;
o= ¢+ ¢, forjg=1,

Yo = o171+ davo,  forj =2, and
Vi = $1vj-1 + dayj2,  for j > 2.

That is
¢
no= _1¢270, (14-9)
_ ¢ 14-10
V2 1 _¢2’Yo+¢270 (14-10)
and therefore
olt D20} 9 9
= + + + 0o
il Fer e
or
(1 — ¢)0?

Yo = :
T+ a)[(1- ) - 4
Substituting this result to (14-9) and (14-10), we obtains v, and ~,. Beside 7, we need

first two moments (y; and 7) to solve vo.
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3.3 The pth-Order Autoregressive Process

A stochastic process {Y;, t € T} is said to be a pth order autoregressive process (AR(p))

if it can be expressed in the form
Yi=c+ oY1+ Yo+ ...+, + ey,

where ¢, ¢1, ¢2,..., and ¢, are constants and ¢, is a white-noise process.

3.3.1 Check Stationarity and Ergodicity
Write the AR(p) process in lag operator form:
Y =c+ ¢1LY; + o LY, + ... + ¢, LPY; + &4,
then
(1= ¢1L — ¢oL2 — ... — $,IP)Y, = ¢ + 2.

In the case all the roots of the polynomial (1 —¢;L—¢2L? —...— ¢, L?) = 0 lies outside
the unit circle, we know from the properties of lag operator in last chapter that there

exist a polynomial ¢(L) such that
o(L) = (1= ¢ L — ¢l — ... — ¢, LP) ' = 0o+ o1 L + oo L7 + ...,

with

oo
Z || < oo.
j=0

Thus

Y, = (c+e) - (1+oiL+pl?+...)

= (c+piLe+polPc+ ..) + (e + p1Les + oo L% + ...)
(c+ 1+ pac+ ...) + (s + p16¢-1 + Y2E1—2 + ...)

= c¢(l+v1+pa+...)+ (60 +pr&-1 + pacr2+ ...)

c
+ &+ P11 + P22+ ..y
l—91—¢2— ... — ¢

where the constant term is from the fact that substituting 1 into the identity

(1= 1L — ¢ol? — ... — ¢, L") ' =1+ @1 L+ o L” + ...
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This can be viewed as an MA(oo) process with absolute summable coefficient
Therefore, the AR(p) process is stationary and ergodic provided that all the roots
of (1 —¢1L—¢*L* — ... — ¢,LP) = 0 lies outside the unit circle.

3.3.2 The Dependence Structure

Assume that the AR(p) process under consideration is weakly-stationary, then taking

expectation on both side we have

E(Y)) =c+ g EY1) + 92E(Yi2) + .. + ¢ E(Yi-p) + E(er).
Since by assumption that the process is stationary,

B(Y,) = B(Yi 1) = E(Yy2) = .. = E(Yy,) = .
Therefore,

p=c+orpp+ dop+ ...+ ¢p+0

or
c
H = :
l=gr—=¢2— ... =
To find the higher moment of Y; in an analogous manner, we rewrite this AR(p) as
Yi=p(l=¢1—d2— ... —¢p) +01Yi1 + Yo+ ... +0,Yip + &4
or
(Ve =) = 01(Yier — ) + 2(Yia — p) + .. + p(Yep — ) + 20 (14-11)

For j > 0, multiply (Y;—; — p) on both side of (11) and take expectation:
o= BV = p) (Y — )]
= 0 EYia — )Yy — )] + 02 B[(Yiz — ) (Yeej — )] + ...
FOpE(Yiep — 1) (Vi — )] + El(YViey — p)es
= ¢1Y-1+ 2Yj—2 -+ GpYip + El(Yiey — pedd.

Next we consider the term E[(Y,_; — p)e;]. When j = 0, multiply &; on both side
of (14-11) and take expectation:

E(Y, — pley = Blp1(Yior — p)ed] + Elgo(Yiea — pled] + . + Elop(Yiep — pled] + (7).
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Recall that Y; ;1 — p is a linear function of £;,_1,&;_9, ... :, we have
E[¢p1(Yiy — p)e] =0

and obviously, E[¢;(Yi—; — p)e) =0, i =2, ..., p, also. Therefore,
E(Y; — w)e = B(e) = o

and when j > 0, it is obvious that E(Y;_; — pu)e, = 0.
Finally we have the results that

Yo = G171+ Gaya + A+ Oy + 02, for j =0;

and

Vi = 011+ QY2+ GV, forj=1,2, ... (14-12)
Divided (14-12) by 7y produce the Yule — Waker equation:

r; = $1rjo1+ Qarj_a+ .+ Gprjp,  forj=1,2, .. (14-13)

Intuitively, beside 7y, we need first p moments (1, v2,...,7,) to solve 7.

Crevcise.

