
Ch. 14 Stationary ARMA Process
(March 12, 2018)

A general linear stochastic model is described that suppose a time series to be

generated by a linear aggregation of random shock. For practical representation it is

desirable to employ models that use parameters parsimoniously. Parsimony may of-

ten be achieved by representation of the linear process in terms of a small number of

autoregressive and moving average terms. This chapter introduces univariate ARMA

process, which provide a very useful class of models for describing the dynamics of an

individual time series. The ARMA model is based on a principle in philosophy called

reductionism. The reductionism1 believe that anything can be understood once upon

it is decomposed to its basic elements. Throughout this chapter we assume the time

index T to be T = {...− 2,−1, 0, 1, 2, ...}.

1 Preliminary

1.1 Restricting the Time-Heterogeneity of a Stochastic Process

In this notes, we use the concept of weak stationarity to meet the requirement of re-

stricting the time-heterogeneity of a stochastic process.

Definition. (Weakly Stationary)

1Thales (636-546 BC) was thought to be the first one to use reductionism in his writing.
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A stochastic process {Xt, t ∈ T } is said to be (weakly) stationary if

E(Xt) = µ for all t;

γt,s = E[(Xt − µ)(Xt−s − µ)] = γ|t−(t−s)| = γ|s|, ∀t, t− s ∈ T .

�

These suggest that weakly stationarity for {Xt, t ∈ T } implies that its mean and

variance σ2
t = γt,t = γ0 are constant and free of t and its autocovariance depends on

the interval |t− (t− s)|; not t and t− s. Therefore, γs = γ−s.

1.2 Restricting the Memory of a Stochastic Process

In this notes, we use the concept of ergodicity to meet the requirement of restricting

the memory of a stochastic process.

In the context of weakly-stationary stochastic process, asymptotic uncorrelatedness

can be defined more intuitively in terms of the temporal covariance as follows:

Cov(Xt, Xt+τ ) = γτ → 0 as τ →∞.

A stronger form of such memory restriction is so called ergodicity property. Ergod-

icity can be viewed as a condition which ensures that the memory of the process as

measured by γτ “weakens by averaging overtime”.

Definition. (ergodicity)

A weakly-stationary stochastic process {Xt, t ∈ T } is said to be ergodic if

lim
T→∞

(
1

T

T∑
τ=0

γτ

)
= 0. �

The Ergodicity condition can be satisfied if2

∞∑
τ=0

|γτ | <∞,

2If
∑∞
τ=0 |γτ | < ∞, because

∑∞
τ=0 γτ <

∑∞
τ=0 |γτ | < ∞, then limT→∞( 1

T

∑T
τ=0 γτ ) = 0. Further-

more since
∑∞
τ=0 |γτ | < ∞ is monotone increasing and bounded, it converges. Therefore γτ → 0 by

Cauchy Criterion.
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or

γτ → 0.

1.3 White Noise Process

The basic elements in this Notes is the “white noise process” (without ARCH) until

ARCH model is introduced in Ch. 26.

Definition. (White Noise)

A stochastic process {Xt, t ∈ T } is said to be a white-noise process if

(a.) E(Xt) = 0;

(b.) E(XtXτ ) =

{
σ2, if t = τ ;
0, if t 6= τ.

�

Hence, a white-noise process is both time-homogeneous, in view of the fact that it

is a weakly-stationary process, and has no memory. In the case where {Xt, t ∈ T } is

also assumed to be normal the process is also strictly stationary.

Despite its simplicity (or because of it) the concept of a white-noise process plays

a very important role in the context of parametric time-series models to be considered

next, as a basic building block.
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2 Moving Average Process

2.1 The First-Order Moving Average Process

A first order moving average process is defined as follows.

Definition. (MA(1) Process)

A stochastic process {Yt, t ∈ T } is said to be a first order moving average process

(MA(1)) if it can be expressed in the form

Yt = µ+ εt + θεt−1,

where µ and θ are constants and εt is a white-noise process. �

Remember that a white noise process {εt, t ∈ T } is that

E(εt) = 0

and

E(εtεs) =

{
σ2 when t = s
0 when t 6= s

.

2.1.1 Condition for Stationarity

The expectation of Yt is given by

E(Yt) = E(µ+ εt + θεt−1) = µ+ E(εt) + θE(εt−1) = µ, for all t ∈ T .

The variance of Yt is

γ0 = E(Yt − µ)2 = E(εt + θεt−1)
2

= E(ε2t + 2θεtεt−1 + θ2ε2t−1)

= σ2 + 0 + θ2σ2

= (1 + θ2)σ2.
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The first autocovariance is

γ1 = E(Yt − µ)(Yt−1 − µ) = E(εt + θεt−1)(εt−1 + θεt−2)

= E(εtεt−1 + θε2t−1 + θεtεt−2 + θ2εt−1εt−2)

= 0 + θσ2 + 0 + 0

= θσ2.

Higher autocovariances are all zero:

γj = E(Yt − µ)(Yt−j − µ) = E(εt + θεt−1)(εt−j + θεt−j−1) = 0 for j > 1.

Since the mean and the autocovariances are not functions of time, an MA(1) pro-

cess is weakly-stationary regardless of the value of θ.

2.1.2 Conditions for Ergodicity

It is clear that the condition3

∞∑
j=0

|γj| = (1 + θ2) + |θσ2| <∞

is satisfied. Thus the MA(1) process is ergodic for any finite value of θ.

2.1.3 The Dependence Structure

The jth autocorrelation of a weakly-stationary process is defined as its jth autoco-

variance divided by the variance

rj =
γj
γ0
.

By Cauchy-Schwarz inequality, we have |rj| ≤ 1 for all j.

From above results, the autocorrelation of an MA(1) process is

rj =


1, when j = 0

θσ2

(1+θ2)σ2 = θ
(1+θ2)

, when j = 1

0, when j > 1

.

3See p.10 of Chapter 12.
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The autocorrelation rj can be plotted as a function of j. This plot is usually called

autocogram.

Example. (Autocogram of MA(1) process) See the plots of p.50 of Hamilton. �

2.1.4 The Conditional First Two Moments of MA(1) process

Let Ft−1 denote the information set available at time t − 1. The conditional mean of

ut is

E(Yt|Ft−1) = E[εt + θεt−1|Ft−1]

= θεt−1 + E[εt|Ft−1]

= θεt−1, (since E(εt|Ft−1) = 0)

and from this result, it implies that the conditional variance of Yt is

σ2
t = V ar(Yt|Ft−1)

= E{[Yt − E(Yt|Ft−1)]2|Ft−1}

= E(ε2t |Ft−1)

= σ2.

