
Ch. 13 Difference Eqiations
(March 29, 2022)

The original use of time series analysis is the methodology developed to decom-

pose a series into a trend, seasonal and an irregular components. As you can see,1

the trend change the mean of the series and the seasonal component imparts a regular

cyclical patterns. In practice, the trend and seasonal components will not be simplistic

deterministic functions. However, for the time being, it is wise to sidestep these com-

plications so the trend and seasonal components are regarded as deterministic at the

moment and is even ignored now.

Notice that the irregular component, while not having a well-defined pattern, is

somewhat predictable. One of parametric stochastic process model that express the

value of a variable as a function of its own lagged value and other variable is the dif-

ference equation.

1 First-Order Difference Equations

Suppose we are given a dynamic equation relating the value Y takes on at date t to

another variables Wt and to the value Y took in the previous period:

Yt = φYt−1 +Wt, (13-1)

where φ is a constant. Equation (13-1) is a linear first-order difference equation. A

difference equation is an expression relating a variable Yt to its previous values. This is

a first-order difference equation because only the first lag of the variable (Yt−1) appears

in the equation. Note that it expresses Yt as a linear function of Yt−1 and Wt.

1See Non-Stationary and Linear Trend Example on p.3 in Ch.12.
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In Chapter 14 the input variable Wt will be regarded as a random variable, and

the implication of (13-1) for the statistical properties of the output variables Yt will

be explored. In preparation for this discussion, it is necessary first to understand the

mechanics of the difference equations. For the present discussion in Chapter 13, the

values for the input variables {W1,W2, ...} will simply be regarded as a sequence of

deterministic numbers. Our goal is to answer the following question: If a dynamic

system is described by (13-1), what are the effects on Y of changes in the value of W ?

1.1 Solving a Difference equation by Recursive Substitution

The presumption is that the dynamic equation (13-1) governs the behavior of Y for all

dates t, that is

{Yt = φYt−1 +Wt, t ∈ T }.

We now consider the index set T = {...,−2,−1, 0, 1, 2, 3, ...}. By direct substitution

Yt = φYt−1 +Wt = φ(φYt−2 +Wt−1) +Wt

= φ2Yt−2 + φWt−1 +Wt = φ2(φYt−3 +Wt−2) + φWt−1 +Wt

= φ3Yt−3 + φ2Wt−2 + φWt−1 +Wt

...

= φt+1Y−1 + φtW0 + φt−1W1 + φt−2W2 + ...+ φWt−1 +Wt

= ......

If we assume the value of Y for date t = −1 is known (Y−1 here is an “initial value”),

we can express (13-1) by repeated substitution in the form

Yt = φt+1Y−1 + φtW0 + φt−1W1 + φt−2W2 + ...+ φWt−1 +Wt. (13-2)

This procedure is known as solving the difference equation (13-1) by recursive substi-

tution.
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1.2 Dynamic Multipliers

Note that (13-2) expresses Y as a linear function of the initial value Y−1 and the

historical value of W . This makes it very easy to calculate the effect of W0 (say) on

Yt. If W0 were to change with Y−1 and W1, W2, ..., Wt taken as unaffected (this is the

reason that we need the error term to be a white noise sequence in the ARMA model

in the subsequent chapters), the effect on Yt would be given by

∂Yt
∂W0

= φt (backwards).

Note that the calculation would be exactly the same if the dynamic simulation were

started at date t (taking Yt−1 as given); then Yt+j can be described as a function of

Yt−1 and Wt, Wt+1, ..., Wt+j:

Yt+j = φj+1Yt−1 + φjWt + φj−1Wt+1 + φj−2Wt+2 + ...+ φWt+j−1 +Wt+j. (13-3)

The effect of Wt on Yt+j is given by

∂Yt+j
∂Wt

= φj (forewords). (13-4)

Thus the dynamic multiplier (or also refereed as the impulse-response function) (13-4)

depends only on j, the length of time separating the disturbance to the input variable

Wt and the observed value of output Yt+j. The multiplier does not depend on t; that

is, it does not depend on the dates of the observations themselves. This is true for any

difference equation.

Different value of φ in (13-1) can produce a variety of dynamic responses of Y to

W . If 0 < φ < 1, the multiplier ∂Yt+j/∂Wt in (13-4) decays geometrically toward zero.