Use the same realization of White noise €’s (set 02 = 1) to simulate and plot the fol-

lowing Gaussian process Y; (set Yo = E(Y;)) in a sample of size T=100:
1). Vi =¢y,
). Vi =¢e;+0.8¢41,
). YVi=¢e;— 0.8,
). Yi=2+¢ + 0851,
). Vi =¢e+ 1.25¢4 4,
6). Y, =0.8Y, 1 +¢&y,
)
)
)
0

7). Y, = —0.8Y,1 + 2,
8). Y, =2+0.8Y,, +e,
9). Y, = 1.25Y;_, + &,

10%). Y, = & + 1.258,_y, where Var(¢,) = 0.64.

Finally, please also plot their sample and population autocograms. |
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4 Autoregressive Moving Average Process

The dependence structure described by a M A(q) process is truncated after the first ¢
period, meanwhile it is geometrically decaying in an AR(p) process, depending on it
AR coefficients. A richer flexibility in the dependence structure in the first few lags
model is called for to meet the real phenomena. An ARM A(p,q) model meets this
requirement.

A stochastic process {Y;, t € T} is said to be a autoregressive moving average

process of order (p,q) (ARM A(p, q)) if it can be expressed in the form
Yi=ct+dYii+ @Yo+ ... +0,Yp + e+ 0161 + bogo+ ... + 045,

where ¢, ¢1, ¢2,...,¢,, and 04, ..., 0, are constants and ¢; is a white-noise process.

4.1 Check Stationarity and Ergodicity
Write the ARM A(p, q) process in lag operator form:
(1= 1L — ¢ol? — ... — $, L)Y =c+ (1 + 0L+ 0, L% + ... + 0,LY)e,.

In the case all the roots of the polynomial (1 —¢;L—¢2L? —...— ¢, LP?) = 0 lies outside
the unit circle, we know from the properties of lag operator in last chapter that there

exist a polynomial ¢(L) such that

(L) = (1=¢1L —¢oL? — ... — ¢ L7) (1 + 61 L+ 0L + ... + 6,L9)
= o+ 1L+ @l + ...,

with

o0
> sl < 0.
=0

Thus
}/t - :u + @(L>€t7

where

(L) = (14+61L+ 60,07 + ...+ 6,L9)

(1= 1L — ol — .. — ,L7)’
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such that » 72 ;| < oo and p = T ———

This can be viewed as an M A(oco) process with absolute summable coefficient There-
fore, the ARM A(p, q) process is stationary and ergodic provided that all the roots of
(1—¢1 L— ¢ L? —...— ¢, L) = 0 lies outside the unit circle. Thus, the stationarity of an
ARM A(p, q) process depends entirely on the autoregressive parameters (¢y, ¢a, ..., ¢,)

and not on the moving average parameters (61,6, ..., 6,).

4.2 The Dependence Structure

Assume that the ARM A(p, q) process under consideration is weakly-stationary, then

taking expectation on both side we have

EY, = c+ g E(Ysm1)+ 0E(Yia) + ... + ¢ E(Yi—,) +
E(er) + 01E(et—1) + ... + 0,E(e1—g).

Since by assumption that the process is stationary,
E(Y,)) =E(Yi1)=EYi2)=..=EY,,) =
Therefore,

p=c+ o+ dopi+ ...+, +0+04 .. +0

or
c
= .
l—¢1—¢a— ... — &y
To find the higher moment of Y; in an analogous manner, we rewrite this ARM A(p, q)
as
Vi = pl=¢1—da— .= ¢p) + Y1+ Yo+ ..+ Y +
&+ 918,5_1 + ...+ qut—q
or

Yi—n) = o1(Vier =) + 92(Yeo — p) + oo + 9p(Yep — 1) +
&t + 915,5,1 + ...+ qutfq- (14—14)
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For j > 0, multiply Y;_; — p on both side of (14-14) and take expectation:

o= B[ = ) (Ve — )
= 0E[(Yier — ) (Yo — )] + 02E[(Yi2 — p1)(Yeey — )] + ...
6, El(Yiey — 1) (Yiey — )] + El(Yiey — e + 0 E[(Yiey — 1) (e01)]
e+ 0BV — w)(ey)]
= O1Y-1+ QY2+ o+ OpVip
+E[(Yij — ped + O1E[(Yej — p)(Ee-)] + oo + 0,E[(Yiej — 1) (0-4)].

It is obvious that the term E[(Y;—; —p)e] + 01 E[(Yiej — 1) (e1-1)] + ... + 0, E[(Yi—; —
1)(rg)] = 0 when j > g.
Therefore we the results that

Vo= Ot 2t OV forj=q+1q+2,.. (14-15)

Thus, after ¢ lags the autocovariance function «; follow the pth order difference
equation governed by the autoregressive coefficients. However, 14-(15) does not hold
for j < g, owing to correlation between 6;e,_; and Y;_;. Hence, an ARM A(p, q) process
will have more complicated autocovariance function from lag 1 through ¢ than would
the corresponding AR(p) process.