While the conditional mean of Yt depends upon the information at t − 1, however,

the conditional variance does not. Engle (1982) propose a class of models where the

variance does depend upon the past and argue for their usefulness in economics. See

Chapter 26.

2.2 The q-th Order Moving Average Process

A stochastic process {Yt, t ∈ T } is said to be a moving average process of order

q (MA(q)) if it can be expressed in this form

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q

= µ+

q∑
j=0

θjεt−j,
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where µ, θ0, θ1, θ2, ..., θq are constants with θ0 = 1 and εt is a white-noise process.

2.2.1 Conditions for Stationarity

The expectation of Yt is given by

E(Yt) = E(µ+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q)

= µ+ E(εt) + θ1E(εt−1) + θ2E(εt−2) + ...+ θqE(εt−q)

= µ+ 0 + ...+ 0

= µ, for all t ∈ T .

The variance of Yt is

γ0 = E(Yt − µ)2 = E(εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q)
2

= σ2 + θ21σ
2 + θ22σ

2 + ....+ θ2qσ
2

= (1 + θ21 + θ22 + ...+ θ2q)σ
2,

because εt’s are uncorrelated.

For j ≤ q, the jth autocovariance of MA(q) process is

γj = E[(Yt − µ)(Yt−j − µ)]

= E[(εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q)

×(εt−j + θ1εt−j−1 + θ2εt−j−2 + ...+ θqεt−j−q)]

= E[θjε
2
t−j + θj+1θ1ε

2
t−j−1 + θj+2θ2ε

2
t−j−2 + ....+ θqθq−jε

2
t−q].

Terms involving ε’s at different dates have been dropped because their product has

expectation zero, and θ0 is defined to be unity. For j > q, there are no ε’s with

common dates in the definition of γj, and so the expectation is zero. Thus,

γj =

{
[θj + θj+1θ1 + θj+2θ2 + ....+ θqθq−j]σ

2 for j = 1, 2, ..., q
0 for j > q

.

Since the mean and the autocovariances are not functions of time, an MA(q) pro-

cess is weakly-stationary regardless of the value of θi, i = 1, 2, .., q.
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Example.
For an MA(2) process,

γ0 = (1 + θ21 + θ22)σ
2,

γ1 = (θ1 + θ2θ1)σ
2,

γ2 = (θ2)σ
2,

γ3 = γ4 = · · · = 0. �

2.2.2 Conditions for Ergodicity

It is clear that the condition

∞∑
j=0

|γj| <∞

is satisfied. Thus the MA(q) process is ergodic for any finite value of θi, i = 1, 2, .., q.

2.2.3 The Dependence Structure

The autocorrelation function is zero after q lags. See the plots of p.50.

2.3 The Infinite-Order Moving Average Process

A stochastic process {Yt, t ∈ T } is said to be an infinite-order moving average

process (MA(∞)) if it can be expressed in this form

Yt = µ+
∞∑
j=0

ϕjεt−j = µ+ ϕ0εt + ϕ1εt−1 + ϕ2εt−2 + ..... (14-1)
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where µ, ϕ0, ϕ1, ϕ2, ..., are constants with ϕ0 = 1 and εt is a white-noise process.4

2.3.1 Convergence of Infinite Series

Before we discuss the statistical properties of a MA(∞) process, we need an under-

standing of the theory of convergence of an infinite series.

Let {aj} be a sequence of numbers. Then the formal sum

a0 + a1 + a2 + · · ·+ an + · · ·

or

∞∑
j=0

aj

is called an infinite series . The number a0, a1, ..., an, ... are its terms, and the numbers

Sn ≡
∑n

j=0 aj its partial sums.

If limSn exists, its value S is called the sum of the series. In this case, we say

that the series converges and we write

S ≡
∞∑
j=0

aj <∞.

If limSn does not exists, we say that the series diverges.

Theorem.
Suppose that

∑∞
j=0 aj converges. Them lim aj = 0.

4Consider a MA(∞) process Yt =
∑∞
j=0 βjut−j where ut is a white noise with variance σ2

u. Without
loss of generality, if β0 6= 0, we can simply define

εt−j = β0ut−j ,

ϕj = βjβ
−1
0 , j = 1, 2, · · · ,

and obtain the representation

Yt =

∞∑
j=0

ϕjεt−j ,

where ϕ0 = 1 and εt is uncorrelated (0, β2
0σ

2
u) random variables.
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Proof.
Note first that, if limSn = S, then limSn−1 = S. Now aj = Sj − Sj−1, so

lim aj = lim(Sj − Sj−1) = limSj − limSj−1 = S − S = 0. �

This does not say that, if lim aj = 0, then
∑
aj converges.5 Indeed this is not

correct. It says that convergence of
∑
aj implies aj → 0. Hence if aj does not tend to

zero, the series cannot converge. Thus, in a given series
∑
aj, we can examine lim aj.

However, if lim aj = 0, we have no information about convergence of divergence; but

if lim aj 6= 0, either because it fail to exist or because it exists and has another value,

then
∑
aj diverges.

Theorem. (Cauchy Criterion)6

A necessary and sufficient condition that a series
∑
aj converges is that, for each ς > 0,

there exist an N(ς) for which7

|aj+1 + aj+2 + · · ·+ am| < ς if m > j > N. �

Series of positive terms are interesting because the study of their convergence is

comparatively simple and can be used directly in MA(∞ )process.

Definition.
A sequence {aj} is said to be square-summable if

∞∑
j=0

a2j <∞,

whereas a sequence {aj} is said to be absolute-summable if

∞∑
j=0

|aj| <∞. �

5For example, the series
∑∞
n=1(1/n) is diverge, but iths nth term goes to zero as n→ 0.

6The Cauchy Criterion is an assertion about the behavior of the terms of a sequence. It says that
far out in the sequence all of them are close to each other.

7This implies that lim(aj+1 + aj+2 + ... + am) = 0 = lim(aj+1) + lim(aj+2) + ... + lim(am) = 0,
which is satisfied from the theorem above that if

∑
aj converges, then lim aj = 0.
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Result.
Absolute summability implies square-summability, but the converse does not hold.