If −1 < φ < 0, the absolute value of the multiplier ∂Yt+j/∂Wt in (13-4) also decays

geometrically toward zero. If φ > 1, the dynamic multiplier increase exponentially over

time and if φ < −1, the multiplier exhibit explosive oscillations.

Thus, if |φ| < 1, the system is stable; the consequence of a given change in Wt will

eventually die out. If |φ| > 1, the system is explosive. An interesting possibility is the

borderline case, |φ| = 1. In this case, the solution (13-3) becomes

Yt+j = Yt−1 +Wt +Wt+1 +Wt+2 + ...+Wt+j−1 +Wt+j.

Here the output variables Y is the sum of the historical input W . A one-unit increase

in W will cause a permanent one-unit increase in Y :

∂Yt+j
∂Wt

= 1 for j = 0, 1, .... (unit root).
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Example.
See Figure 1.1 on p.4 of Hamilton (1994). �
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2 pth-Order Difference Equations

Let us now generalize the dynamic system (13-1) by allowing the value of Y at date t

to depend on p of its own lags along with the current value of the input variable Wt:

Yt = φ1Yt−1 + φ2Yt−2 + ....+ φpYt−p +Wt, t ∈ T . (13-5)

Equation (13-5) is a linear pth-order difference equation.

It would be a cumbersome task to solve the p-th order difference equation by re-

cursive substitution. However, it is often convenient to rewrite the pth-order difference

equation (13-5) in the scalar Yt as a first-order difference equation in a vector ξt. Define

the (p× 1) vector ξt by

ξt ≡



Yt
Yt−1
Yt−2
.
.
.

Yt−p+1


,

the (p× p) matrix F by

F ≡



φ1 φ2 φ3 . . φp−1 φp
1 0 0 . . 0 0
0 1 0 . . 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . 1 0


,

and the (p× 1) vector vt by

vt ≡



Wt

0
0
.
.
.
0


.

Consider the following first-order vector difference equation:

ξt = Fξt−1 + vt, (13-6)
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or 

Yt
Yt−1
Yt−2
.
.
.

Yt−p+1


=



φ1 φ2 φ3 . . φp−1 φp
1 0 0 . . 0 0
0 1 0 . . 0 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . 1 0





Yt−1
Yt−2
Yt−3
.
.
.

Yt−p


+



Wt

0
0
.
.
.
0


.

This is a system of p equations. The first equation in this system is identical to equation

(13-5). The remaining p− 1 equations is simply the identity

Yt−j = Yt−j, j = 1, 2, ..., p− 1.

Thus, the first-order vector system (13-6) is simply an alternative representation of the

pth-order scalar system (13-5). The advantage of rewriting the pth-order system in

(13-5) in the form of a first-order (vector) system (13-6) is that first-order systems are

often easier to work with than pth-order systems.

A dynamic multiplier for (13-5) can be found in exactly the same way as was

done for the first-order scalar system of section 1. If we knew the value of ξ−1, then

proceeding recursively in this fashion as in the scalar first order difference equation

produce a generalization of (13-2):

ξt = Ft+1ξ−1 + Ftv0 + Ft−1v1 + Ft−2v2 + ....+ Fvt−1 + vt. (13-7)

Writing this out in terms of the definition of ξt and vt,

Yt
Yt−1
Yt−2
.
.
.

Yt−p+1


= Ft+1



Y−1
Y−2
Y−3
.
.
.
Y−p


+ Ft



W0

0
0
.
.
.
0


+ Ft−1



W1

0
0
.
.
.
0


+ ....

+F1



Wt−1
0
0
.
.
.
0


+



Wt

0
0
.
.
.
0


. (13-8)
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Consider the first scalar equation of this system, which characterize the value of Yt.

Let f t11 denote the (1, 1) elements of Ft, f
t
12 denote the (1, 2) elements of Ft, and so on.

Then the first equation of (12-8) states that

Yt = f t+1
11 Y−1 + f t+1

12 Y−2 + ...+ f t+1
1p Y−p + f t11W0 + f t−111 W1 + ....+ f 1

11Wt−1 +Wt.

(13-9)

This describe the value of Y at date t as a linear function of p initial value of Y

(Y−1, Y−2, ..., Y−p) and the history of the input variablesW since date 0. (W0,W1, ...,Wt)

Result. (Initial values)

Note that whereas only one initial value for Y was needed in the case of a first-order

difference equation, p initial values for Y are needed in the case of a pth-order differ-

ence equation. �

The same kind of vector representation can be applied to the foreward solutions.