4.3 Common Factor

Therefore is a potential for redundant parameterizations with ARM A process. Con-

sider factoring the lag polynomial operator in an ARM A(p, q) process:

We assume that |\;| < 1 for all ¢, so that the process is covariance-stationary. If the
autoregressive operator (1 — ¢ L — ¢oL? — ... — ¢, LP) and the moving average operator
(14 6:L+6,L? — ... 4+ 6,L9) have any roots in common, say, \; = n; for some i and 7,
then both side of (14-16) can be divided by (1 — A\;L) to obtain

p q

1=2Ye= [ a=mes

k=1,k#i =1,k#j
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or
(1 =L — ¢5L> — .. — ¢ L)Y, = (L4 07 L+ 05L° — ...+ 6;_, L9 ey,
(14—17)
where
(1 =i — @5 L7 — ... — ¢ LP7Y)
and

(L4 67L+63L% — -+ 6;_ L")
=@ =mL)(A =noL)..(L = nja L)(L = mjaL) -~ (1 = ngL).

The stationary ARM A(p, q) process satisfying (14-16) is clearly identical to the sta-
tionary ARMA(p — 1,q — 1) process satisfying (14-17) which is more parsimonious in

parameters.
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5 The Autocovariance-Generating Function

If {Y;,t € T} is a stationary process with autocovariance function {v;}32 ., then

we can summarize the autocovariance through a scalar-valued function called the

autocovariance — generating function which is defined by

Proposition.
If two different process share the same autocovariance-generating function, then the

two processes exhibit the identical sequence of autocovariance. |

As an example of calculating an autocovariance-generating function, consider the

M A(1) process. Its autocovariance-generating function is:
gy(2) = [00%]z71 +[(1+6%)0%)2° + [0o?)z' = o - [0z + (14 67) + 02]
= o*(1+02)(1+0271), (14-18)

The form of expression (14-18) suggests that for the M A(q) process, its autocovariance-

generating function might be calculated as
gy (2) = 2 (1 4+ 012+ 022° + ..+ 0,20 (1 + 0127+ 0272+ .+ 0,279). (14-19)

This conjecture can be verified by carrying out the multiplication in (14-19) and

collecting terms by power of z:
0?(1+ 012+ 022 + ..+ 0,201+ 0127 + 0,272 + .+ 0,279
= (04)27 4 (041 + 0,01) 29" + (042 + 04101 + 0,05) 27>
Fooi (014 0200 + 0300 + ...+ 0,0,1)2" + (1467 4+ 65 + ... + 67)2°
+ (01 + 0201 + 0305 + ... + 0,0, 1)z 4 .+ (0,) 27

The coefficient on 27 is indeed the jth autocovariance in an M A(q) process.
The method for finding gy (z) extends to the M A(oo) case. If

Yi=p+p(L)e
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with

o(L) = po+ 1L + 4,02L2 + ...

and

Z ’90]’ < 00,

j=0
then

gy (2) = p(2)p(z 7).
Crample. |

An AR(1) process in the M A(co) form is
Vi —p=(1-0¢L) e,

is in this form with (L) = 1/(1 — ¢L). Thus, the autocovariance-generating function
of AR(1) can be calculated as

0.2

v = T =) -

Crample.
The autocovariance-generating function of an ARM A(p, q) process is therefore be writ-
ten as
o2(1+ 0124 0222 + ...+ 0,291+ 0127 + 0272 + ..+ 0,279)
gv(z) = u

(L= g1z — 22 — .. = @p2P) (1L — 127t — o272 — .. — ¢p27P)
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5.1 Filters

Sometimes the data are filtered, or treated in a particular way before they are an-
alyzed, and we would like to summarize the effect of this treatment on the autoco-
variance. This calculation is particularly simple using the autocovariance-generating
function. For example, suppose that the original data, Y; were generated from an

M A(1) process:
Y; = (14 0L)e,
which has autocovariance-generating function
gv(z) =0 (1+62)(1+06="71).
Let the data be analyzed is X; which is taking first difference of Y;:
X, =Y, Y, =(1-L)Y,=(1—L)(1+0L).

Regarding this X; as an MA(2) process, then it has the autocovariance-generating

function as

gx(z) = o* - [(1=2)(1+02)][(1 -2 ")(1+027")]
= 0% [1=2)(1 =2 )1 +02)(1+027")]
= [(1=2)(1=="gv(2).