Proof.
First we show that absolute summability implies square-summability. Suppose that

{aj}∞j=0 is absolutely summable. Then there exists an N < ∞ such that |aj| < 1 for

all j ≥ N ,8 implying that a2j < |aj| for all j ≥ N . Then

∞∑
j=0

a2j =
N−1∑
j=0

a2j +
∞∑
j=N

a2j <

N−1∑
j=0

a2j +
∞∑
j=N

|aj|.

But
∑N−1

j=0 a
2
j is finite, since N is finite, and

∑∞
j=N |aj| is finite, since {aj} is absolutely

summable. Hence
∑∞

j=0 a
2
j < ∞. It can verified that the converse is not true by con-

sidering
∑∞

j=1 j
−2. �

Result.
Given two absolutely summable sequences {aj} and {bj}, then the sequence {aj + bj}
and {ajbj} are absolutely summable. It is also apparent that

∑
|aj|+

∑
|bj| <∞.

Proof.

∞∑
j=0

|aj + bj| ≤
∞∑
j=0

(|aj|+ |bj|) =
∞∑
j=0

|aj|+
∞∑
j=0

|bj| <∞, (14-2)

∞∑
j=0

|ajbj| =
∞∑
j=0

(|aj||bj|) ≤
∞∑
j=0

(|aj|+ |bj|)2 <∞. (14-3)

Of course,
∑∞

j=0(|aj| + |bj|)2 < ∞ since (|aj| + |bj|)2 is the square of an absolutely

summable sequence. �

8Since by assumption {aj} is absolute summable, then |aj | → 0.
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Result.
The covolution of two absolutely summable sequence {aj} and {bj} defined by

cj =
∞∑
k=0

akbj+k,

is absolutely summable.

Proof.

∞∑
j=0

|cj| ≤
∞∑
j=0

∞∑
k=0

|ak||bj+k| ≤
∞∑
k=0

|ak|
∞∑
s=0

|bs| <∞. (14-4)

�

Result.
If
∑
|aj| converges, so does

∑
aj. �

2.3.2 Is This a Well Defined Random Sequence?

We first show that the infinte sequence in (14-1) generate a well defined covariance-

stationary process provided that
∞∑
j=0

ϕ2
j <∞.

Result.
If the coefficients of the MA(∞) in (14-1) is square-summable, then

∑T
j=0 ϕjεt−j con-

verges in mean square to some random variable Zt (Say) as T →∞.

Proof.
The Cauchy criterion states that

∑T
j=0 ϕjεt−j converges in mean square to some ran-

dom variable Zt as T →∞ if and only if,9 for any ς > 0, there exists a suitably large

9Since here we require that Zt being a covariance-stationary process, we use the convergence in
mean square error of Cauchy criterion which guarantee the existence of second moments of Yt.
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N such that for any integer M > N

E

[
M∑
j=0

ϕjεt−j −
N∑
j=0

ϕjεt−j

]2
< ς. (14-5)

In words, once N terms have been summed, the difference between that sum and the

one obtained from summing to M is a random variable whose mean and variance are

both arbitrarily close to zero.

Now the left hand side of (14-5) is simply

E [ϕMεt−M + ϕM−1εt−M+1 + ....+ ϕN+1εt−N−1]
2

= (ϕ2
M + ϕ2

M−1 + ...+ ϕ2
N+1)σ

2

=

[
M∑
j=0

ϕ2
j −

N∑
j=0

ϕ2
j

]
σ2. (14-6)

But if
∑∞

j=0 ϕ
2
j <∞, then by the Cauchy criterion the right side of (14-6) may be made

as small as desired by a suitable large N . Thus the MA(∞) is well defined sequence

since the infinity series
∑∞

j=0 ϕjεt−j converges in mean squares. So the MA(∞) process

Yt(= µ+ Zt) is a well defined random variable with finite second moment. �

2.3.3 Check Stationarity

Assume the MA(∞) process to be with absolutely summable coefficients. Then the

expectation of Yt is given by

E(Yt) = lim
T→∞

E(µ+ ϕ0εt + ϕ1εt−1 + ϕ2εt−2 + ....+ ϕT εt−T )

= µ,

and the variance of Yt is

γ0 = E(Yt − µ)2

= lim
T→∞

E(ϕ0εt + ϕ1εt−1 + ϕ2εt−2 + ....+ ϕT εt−T )2

= lim
T→∞

(ϕ2
0 + ϕ2

1 + ϕ2
2 + ....+ ϕ2

T )σ2

< ∞. (From the assumption of absolutely summable coefficients)
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For j > 0, the autocovariance is

γj = E(Yt − µ)(Yt−j − µ)

= (ϕjϕ0 + ϕj+1ϕ1 + ϕj+2ϕ2 + ϕj+3ϕ3 + ....)σ2

= σ2

∞∑
k=0

ϕj+kϕk

≤ σ2

∞∑
k=0

|ϕj+kϕk|

< ∞. (from (14− 3))

Thus, E(Yt) and γj are both finite and independent of t. The MA(∞) process with

absolute-summable coefficients is weakly-stationary.

2.3.4 Check Ergodicity

Moreover, an MA(∞) process with absolutely summable coefficients has absolutely

summable autocovariances:
∞∑
j=0

|γj| <∞.

Result.
The absolute summability of the moving average coefficients implies that the process

is ergodic.

Proof.
From the results of (14-4) or recall the autocovariance of an MA(∞) is

γj = σ2

∞∑
k=0

ϕj+kϕk.

Then

|γj| = σ2

∣∣∣∣∣
∞∑
k=0

ϕj+kϕk

∣∣∣∣∣
≤ σ2

∞∑
k=0

|ϕj+kϕk| ,
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and

∞∑
j=0

|γj| ≤ σ2

∞∑
j=0

∞∑
k=0

|ϕj+kϕk|

= σ2

∞∑
j=0

∞∑
k=0

|ϕj+k||ϕk|

= σ2

∞∑
k=0

|ϕk|
∞∑
j=0

|ϕj+k|.

But there exists an M <∞ such that
∑∞

j=0 |ϕj| < M , and therefore
∑∞

j=0 |ϕj+k| < M

for k = 0, 1, 2, ..., meaning that

∞∑
j=0

|γj| < σ2

∞∑
k=0

|ϕk|M < σ2M2 <∞.