The obvious generalization of (13-3) is

ξt+j = Fj+1ξt−1 + Fjvt + Fj−1vt+1 + Fj−2vt+2 + ....+ Fvt+j−1 + vt+j (13-10)

from which

Yt+j = f j+1
11 Yt−1 + f j+1

12 Yt−2 + ...+ f j+1
1p Yt−p +

f j11Wt + f j−111 Wt+1 + ...+ f 1
11Wt+j−1 +Wt+j. (13-11)

Thus, for a pth-order difference equation, the dynamic multiplier is given by

∂Yt+j
∂Wt

= f j11,

where f j11 denotes the (1, 1) element of Fj(= F× F× · · · × F︸ ︷︷ ︸
j

).

Example.
The (1, 1) elements of F1 is φ1 and the (1, 1) elements of F2(= [φ1, φ2, ..., φp][φ1, 1, 0, ..., 0]′)

is φ2
1 + φ2. Thus,

∂Yt+1

∂Wt

= φ1; and

∂Yt+2

∂Wt

= φ2
1 + φ2
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in a pth-order system. �

For larger values of j, an easy way to obtain a numerical value for the dynamic

multiplier ∂Yt+j/∂Wt is in terms the eigenvalues of the matrix F. Recall that the

eigenvalues of a matrix F are those numbers λ for which

|F− λIp| = 0. (13-12)

For example, for p = 2 the eigenvalues are the solutions to∣∣∣∣[ φ1 φ2

1 0

]
−
[
λ 0
0 λ

]∣∣∣∣ = 0

or ∣∣∣∣[ (φ1 − λ) φ2

1 −λ

]∣∣∣∣ = λ2 − φ1λ− φ2 = 0. (13-13)

For a general pth-order system, the determinant in (13-12) is a pth-order ploy-

nominal in λ whose p solutions characterize the p eigenvalues of F. This polynomial

turns out to take a very similar form to (13-13).

Result. (Eigenvalues of F):

The eigenvalues of the matrix F defines in equation (13-12) are the values of λ that

satisfy the following equation:

λp − φ1λ
p−1 − φ2λ

p−2 − ...− φp−1λ− φp = 0. �

2.1 General Solution of a pth-order Difference Equation with Distinct
Eigenvalues

Recall that if the eigenvalues of a (p× p) matrix F are distinct,2 there exists a nonsin-

gular (p× p) matrix X such that3

F = XΛX−1

2Since the eigenvalues are distinct by assumption, the associated eigenvectors are linear independent
so X−1 below exist.

3See p.36, section 4 of Chapter 1.
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where X = [x1,x2, ...,xp], xi, i = 1, 2, ..., p are the eigenvectors of F corresponding to

its eigenvalues λi; and Λ is a (p× p) matrix such that

Λ =


λ1 0 0 . . . 0
0 λ2 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . λp

 .

This enables us to characterize the dynamic multiplier (the (1,1) elements of Fj) very

easily. In general, we have

Fj = XΛX−1 ×XΛX−1 × ...×XΛX−1︸ ︷︷ ︸
j terms

= XΛjX−1, (13-14)

where

Λj =


λj1 0 0 . . . 0

0 λj2 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . λjp

 .

Let tij denote the row i column j element of X and let tij denote the row i column j

element of X−1. Equation (13-14) written out explicitly become

Fj =


t11 t12 . . . . t1p
t21 t22 . . . . t2p
. . . . . . .
. . . . . . .
. . . . . . .
tp1 tp2 . . . . tpp




λj1 0 0 . . . 0

0 λj2 0 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . λjp




t11 t12 . . . . t1p

t21 t22 . . . . t2p

. . . . . . .

. . . . . . .

. . . . . . .
tp1 tp2 . . . . tpp



=



t11λ
j
1 t12λ

j
2 . . . . t1pλ

j
p

t21λ
j
1 t22λ

j
2 . . . . t2pλ

j
p

. . . . . . .

. . . . . . .

. . . . . . .

tp1λ
j
1 tp2λ

j
2 . . . . tppλ

j
p




t11 t12 . . . . t1p

t21 t22 . . . . t2p

. . . . . . .

. . . . . . .

. . . . . . .
tp1 tp2 . . . . tpp


from which the (1,1) element of Fj is given by

f j11 = c1λ
j
1 + c2λ

j
2 + ...+ cpλ

j
p
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where

ci = t1it
i1

and

c1 + c2 + ...+ cp = t11t
11 + t12t

21 + ...+ t1pt
p1 = 1.