Therefore, applying the filter (1—L) to Y; thus resulting in multiplying its autocovariance-
generating function by (1 — 2)(1 — 271).
This principle readily generalizes. Let the original data series be Y; and it is filtered

according to

X, = h(L)Y,,
with
h(L)= > hil7, and Y |h| < oo.
j=—00 j=—00

The autocovariance-generating function of X; can according be calculated as

gx(2) = h(2)h(z" gy (2).
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6 Invertibility

6.1 Invertibility for the M A(1) Process

Consider an M A(1) process,

V= (1+0L), (14-20)
with
o2, fort=s
Eleies) = { 0, otherwise.

Provided that |#] < 1 both side of (14-20) can be multiplied by (1+6L)~* to obtain
(1—0L+60*L* —PL> + ..)(Y; — p) = &4, (14-21)

which could be viewed as an AR(co) representation. If a moving average representation
such as (14-20) can be rewritten as an AR(co) representation such as (14-21) simply by
inverting the moving average operator (1+6L), then the moving average representation
is said to be invertible. For an M A(1) process, invertibility requires |0| < 1; if || > 1,
then the infinite sequence in (14-21) would not be well defined.!!

Let us investigate what invertibility means in terms of the first and second moments.
Recall that the MA(1) process (14-20) has mean p and autocovariance-generating

function
gy (2) = o*(1+02)(1 + 0271).

Now consider a seemingly different M A(1) process,

Y, — = (14 6L)&, (14-22)
with &; a white noise sequence having different variance

B(3,) = { o5 Jort=s

Y
0, otherwise.

Note that Y; has the same mean (u) as Y;. Its autocovariance-generating function is
gy (2) = X1 +02)(1+ 6271

= SO DE)HE 2 + )0}
= (@) +07) 07,

UWhen 0] > 1, (1+0L) " = (b =07 L7 (1 - 07 L + 072072 — 97303 4 ...)
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Suppose that the parameters of (14-22), (6, 52) are related to those of (14-20) by

the following equations:

6 = 01, (14-23)
o? = 6% (14-24)

Then the autocovariance-generating function gy (z) and gy (z) would be the same,
meaning that Y; and Y, would have identical first and second moments.

Notice from (14-23) that if || < 1, then |A] > 1. In other words, for any invertible
M A(1) representation (14-20), we have found a non-invertible M A(1) representation
(14-22) with the same first and second moments as the invertible representation. Con-
versely, given any non-invertible representation with |§| > 1, there exist an invertible
representation with § = (1/6) that has the same first and second moments as the
noninvertible representation.

Not only do the invertible and noninvertible representation share the same moments,
either representation (14-20) or (14-22) could be used as an equally valid description
of any given M A(1) process.

Suppose a computer generated an infinite sequence of Yys according to the nonin-
vertible M A(1) process:

E_ﬂ:(l—l—é[’)ét

with |9~| > 1. In what sense could these same data be associated with a invertible
M A(1) representation 7

Imagine calculating a series {g;};°__ defined by
e = (1+00L)7'(Y, —p) (14-25)
= (Vi—p) =0V — ) + 0 (Yio — ) = 0° (Vs — ) + o,
where 6 = (1/6).

The autocovariance-generating function of ¢; is

g-(2) = (1+02)7"1+02""""g5(2)
= (1402 (140" G (1+0"2)1+6127
= (),
where the last equality follows from the fact that 6~1 = 6. Since the autocovariance-

generating function is a constant, it follows that ¢; is a white noise process with variance

o? = 520%
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Multiplying both side of (14-25) by (1 + 6L),
Y/t—#: (1+6L)e

is a perfectly valid invertible M A(1) representation of data that were actually generated
from the noninvertible representation (14-22).

The converse proposition is also true—suppose that the data were generated really
from (14-20) with |#| < 1, an invertible representation. Then there exists a noninvert-
ible representation with 6 = 1 /0 that describes these data with equal validity.

Either the invertible or the noninvertible representation could characterize any given
data equally well, though there is a practical reason for preferring the invertible repre-
sentation. To find the value of € for date ¢ associated with the invertible representation
as in (14-20), we need to know current and past value of Y. By contrast, to find the
value of ¢ for date t associated with the noninvertible representation, we need to use
all of the future value of Y. If the intention is to calculate the current value of ¢; using

real-world data, it will be feasible only to work with the invertible representation.

6.2 Invertibility for the M A(q) Process

Consider the M A(q) process,

Vi—p=1+60L+0,L*+ ... +0,L9

a2, fort=s
E(ees) = { 0,  otherwise.

Provided that all the roots of
(1+6,L+0,L*+ ...+ 6,L9) =0

lie outside the unit circle, this M A(q) process can be written as an AR(co) simply by
inverting the M A operator,

(1+mL+ 772L2 + )Y —p) = e,
where
(IL+mL+mnl?+..)=1+60L+0,L*+ .. +6,L9) "

where this is the case, the M A(q) representation is invertible.
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Shei-Pa National Park.

End of this Chapter

® 2018 by Prof. Chingnun Lee 36 Ins.of Economics,NSYSU,Taiwan