Hence, the MA(∞) process with absolute-summable coefficients is ergodic. �
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3 Autoregressive Process

3.1 The First-Order Autoregressive Process

A stochastic process {Yt, t ∈ T } is said to be a first order autoregressive process

(AR(1)) if it can be expressed in the form

Yt = c+ φYt−1 + εt,

where c and φ are constants and εt is a white-noise process.

3.1.1 Check Stationarity and Ergodicity

Write the AR(1) process in lag operator form:

Yt = c+ φLYt + εt,

then

(1− φL)Yt = c+ εt.

In the case |φ| < 1, we know from the properties of lag operator in last chapter that

(1− φL)−1 = 1 + φL+ φ2L2 + ....,

thus

Yt = (c+ εt) · (1 + φL+ φ2L2 + ....)

= (c+ φLc+ φ2L2c+ ...) + (εt + φLεt + φ2L2εt + ...)

= (c+ φc+ φ2c+ ...) + (εt + φεt−1 + φ2εt−2 + ...)

=
c

1− φ
+ εt + φεt−1 + φ2εt−2 + ...

This can be viewed as an MA(∞) process with ϕj given by φj. When |φ| < 1, this

AR(1) is an MA(∞) with absolute summable coefficient:

∞∑
j=0

|ϕj| =
∞∑
j=0

|φ|j =
1

1− |φ|
<∞.

Therefore, the AR(1) process is stationary and ergodic provided that |φ| < 1.
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3.1.2 The Dependence Structure

The expectation of Yt is given by10

E(Yt) = E

(
c

1− φ
+ εt + φ1εt−1 + φ2εt−2 + ...

)
=

c

1− φ
= µ.

The variance of Yt is

γ0 = E(Yt − µ)2

= E(εt + φ1εt−1 + φ2εt−2 + ....)2

= (1 + φ2 + φ4 + ....)σ2

=

(
1

1− φ2

)
σ2.

For j > 0, the auto-covariance is

γj = E(Yt − µ)(Yt−j − µ)

= E(εt + φ1εt−1 + φ2εt−2 + ....+ φjεt−j + φj+1εt−j−1 + φj+2εt−j−2 + ....)

×(εt−j + φ1εt−j−1 + φ2εt−j−2 + ....)

= (φj + φj+2φj+4 + ...)σ2

= φj(1 + φ2 + φ4 + ....)σ2

=

(
φj

1− φ2

)
σ2

= φγj−1.

It follows that the autocorrelation function would be

rj =
γj
γ0

= φj,

which follows a pattern of geometric decay as the plot on p.50 of Hamilton.

10Therefore, it is noted that while µ is the mean of a MA process, the constant c is not the mean
of a AR process.
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3.1.3 An Alternative Way to Calculate the Moments of a Stationary AR(1) Process

Assume that the AR(1) process under consideration is weakly-stationary, then taking

expectation on both side we have

E(Yt) = c+ φE(Yt−1) + E(εt).

Since by assumption that the process is stationary,

E(Yt) = E(Yt−1) = µ.

Therefore,

µ = c+ φµ+ 0

or

µ =
c

1− φ
,

reproducing the earlier result.

To find a higher moments of Yt in an analogous manner, we rewrite this AR(1) as

Yt = µ(1− φ) + φYt−1 + εt

or

(Yt − µ) = φ(Yt−1 − µ) + εt. (14-7)

For j ≥ 0, multiply (Yt−j − µ) on both side of (14-7) and take expectation:

γj = E[(Yt − µ)(Yt−j − µ)]

= φE[(Yt−1 − µ)(Yt−j − µ)] + E[(Yt−j − µ)εt]

= φγj−1 + E[(Yt−j − µ)εt].

Next we consider the term E[(Yt−j − µ)εt]. When j = 0, multiply εt on both side

of (14-7) and take expectation we obtain:

E[(Yt − µ)εt] = E[φ(Yt−1 − µ)εt] + E(ε2t ).

Recall from (14-7) that Yt−1 − µ is a linear function of εt−1, εt−2, ... :

Yt−1 − µ = εt−1 + φεt−2 + φ2εt−3 + .....

we have

E[φ(Yt−1 − µ)εt] = 0.
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Therefore,

E(Yt − µ)εt = E(ε2t ) = σ2,

and when j > 0, it is obvious that E(Yt−j − µ)εt = 0.

Therefore we the results that

γ0 = φγ1 + σ2, for j = 0

γ1 = φγ0, for j = 1,

and

γj = φγj−1, for j > 1.

That is

γ0 = φφγ0 + σ2

=
σ2

1− φ2
,

we need first moment (γ1) to solve γ0.

3.2 The Second-Order Autoregressive Process

A stochastic process {Yt, t ∈ T } is said to be a second order autoregressive process

(AR(2)) if it can be expressed in the form

Yt = c+ φ1Yt−1 + φ2Yt−2 + εt,

where c, φ1 and φ2 are constants and εt is a white-noise process.

3.2.1 Check Stationarity and Ergodicity

Write the AR(2) process in lag operator form:

Yt = c+ φ1LYt + φ2L
2Yt + εt,
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then

(1− φ1L− φ2L
2)Yt = c+ εt.

Result.
In the case that all the roots of the polynomial (1 − φ1L − φ2L

2) = 0 lies outside the

unit circle, there exist a polynomial ϕ(L) such that

ϕ(L) = (1− φ1L− φ2L
2)−1 = ϕ0 + ϕ1L+ ϕ2L

2 + ....,

with
∞∑
j=0

|ϕj| <∞.

Proof.
From the results of last chapter, ϕj here is equal to c1λ

j
1 + c2λ

j
2, where c1 + c2 = 1 and

λ1, λ2 are the reciprocal of the roots of the polynomial (1−φ1L−φ2L
2) = 0. Therefore,

λ1 and λ2 lie inside the unit circle. See Hamilton, p. 33, [2.3.23].
∞∑
j=0

|ϕj| =
∞∑
j=0

|c1λj1 + c2λ
j
2|

≤
∞∑
j=0

|c1λj1|+ |
∞∑
j=0

|c2λj2|

≤ |c1|
∞∑
j=0

|λj1|+ |c2||
∞∑
j=0

|λj2|

< ∞. �

Thus

Yt = (c+ εt) · (1 + ϕ1L+ ϕ2L
2 + ....)