Therefore the dynamic multiplier of a pth-order difference equation is:

∂Yt+j
∂Wt

= f j11 = c1λ
j
1 + c2λ

j
2 + ...+ cpλ

j
p, (13-15)

that is the dynamic multiplier is a weighted average of each of the p eigenvalues raised

to the jth power.

The following result provides a closed-form expression for the constant c1, c2, ..., cp.

Result.
If the eigenvalues (λ1, λ2, ..., λp) of the matrix F are distinct, then the magnitude ci

can be written as

ci =
λp−1i∏p

k=1, k 6=i(λi − λk)
. �

Example.
In then case p = 2, we have

c1 =
λ
(2−1)
1

λ1 − λ2
=

λ1
λ1 − λ2

, and c2 =
λ
(2−1)
2

λ2 − λ1
=

λ2
λ2 − λ1

. �

2.1.1 Real Roots

Suppose first that all the eigenvalues of F are real and all these real eigenvalues are less

than one in absolute value, then the system is stable, and its dynamics are represented

as a weighted average of decaying exponentially or decaying exponentially oscillating

in sign. The dynamic multiplier converges to zero as j →∞, i.e.

lim
j→∞

∂Yt+j
∂Wt

= f j11 = c1λ
j
1 + c2λ

j
2 + ...+ cpλ

j
p −→ 0.
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Example. (Distinct real roots)

Consider the following second-order difference equation:

Yt = 0.6Yt−1 + 0.2Yt−2 +Wt.

The eigenvalues are the solutions of the polynomial

λ2 − 0.6λ− 0.2 = 0,

which are

λ1 =
0.6 +

√
(0.6)2 + 4(0.2)

2
= 0.84

λ2 =
0.6−

√
(0.6)2 + 4(0.2)

2
= −0.24.

The dynamic multiplier for this system,

∂Yt+j
∂Wt

= c1λ
j
1 + c2λ

j
2 = c1(0.84)j + c2(−0.24)j

is geometrically decaying and is plotted as a function of j in panel (a) of Hamilton,

p.15. Note that as j becomes larger, the pattern is dominated by the larger eigenvalues

(λ1), approximating a simple geometric decay at rate (λ1). �

If the eigenvalue are all real but at least one is greater than one in absolute value,

the system is explosive. If λ1 denotes the eigenvalue that is largest in absolute value,

the dynamic multiplier is eventually dominated by an exponential function of that

eigenvalues:

lim
j→∞

∂Yt+j
∂Wt

· 1

λj1
= c1.

2.1.2 Complex Roots

It is possible that the eigenvalue of F are complex (Since F is not symmetric. For a

symmetric matrix, its eigenvalues are all real.4). Whenever this is the case, they appear

4see the proof on p.22 of Chapter 1.

r 2018 by Prof. Chingnun Lee 11 Ins.of Economics,NSYSU,Taiwan



Ch.13 Difference Equations 2 PTH-ORDER DIFFERENCE EQUATIONS

as complex conjugates. For example if p = 2 and φ2
1+4φ2 < 0, then the solutions λ1 and

λ2 are complex conjugates. Suppose that λ1 and λ2 are complex conjugates, written

as

λ1 = a+ bi, and λ2 = a− bi.

By rewritten the definition of the sine and the cosine function we have

a = r cos(θ) and

b = r sin(θ),

where for a given angle θ and r are defined in terms of a and b by

r =
√
a2 + b2, cos(θ) =

a

r
, sin(θ) =

b

r
.

Therefore, we have (Polar form)

λ1 = r[cos θ + i sin θ],

λ2 = r[cos θ − i sin θ].

By Eular relations5 (see for example, Chiang, A.C. (1984), p. 520) we further have

λ1 = r[cos θ + i sin θ] = Reiθ

λ2 = r[cos θ − i sin θ] = Re−iθ,

and when they are raised to the jth power,

λj1 = rj[cos(θj) + i sin(θj)] = rjeiθj

λj2 = rj[cos(θj)− i sin(θj)] = rje−iθj.

The contribution of the complex conjugates to the dynamic multiplier ∂Yt+j/∂Wt:

c1λ
j
1 + c2λ

j
2 = c1r

j[cos(θj) + i sin(θj)] + c2r
j[cos(θj)− i sin(θj)]

= (c1 + c2)r
j · cos(θj) + i(c1 − c2)rj · sin(θj).

From last Result we know that if λ1 and λ2 are complex conjugates, then c1 and c2 are

also complex conjugates; that is they can be written as

c1 = α + βi,

c2 = α− βi,
5We may also apply De Moivre’s Formula directly.
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for some real number α and β. Therefore, the dynamic multiplier ∂Yt+j/∂Wt can

further be expressed as

c1λ
j
1 + c2λ

j
2 = [(α + βi) + (α− βi)] · rj · cos(θj) + i[(α + βi)− (α− βi)] · rj · sin(θj)

= (2α)rj · cos(θj) + i · (2βi)rj · sin(θj)

= 2αrj cos(θj)− 2βrj sin(θj).

Result. (Distinct Complex Roots)

Thus, when some of the (distinct) eigenvalues are complex, then if

(a). r = 1, that is the complex eigenvalues have unit modulus, the multipliers are

periodic sine and cosine functions of j;

(b). r < 1, that is the complex eigenvalues are less then one in modulus, the impulse

again follows a sinusoidal pattern though its amplitude decays at the rate rj;

(c). r > 1, that is the complex eigenvalues are greater then one in modulus, its ampli-

tude of the sinusoids explodes at the rate rj. �

Example. :

Consider the following second-order difference equation:

Yt = 0.5Yt−1 − 0.8Yt−2 +Wt.

The eigenvalues are the solutions the polynomial

λ2 − 0.5λ+ 0.8 = 0

which are

λ1 =
0.5 +

√
(0.5)2 − 4(0.8)

2
= 0.25 + 0.86i

λ2 =
0.5−

√
(0.5)2 − 4(0.8)

2
= 0.25− 0.86i,

with modulus

r =
√

(0.25)2 + (0.86)2 = 0.9.

Since r < 1, the dynamic multiplier follows a pattern of damped oscillation as plotted

in panel (b) of Figure 1.4 of Hamilton, p. 15. �
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2.2 General Solution of a pth-order Difference Equation with Repeated
Eigenvalues

By Jordan decomposition, the conclusion is the same that for the pth-order difference

equation to be stable, all the eigenvalues of F must be smaller than 1 in modulus.

Example.
The dynamic multiplier in the second order difference equation with repeated roots is

∂Yt+j
∂Wt

= k1λ
j + k2jλ

j−1,

where k1 and k2 are constants.6 �

6limj→∞ j · λ(j−1) = limj→∞
j

λ−(j−1)

(∞
∞
)
= limj→∞

dj
dj

dλ−(j−1)

dj

= limj→∞
1

λ−(j−1) lnλ
= 0.
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3 Lag Operators

3.1 Introduction

As we have defined that a stochastic process (or time series) is a sequence of random

variables denoted by {Xt, t ∈ T }. A time series operator transforms one time series

into a new time series. It accepts as input a sequence such as {Xt, t ∈ T } and has an

output a new sequence {Yt, t ∈ T }.
An example of a time series operator is the multiplication operator, represented as

Yt = βXt; (13-16)

Although it is written exactly the same way as simply scalar multiplication, equation

(13-16) is actually shorthand for an infinite sequence of multiplication, one for each

date t. The operator multiplies whatever value x the random variable X takes on at

any date t by some constant β to generate the value y for that date. Therefore, it is

important to keep in mind that equation (13-16) has better be read as

{Yt = βXt; t ∈ T }. (13-17)

A highly useful operator is the lag operator. Suppose that we start a time series

{Xt, t ∈ T } and generate a new sequence {Yt, t ∈ T } where the value of y for date t is

equal to the value x took on at date t− 1:

yt = xt−1.

This is described as applying the lag operator to {Xt}. The operator is represented by

the symbol L:

Yt = LXt = Xt−1.

Consider the result of applying the lag operator twice to a series:

L(LXt) = L(Xt−1) = Xt−2.

Such a double application of the lag operator is indicated by “L2”:

L2Xt = Xt−2.

In general, for any integer k,

LkXt = Xt−k.
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Notice that if we first apply the multiplication operator and then the lag operator, as

in:

Xt → βXt → βXt−1,

the result will be exactly the same if we had applied the lag operator first and then

the multiplication operator:

Xt → Xt−1 → βXt−1.

Thus the lag operator and multiplication operator are commutative:

L(βXt) = β · LXt.