= (c+ ϕ1Lc+ ϕ2
2L

2c+ ...) + (εt + ϕ1Lεt + ϕ2L
2εt + ...)

= (c+ ϕ1c+ ϕ2
2c+ ...) + (εt + ϕ1εt−1 + ϕ2εt−2 + ...)

= c(1 + ϕ1 + ϕ2
2 + ...) + (εt + ϕ1εt−1 + ϕ2εt−2 + ...)

=
c

1− φ1 − φ2

+ εt + ϕ1εt−1 + ϕ2εt−2 + ...,
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where the constant term is from the fact that substituting 1 into the identity

(1− φ1L− φ2L
2)−1 = 1 + ϕ1L+ ϕ2L

2 + ....

This can be viewed as an MA(∞) process with absolute summable coefficient

Therefore, the AR(2) process is stationary and ergodic provided that all the roots

of (1− φ1L− φ2L2) = 0 lies outside the unit circle.

3.2.2 The Dependence Structure

Assume that the AR(2) process under consideration is weakly-stationary, then taking

expectation on both side we have

E(Yt) = c+ φ1E(Yt−1) + φ2E(Yt−2) + E(εt).

Since by assumption that the process is stationary,

E(Yt) = E(Yt−1) = E(Yt−2) = µ.

Therefore,

µ = c+ φ1µ+ +φ2µ+ 0

or

µ =
c

1− φ1 − φ2

.

To find the higher moment of Yt in an analogous manner, we rewrite this AR(2) as

Yt = µ(1− φ1 − φ2) + φ1Yt−1 + +φ2Yt−2 + εt

or

(Yt − µ) = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + εt. (14-8)

For j ≥ 0, multiply (Yt−j − µ) on both side of (14-8) and take expectation:

γj = E[(Yt − µ)(Yt−j − µ)]

= φ1E[(Yt−1 − µ)(Yt−j − µ)] + φ2E[(Yt−2 − µ)(Yt−j − µ)] + E[(Yt−j − µ)εt]

= φ1γj−1 + φ2γj−2 + E[(Yt−j − µ)εt].
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Next we consider the term E[(Yt−j − µ)εt]. When j = 0, multiply εt on both side

of (14-8) and take expectation:

E[(Yt − µ)εt] = E[φ1(Yt−1 − µ)εt] + E[φ2(Yt−2 − µ)εt] + E(ε2t ).

Recall that Yt−1 − µ is a linear function of εt−1, εt−2, ..., we have

E[φ1(Yt−1 − µ)εt] = 0

and obviously E[φ2(Yt−2 − µ)εt] = 0, also. Therefore,

E(Yt − µ)εt = E(ε2t ) = σ2,

and when j > 0, it is obvious that E(Yt−j − µ)εt = 0.

Finally we have the results that

γ0 = φ1γ1 + φ2γ2 + σ2, for j = 0;

γ1 = φ1γ0 + φ2γ1, for j = 1,

γ2 = φ1γ1 + φ2γ0, for j = 2, and

γj = φ1γj−1 + φ2γj−2, for j > 2.

That is

γ1 =
φ1

1− φ2

γ0, (14-9)

γ2 =
φ2
1

1− φ2

γ0 + φ2γ0 (14-10)

and therefore

γ0 =

[
φ2
1

1− φ2

+
φ2φ

2
1

1− φ2

+ φ2
2

]
γ0 + σ2

or

γ0 =
(1− φ2)σ

2

(1 + φ2)[(1− φ2)2 − φ2
1]
.

Substituting this result to (14-9) and (14-10), we obtains γ1 and γ2. Beside γ0, we need

first two moments (γ1 and γ2) to solve γ0.
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3.3 The pth-Order Autoregressive Process

A stochastic process {Yt, t ∈ T } is said to be a pth order autoregressive process (AR(p))

if it can be expressed in the form

Yt = c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt,

where c, φ1, φ2,..., and φp are constants and εt is a white-noise process.

3.3.1 Check Stationarity and Ergodicity

Write the AR(p) process in lag operator form:

Yt = c+ φ1LYt + φ2L
2Yt + ...+ φpL

pYt + εt,

then

(1− φ1L− φ2L
2 − ...− φpLp)Yt = c+ εt.

In the case all the roots of the polynomial (1−φ1L−φ2L
2− ...−φpLp) = 0 lies outside

the unit circle, we know from the properties of lag operator in last chapter that there

exist a polynomial ϕ(L) such that

ϕ(L) = (1− φ1L− φ2L
2 − ...− φpLp)−1 = ϕ0 + ϕ1L+ ϕ2L

2 + ....,

with
∞∑
j=0

|ϕj| <∞.

Thus

Yt = (c+ εt) · (1 + ϕ1L+ ϕ2L
2 + ....)

= (c+ ϕ1Lc+ ϕ2L
2c+ ...) + (εt + ϕ1Lεt + ϕ2L

2εt + ...)

= (c+ ϕ1c+ ϕ2c+ ...) + (εt + ϕ1εt−1 + ϕ2εt−2 + ...)

= c(1 + ϕ1 + ϕ2 + ...) + (εt + ϕ1εt−1 + ϕ2εt−2 + ...)

=
c

1− φ1 − φ2 − ...− φp
+ εt + ϕ1εt−1 + ϕ2εt−2 + ...,

where the constant term is from the fact that substituting 1 into the identity

(1− φ1L− φ2L
2 − ...− φpLp)−1 = 1 + ϕ1L+ ϕ2L

2 + ....
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This can be viewed as an MA(∞) process with absolute summable coefficient

Therefore, the AR(p) process is stationary and ergodic provided that all the roots

of (1− φ1L− φ2L2 − ...− φpLp) = 0 lies outside the unit circle.

3.3.2 The Dependence Structure

Assume that the AR(p) process under consideration is weakly-stationary, then taking

expectation on both side we have

E(Yt) = c+ φ1E(Yt−1) + φ2E(Yt−2) + ...+ φpE(Yt−p) + E(εt).

Since by assumption that the process is stationary,

E(Yt) = E(Yt−1) = E(Yt−2) = ... = E(Yt−p) = µ.

Therefore,

µ = c+ φ1µ+ φ2µ+ ...+ φp + 0

or

µ =
c

1− φ1 − φ2 − ...− φp
.