Similarly, if we first add two series and then apply the lag operator to the result,

(Xt,Wt)→ Xt +Wt → Xt−1 +Wt−1,

the result is the same as if we had applied the lag operator before adding:

(Xt,Wt)→ (Xt−1,Wt−1)→ Xt−1 +Wt−1.

Thus, the lag operator is distributive over the addition operator:

L(Xt +Wt) = LXt + LWt.

We therefore see that the lag operator follows exactly the same algebraic rule as

the multiplication operator. For this reason, it is tempting to use the expression

“multiply Yt by L” rather than “operate on {Yt; t ∈ T } by L”.

Faced with a time series defined in terms of compound operators, we are free to

use the standard commutative, associative, and distributive algebraic laws for mul-

tiplication and addition to express the compound operator in an alternative form. For

example, the process defined by

Yt = (a+ bL)LXt

is exactly the same as

Yt = (aL+ bL2)Xt = aXt−1 + bXt−2.

To take another example,

(1− λ1L)(1− λ2L)Xt = (1− λ1L− λ2L+ λ1λ2L
2)Xt

= (1− [λ1 + λ2]L+ λ1λ2L
2)Xt

= Xt − (λ1 + λ2)Xt−1 + (λ1λ2)Xt−2.
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An expression such as (aL+ bL2) is referred to as a polynomial in the lag operator.

It is algebraically to a simple polynomial (az+ bz2) where z is a scalar. The difference

is that the simple polynomial (az+ bz2) refers to a particular number, whereas a poly-

nomial in the lag operator (aL+ bL2) refers to an operator that would applied to one

time series {Xt; t ∈ T } to produce a new time series {Yt; t ∈ T }.

3.2 Solving First-Order Difference Equation by Lag Operator

Let now return to the first-order difference equation in section 1:

Yt = φYt−1 +Wt,

which can now be rewritten using lag operator as

Yt = φLYt +Wt.

This equation, in turn, can be rearranged using standard algebra,

Yt − φLYt = Wt

or

(1− φL)Yt = Wt. (13-18)

3.2.1 The Case T = {−1, 0, 1, 2, ...}, and an Initial Value Y−1 Is Given

We first consider “multiplying” both side of (13-18) by the following operator:

(1 + φL+ φ2L2 + ....+ φtLt),

the result would be

(1 + φL+ φ2L2 + ....+ φtLt)× (1− φL)Yt = (1 + φL+ φ2L2 + ....+ φtLt)×Wt

or

(1− φt+1Lt+1)Yt = (1 + φL+ φ2L2 + ....+ φtLt)Wt. (13-19)
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Writing (13-19) out explicitly produces

Yt − φt+1Yt−(t+1) = Wt + φWt−1 + φ2Wt−2 + ...+ φtWt−t

or

Yt = φt+1Y−1 +Wt + φWt−1 + φ2Wt−2 + ...+ φtW0. (13-20)

Notice that equation (13-20) is identical to equation (13-2). Applying the lag operator

is performing the same set of recursive substitution that were employed in the previous

section.

3.2.2 The Case T = {...− 3,−2,−1, 0, 1, 2, 3, ...} and t is large

It is interesting to reflect on the nature of the operator as t become large. We saw that

(1 + φL+ φ2L2 + ....+ φtLt)(1− φL)Yt = Yt − φt+1Y−1.

That is, (1 + φL+ φ2L2 + ....+ φtLt)(1− φL)Yt differs from Yt by the term φt+1Y−1. If

|φ| < 1 and if Y−1 is a finite number, this residual φt+1Y−1 will be become negligible

as t became large:

(1 + φL+ φ2L2 + ....+ φtLt)(1− φL)Yt ∼= Yt for t large.

Definition.
A sequence {Xt; t ∈ T , T = {...,−2,−1, 0, 1, 2, ...}} is said to be bounded if there

exists number X̄ such that

|Xt| < X̄ for all t. �

Thus when |φ| < 1 and when we are considering applying an operator to a bounded

sequence,7 we can think of

(1 + φL+ φ2L2 + ....+ φjLj)

7Remember that when |φ| < 1, the stochastic process Yt is stable.
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as approximating the inverse of the operator (1− φL), with this approximation made

arbitrarily accurate by choosing j sufficiently large:

(1− φL)−1 = lim
j→∞

(1 + φL+ φ2L2 + ....+ φjLj).

This operator (1− φL)−1 has the property

(1− φL)−1(1− φL) = 1,

where “1” denotes the identity operator:

1Yt = Yt.

Provided that |φ| < 1 and we restrict ourselves to bounded sequence, the solution

to the first-order difference equation would be

(1− φL)−1(1− φL)Yt = (1− φL)−1Wt

or

Yt = (1− φL)−1Wt

= (1 + φL+ φ2L2 + ....+ φiLi + ...)Wt

= Wt + φWt−1 + φ2Wt−2 + φ3Wt−3 + .....

3.3 Solving Second-Order Difference Equation by Lag Operator

Consider next a second-order difference equation:

Yt = φ1Yt−1 + φ2Yt−2 +Wt.

Rewriting this in lag operator form produces

(1− φ1L− φ2L
2)Yt = Wt. (13-21)

The left side of (13-21) contains a second-order polynomial in the lag operator L.

Suppose we factor this polynomial and find its roots. That is, find numbers γ1 and γ2

such that

(1− φ1L− φ2L
2) = (1− γ1L)(1− γ2L) = 0,
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we obtains L1 = (γ1)
−1 and L2 = (γ2)

−1. Substituting both roots back the equation

we should get the identity that

1− φ1γ
−1
1 − φ2γ

−2
1 = 0

and

1− φ1γ
−1
2 − φ2γ

−2
2 = 0.

Equivalently,

γ21 − φ1γ
1
1 − φ2 = 0

and

γ22 − φ1γ
1
2 − φ2 = 0,

theses two equation is the same calculation as in find the eigenvalues of F in (13-12)

(That is, γi = λi, i = 1, 2.). This finding is summarized in the following result.

Result.
Factoring the polynomial

(1− φ1L− φ2L
2) = (1− γ1L)(1− γ2L) (13-22)

is the same calculation as finding the eigenvalues of the matrix F in (13-12) when p = 2.

( i.e. λ1 and λ2) λ1 and λ2 are the same as the parameters γ1 and γ2 in (13-22). �

There are one source of possible semantic confusion about which we have to be

careful. Recall from section 1 that the system is stable if both λ1 and λ2 are less than

1 in modulus and explosive if either λ1 and λ2 is greater than 1 in modulus. Some

times this is described as the requirement that the roots of

λ2 − φ1λ− φ2 = 0 (13-23)

lie inside the unit circle.

The possible confusion is that it is often convenient to work directly with the

polynomial in the lag operator in which it appears as

1− φ1L− φ2L
2 = 0, (13-24)
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where roots, L = (λ)−1.

Thus, we could say with equal accuracy that the difference equation is stable when-

ever the roots of (13-23) lie inside the unit circle or that the difference equation is

stable whenever the roots of (13-24) lie outside the unit circle. The two statement

mean exactly the same thing.

This note will follow the convention of using the term “eigenvalues” to refer to the

roots of (13-23). Whenever the term “roots” is used, we will indicate explicitly the

equation (13-24) whose roots are being described.

From now on this section, it is assumed that the second-order difference equation

is stable, with the eigenvalue λ1 and λ2 distinct and both inside the unit circle.

Where this is the case, the inverse

(1− λ1L)−1 = 1 + λ11L+ λ21L
2 + λ31L

3 + ...

(1− λ2L)−1 = 1 + λ12L+ λ22L
2 + λ32L

3 + ...

are well defined for bounded sequence. Written the second-order difference in factored

form:

(1− λ1L)(1− λ2L)Yt = Wt

and operate on both side by (1− λ1L)−1(1− λ2L)−1:

Yt = (1− λ1L)−1(1− λ2L)−1Wt. (13-25)

Notice that an alternative way of writing the operator is:

(λ1 − λ2)−1
{

λ1
1− λ1L

− λ2
1− λ2L

}
= (λ1 − λ2)−1

{
λ1(1− λ2L)− λ2(1− λ1L)

(1− λ1L) · (1− λ2L)

}
=

1

(1− λ1L) · (1− λ2L)
.

Thus, equation (13-25) can be written as

Yt = (λ1 − λ2)−1
{

λ1
1− λ1L

− λ2
1− λ2L

}
Wt

=

{
λ1

λ1 − λ2
[1 + λ1L+ λ21L

2 + λ31L
3 + ....]− λ2

λ1 − λ2
[1 + λ2L+ λ22L

2 + λ32L
3 + ....]