To find the higher moment of Yt in an analogous manner, we rewrite this AR(p) as

Yt = µ(1− φ1 − φ2 − ...− φp) + φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt

or

(Yt − µ) = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + ...+ φp(Yt−p − µ) + εt. (14-11)

For j ≥ 0, multiply (Yt−j − µ) on both side of (11) and take expectation:

γj = E[(Yt − µ)(Yt−j − µ)]

= φ1E[(Yt−1 − µ)(Yt−j − µ)] + φ2E[(Yt−2 − µ)(Yt−j − µ)] + ...

+φpE[(Yt−p − µ)(Yt−j − µ)] + E[(Yt−j − µ)εt]

= φ1γj−1 + φ2γj−2 + ...+ φpγj−p + E[(Yt−j − µ)εt].

Next we consider the term E[(Yt−j − µ)εt]. When j = 0, multiply εt on both side

of (14-11) and take expectation:

E(Yt − µ)εt = E[φ1(Yt−1 − µ)εt] + E[φ2(Yt−2 − µ)εt] + ...+ E[φp(Yt−p − µ)εt] + E(ε2t ).
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Recall that Yt−1 − µ is a linear function of εt−1, εt−2, ... :, we have

E[φ1(Yt−1 − µ)εt] = 0

and obviously, E[φi(Yt−i − µ)εt] = 0, i = 2, ..., p, also. Therefore,

E(Yt − µ)εt = E(ε2t ) = σ2,

and when j > 0, it is obvious that E(Yt−j − µ)εt = 0.

Finally we have the results that

γ0 = φ1γ1 + φ2γ2 + +...+ φpγp + σ2, for j = 0;

and

γj = φ1γj−1 + φ2γj−2 + ...+ φpγj−p, for j = 1, 2, ... (14-12)

Divided (14-12) by γ0 produce the Y ule−Waker equation:

rj = φ1rj−1 + φ2rj−2 + ...+ φprj−p, for j = 1, 2, ... (14-13)

Intuitively, beside γ0, we need first p moments (γ1, γ2,...,γp) to solve γ0.

Exercise.
Use the same realization of White noise ε’s (set σ2

ε = 1) to simulate and plot the fol-

lowing Gaussian process Yt (set Y0 = E(Yt)) in a sample of size T=100:

(1). Yt = εt,

(2). Yt = εt + 0.8εt−1,

(3). Yt = εt − 0.8εt−1,

(4). Yt = 2 + εt + 0.8εt−1,

(5). Yt = εt + 1.25εt−1,

(6). Yt = 0.8Yt−1 + εt,

(7). Yt = −0.8Yt−1 + εt,

(8). Yt = 2 + 0.8Yt−1 + εt,

(9). Yt = 1.25Yt−1 + εt,

(10∗). Ỹt = ε̃t + 1.25ε̃t−1, where V ar(ε̃t) = 0.64.

Finally, please also plot their sample and population autocograms. �
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4 Autoregressive Moving Average Process

The dependence structure described by a MA(q) process is truncated after the first q

period, meanwhile it is geometrically decaying in an AR(p) process, depending on it

AR coefficients. A richer flexibility in the dependence structure in the first few lags

model is called for to meet the real phenomena. An ARMA(p, q) model meets this

requirement.

A stochastic process {Yt, t ∈ T } is said to be a autoregressive moving average

process of order (p, q) (ARMA(p, q)) if it can be expressed in the form

Yt = c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q,

where c, φ1, φ2,...,φp, and θ1, ..., θq are constants and εt is a white-noise process.

4.1 Check Stationarity and Ergodicity

Write the ARMA(p, q) process in lag operator form:

(1− φ1L− φ2L
2 − ...− φpLp)Yt = c+ (1 + θ1L+ θ2L

2 + ...+ θqL
q)εt.

In the case all the roots of the polynomial (1−φ1L−φ2L
2− ...−φpLp) = 0 lies outside

the unit circle, we know from the properties of lag operator in last chapter that there

exist a polynomial ϕ(L) such that

ϕ(L) = (1− φ1L− φ2L
2 − ...− φpLp)−1(1 + θ1L+ θ2L

2 + ...+ θqL
q)

= ϕ0 + ϕ1L+ ϕ2L
2 + ....,

with
∞∑
j=0

|ϕj| <∞.

Thus

Yt = µ+ ϕ(L)εt,

where

ϕ(L) =
(1 + θ1L+ θ2L

2 + ...+ θqL
q)

(1− φ1L− φ2L2 − ...− φpLp)
,
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such that
∑∞

j=0 |ϕj| <∞ and µ = c
1−φ1−φ2−...−φp .

This can be viewed as anMA(∞) process with absolute summable coefficient There-

fore, the ARMA(p, q) process is stationary and ergodic provided that all the roots of

(1−φ1L−φ2L
2− ...−φpLp) = 0 lies outside the unit circle. Thus, the stationarity of an

ARMA(p, q) process depends entirely on the autoregressive parameters (φ1, φ2, ..., φp)

and not on the moving average parameters (θ1, θ2, ..., θq).

4.2 The Dependence Structure

Assume that the ARMA(p, q) process under consideration is weakly-stationary, then

taking expectation on both side we have

E(Yt = c+ φ1E(Yt−1) + φ2E(Yt−2) + ...+ φpE(Yt−p) +

E(εt) + θ1E(εt−1) + ...+ θqE(εt−q).

Since by assumption that the process is stationary,

E(Yt) = E(Yt−1) = E(Yt−2) = ... = E(Yt−p) = µ.

Therefore,

µ = c+ φ1µ+ φ2µ+ ...+ φp + 0 + 0 + ...+ 0

or

µ =
c

1− φ1 − φ2 − ...− φp
.

To find the higher moment of Yt in an analogous manner, we rewrite thisARMA(p, q)

as

Yt = µ(1− φ1 − φ2 − ...− φp) + φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p +

εt + θ1εt−1 + ...+ θqεt−q

or

(Yt − µ) = φ1(Yt−1 − µ) + φ2(Yt−2 − µ) + ...+ φp(Yt−p − µ) +

εt + θ1εt−1 + ...+ θqεt−q. (14-14)
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For j ≥ 0, multiply Yt−j − µ on both side of (14-14) and take expectation:

γj = E[(Yt − µ)(Yt−j − µ)]

= φ1E[(Yt−1 − µ)(Yt−j − µ)] + φ2E[(Yt−2 − µ)(Yt−j − µ)] + ...

+φpE[(Yt−p − µ)(Yt−j − µ)] + E[(Yt−j − µ)εt] + θ1E[(Yt−j − µ)(εt−1)]

+....+ θqE[(Yt−j − µ)(εt−q)]

= φ1γj−1 + φ2γj−2 + ...+ φpγj−p

+E[(Yt−j − µ)εt] + θ1E[(Yt−j − µ)(εt−1)] + ....+ θqE[(Yt−j − µ)(εt−q)].

It is obvious that the term E[(Yt−j−µ)εt]+θ1E[(Yt−j−µ)(εt−1)]+ ....+θqE[(Yt−j−
µ)(εt−q)] = 0 when j > q.

Therefore we the results that

γj = φ1γj−1 + φ2γj−2 + ...+ φpγj−p, for j = q + 1, q + 2, ... (14-15)

.

Thus, after q lags the autocovariance function γj follow the pth order difference

equation governed by the autoregressive coefficients. However, 14-(15) does not hold

for j ≤ q, owing to correlation between θjεt−j and Yt−j. Hence, an ARMA(p, q) process

will have more complicated autocovariance function from lag 1 through q than would

the corresponding AR(p) process.

4.3 Common Factor

Therefore is a potential for redundant parameterizations with ARMA process. Con-

sider factoring the lag polynomial operator in an ARMA(p, q) process:

(1− λ1L)(1− λ2L)...(1− λpL)Yt = (1− η1L)(1− η2L)....(1− ηqL)εt. (14-16)

We assume that |λi| < 1 for all i, so that the process is covariance-stationary. If the

autoregressive operator (1−φ1L−φ2L
2− ...−φpLp) and the moving average operator

(1 + θ1L+ θ2L
2 − ...+ θqL

q) have any roots in common, say, λi = ηj for some i and j,

then both side of (14-16) can be divided by (1− λiL) to obtain

p∏
k=1,k 6=i

(1− λk)Yt =

q∏
k=1,k 6=j

(1− ηk)εt,
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or

(1− φ∗1L− φ∗2L2 − ...− φ∗p−1Lp−1)Yt = (1 + θ∗1L+ θ∗2L
2 − ...+ θ∗q−1L

q−1)εt,

(14-17)

where

(1− φ∗1L− φ∗2L2 − ...− φ∗p−1Lp−1)

= (1− λ1L)(1− λ2L) · · · (1− λi−1L)(1− λi+1L) · · · (1− λpL),

and

(1 + θ∗1L+ θ∗2L
2 − · · ·+ θ∗q−1L

q−1)

= (1− η1L)(1− η2L)...(1− ηj−1L)(1− ηj+1L) · · · (1− ηqL).

The stationary ARMA(p, q) process satisfying (14-16) is clearly identical to the sta-

tionary ARMA(p− 1, q − 1) process satisfying (14-17) which is more parsimonious in

parameters.
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5 The Autocovariance-Generating Function

If {Yt, t ∈ T } is a stationary process with autocovariance function {γj}∞j=−∞, then

we can summarize the autocovariance through a scalar-valued function called the

autocovariance− generating function which is defined by

gY (z) =
∞∑

j=−∞

γjz
j.

Proposition.
If two different process share the same autocovariance-generating function, then the

two processes exhibit the identical sequence of autocovariance. �

As an example of calculating an autocovariance-generating function, consider the

MA(1) process. Its autocovariance-generating function is:

gY (z) = [θσ2]z−1 + [(1 + θ2)σ2]z0 + [θσ2]z1 = σ2 · [θz−1 + (1 + θ2) + θz]

= σ2(1 + θz)(1 + θz−1). (14-18)

The form of expression (14-18) suggests that for theMA(q) process, its autocovariance-

generating function might be calculated as

gY (z) = σ2(1 + θ1z + θ2z
2 + ...+ θqz

q)(1 + θ1z
−1 + θ2z

−2 + ...+ θqz
−q). (14-19)

This conjecture can be verified by carrying out the multiplication in (14-19) and

collecting terms by power of z:

σ2(1 + θ1z + θ2z
2 + ...+ θqz

q)(1 + θ1z
−1 + θ2z

−2 + ...+ θqz
−q)

= (θq)z
q + (θq−1 + θqθ1)z

q−1 + (θq−2 + θq−1θ1 + θqθ2)z
q−2

+....+ (θ1 + θ2θ1 + θ3θ2 + ....+ θqθq−1)z
1 + (1 + θ21 + θ22 + ...+ θ2q)z

0

+(θ1 + θ2θ1 + θ3θ2 + ...+ θqθq−1)z
−1 + ....+ (θq)z

−q.

The coefficient on zj is indeed the jth autocovariance in an MA(q) process.

The method for finding gY (z) extends to the MA(∞) case. If

Yt = µ+ ϕ(L)εt
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with

ϕ(L) = ϕ0 + ϕ1L+ ϕ2L
2 + ...

and

∞∑
j=0

|ϕj| <∞,

then

gY (z) = σ2ϕ(z)ϕ(z−1).

Example. :

An AR(1) process in the MA(∞) form is

Yt − µ = (1− φL)−1εt,

is in this form with ϕ(L) = 1/(1− φL). Thus, the autocovariance-generating function

of AR(1) can be calculated as

gY (z) =
σ2

(1− φz)(1− φz−1)
. �

Example.
The autocovariance-generating function of an ARMA(p, q) process is therefore be writ-

ten as

gY (z) =
σ2(1 + θ1z + θ2z

2 + ...+ θqz
q)(1 + θ1z

−1 + θ2z
−2 + ...+ θqz

−q)

(1− φ1z − φ2z2 − ...− φpzp)(1− φ1z−1 − φ2z−2 − ...− φpz−p)
. �
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5.1 Filters

Sometimes the data are filtered, or treated in a particular way before they are an-

alyzed, and we would like to summarize the effect of this treatment on the autoco-

variance. This calculation is particularly simple using the autocovariance-generating

function. For example, suppose that the original data, Yt were generated from an

MA(1) process:

Yt = (1 + θL)εt,

which has autocovariance-generating function

gY (z) = σ2 · (1 + θz)(1 + θz−1).

Let the data be analyzed is Xt which is taking first difference of Yt:

Xt = Yt − Yt−1 = (1− L)Yt = (1− L)(1 + θL)εt.

Regarding this Xt as an MA(2) process, then it has the autocovariance-generating

function as

gX(z) = σ2 · [(1− z)(1 + θz)][(1− z−1)(1 + θz−1)]

= σ2 · [(1− z)(1− z−1)][(1 + θz)(1 + θz−1)]

= [(1− z)(1− z−1)]gY (z).

Therefore, applying the filter (1−L) to Yt thus resulting in multiplying its autocovariance-

generating function by (1− z)(1− z−1).
This principle readily generalizes. Let the original data series be Yt and it is filtered

according to

Xt = h(L)Yt,

with

h(L) =
∞∑

j=−∞

hjL
j, and

∞∑
j=−∞

|hj| <∞.

The autocovariance-generating function of Xt can according be calculated as

gX(z) = h(z)h(z−1)gY (z).
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6 Invertibility

6.1 Invertibility for the MA(1) Process

Consider an MA(1) process,

Yt − µ = (1 + θL)εt, (14-20)

with

E(εtεs) =

{
σ2, for t = s
0, otherwise.

Provided that |θ| < 1 both side of (14-20) can be multiplied by (1+θL)−1 to obtain

(1− θL+ θ2L2 − θ3L3 + ...)(Yt − µ) = εt, (14-21)

which could be viewed as an AR(∞) representation. If a moving average representation

such as (14-20) can be rewritten as an AR(∞) representation such as (14-21) simply by

inverting the moving average operator (1+θL), then the moving average representation

is said to be invertible. For an MA(1) process, invertibility requires |θ| < 1; if |θ| ≥ 1,

then the infinite sequence in (14-21) would not be well defined.11

Let us investigate what invertibility means in terms of the first and second moments.

Recall that the MA(1) process (14-20) has mean µ and autocovariance-generating

function

gY (z) = σ2(1 + θz)(1 + θz−1).

Now consider a seemingly different MA(1) process,

Ỹt − µ = (1 + θ̃L)ε̃t, (14-22)

with ε̃t a white noise sequence having different variance

E(ε̃tε̃s) =

{
σ̃2, for t = s
0, otherwise.

Note that Ỹt has the same mean (µ) as Yt. Its autocovariance-generating function is

gỸ (z) = σ̃2(1 + θ̃z)(1 + θ̃z−1)

= σ̃2{(θ̃−1z−1 + 1)(θ̃z)}{(θ̃−1z + 1)(θ̃z−1)}

= (σ̃2θ̃2)(1 + θ̃−1z)(1 + θ̃−1z−1).

11When |θ| ≥ 1, (1 + θL)−1 = θ−1L−1

1+θ−1L−1 = θ−1L−1(1− θ−1L−1 + θ−2L−2 − θ−3L−3 + ......)
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Suppose that the parameters of (14-22), (θ̃, σ̃2) are related to those of (14-20) by

the following equations:

θ = θ̃−1, (14-23)

σ2 = θ̃2σ̃2. (14-24)

Then the autocovariance-generating function gY (z) and gỸ (z) would be the same,

meaning that Yt and Ỹt would have identical first and second moments.

Notice from (14-23) that if |θ| < 1, then |θ̃| > 1. In other words, for any invertible

MA(1) representation (14-20), we have found a non-invertible MA(1) representation

(14-22) with the same first and second moments as the invertible representation. Con-

versely, given any non-invertible representation with |θ̃| > 1, there exist an invertible

representation with θ = (1/θ̃) that has the same first and second moments as the

noninvertible representation.

Not only do the invertible and noninvertible representation share the same moments,

either representation (14-20) or (14-22) could be used as an equally valid description

of any given MA(1) process.

Suppose a computer generated an infinite sequence of Ỹt’s according to the nonin-

vertible MA(1) process:

Ỹt − µ = (1 + θ̃L)ε̃t

with |θ̃| > 1. In what sense could these same data be associated with a invertible

MA(1) representation ?

Imagine calculating a series {εt}∞t=−∞ defined by

εt ≡ (1 + θL)−1(Ỹt − µ) (14-25)

= (Ỹt − µ)− θ(Ỹt−1 − µ) + θ2(Ỹt−2 − µ)− θ3(Ỹt−3 − µ) + ....,

where θ = (1/θ̃).

The autocovariance-generating function of εt is

gε(z) = (1 + θz)−1(1 + θz−1)−1gỸ (z)

= (1 + θz)−1(1 + θz−1)−1(σ̃2θ̃2)(1 + θ̃−1z)(1 + θ̃−1z−1)

= (σ̃2θ̃2),

where the last equality follows from the fact that θ̃−1 = θ. Since the autocovariance-

generating function is a constant, it follows that εt is a white noise process with variance

σ2 = σ̃2θ̃2.
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Multiplying both side of (14-25) by (1 + θL),

Ỹt − µ = (1 + θL)εt

is a perfectly valid invertible MA(1) representation of data that were actually generated

from the noninvertible representation (14-22).

The converse proposition is also true–suppose that the data were generated really

from (14-20) with |θ| < 1, an invertible representation. Then there exists a noninvert-

ible representation with θ̃ = 1/θ that describes these data with equal validity.

Either the invertible or the noninvertible representation could characterize any given

data equally well, though there is a practical reason for preferring the invertible repre-

sentation. To find the value of ε for date t associated with the invertible representation

as in (14-20), we need to know current and past value of Y . By contrast, to find the

value of ε̃ for date t associated with the noninvertible representation, we need to use

all of the future value of Y . If the intention is to calculate the current value of εt using

real-world data, it will be feasible only to work with the invertible representation.

6.2 Invertibility for the MA(q) Process

Consider the MA(q) process,

Yt − µ = (1 + θ1L+ θ2L
2 + ...+ θqL

q)εt

E(εtεs) =

{
σ2, for t = s
0, otherwise.

Provided that all the roots of

(1 + θ1L+ θ2L
2 + ....+ θqL

q) = 0

lie outside the unit circle, this MA(q) process can be written as an AR(∞) simply by

inverting the MA operator,

(1 + η1L+ η2L
2 + ....)(Yt − µ) = εt,

where

(1 + η1L+ η2L
2 + ....) = (1 + θ1L+ θ2L

2 + ....+ θqL
q)−1.

where this is the case, the MA(q) representation is invertible.
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Shei-Pa National Park.

End of this Chapter
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