}
Wt

or

Yt = (c1 + c2)Wt + (c1λ1 + c2λ2)Wt−1 + (c1λ
2
1 + c2λ

2
2)Wt−2 + ...., (13-26)
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where

c1 = λ1/(λ1 − λ2)

c2 = −λ2/(λ1 − λ2).

From (13-26) the dynamic multiplier can be read off directly as

∂Yt+j
∂Wt

= c1λ
j
1 + c2λ

j
2,

the same result arrived at in previous sections.

3.4 Solving pth-Order Difference Equations by Lag Operator

The techniques generalize in a straightforward way to a pth-order difference equation

of the form:

Yt = φ1Yt−1 + φ2Yt−2 + ....+ φpYt−p +Wt,

and it can be written in terms of lag operator as

(1− φ1L− φ2L
2 − ....− φpLp)Yt = Wt.

Factorizing the polynomial in the lag operator as

(1− φ1L− φ2L
2 − ....− φpLp) = (1− λ1L)(1− λ2L)....(1− λpL)

we obtain the roots of this polynomial as Li = λ−1i , i = 1, 2, ..., p. From the identity

that for any roots of a polynomial

1− φ1λ
−1
i − φ2λ

−2
i − ....− φλ

−p
i = 0

⇒ λpi − φ1λ
p−1
i − ....− φp−1λi − φp = 0,

where λi are the eigenvalues of F as we defined before. Thus, the last results readily

generalizes.

Result.
Factoring the polynomial

(1− φ1L− φ2L
2 − ....− φpLp) = (1− λ1L)(1− λ2L)....(1− λpL)
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is the same calculation as finding the eigenvalues of the matrix F in (13-12). The eigen-

value of F, (λ1, λ2, ..., λp) are the same as the parameters (λ1, λ2, ..., λp) in (13-12). �

Assuming that the eigenvalues are inside the unit circle and we are restricting

ourselves to considering bounded sequence, the inverse (1−λ1L)−1, (1−λ2L)−1, ...., (1−
λpL)−1 all exist, permitting the difference equation

(1− λ1L)(1− λ2L)....(1− λpL)Yt = Wt

to be written as

Yt = (1− λ1L)−1(1− λ2L)−1....(1− λpL)−1Wt.

The dynamic multiplier can be read directly as (13-15) to be

∂Yt+j
∂Wt

= c1λ
j
1 + c2λ

j
2 + ....+ cpλ

j
p.

3.5 Unbounded Sequences

As we have shown that given a first-order difference equation in the lag operator form:

(1− φL)Yt = Wt. (13-27)

When |φ| < 1, it is advised to solve the equation “backward” by

(1− φL)−1 = (1 + φL+ φ2L2 + ...).

However, when |φ| > 1, Sargent (1987) advice to solve the equation “forward” by

(1− φL)−1 =
−φ−1L−1

1− φ−1L−1
, (since for |φ| > 1, |φ−1| < 1)

= −φ−1L−1(1 + φ−1L−1 + φ−2L−2 + ...),
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where as defined, L−kYt = Yt+k.
8 We expression (13-27) as

Yt = (−φ−1L−1 − φ−2L−2 − φ−3L−3 + ...)Wt

= −φ−1Wt+1 − φ−2Wt+2 − φ−3Wt+3 + ....

In a economic agent with (rational) expectation, the price at date t depends possibly

on future price (expected) at date t+ k, k > 0.

Exercise 1.
For the 3rd difference equation Yt = 1.2Yt−1 − 0.47Yt−2 + 0.06Yt−3 +Wt, please

(a). Chack if Yt is stable or not ?

(b). Find its dynamic multiplier,
∂Yt+j

∂Wt
for j = 1, 2, ..., 15. �

Notation:

Yt: random variable,

yt: the value of the random variable Yt take,

yt: a random vector,

Yt: a random matrix.

8Here,

(1− φL)−1 × (1− φL) = { lim
j→∞

[−φ−1L−1(1 + φ−1L−1 + φ−2L−2 + ...+ φ−jL−j)] · [1− φL]}

= lim
j→∞

[−φ−1L−1][(1 + φ−1L−1 + φ−2L−2 + ...+ φ−jL−j)

−(φL+ 1 + φ−1L−1 + φ−2L−2 + ...+ φ−j+1L−j+1)]

= lim
j→∞

(−φ−1L−1)(−φL+ φ−jL−j)

= lim
j→∞

[1− φ−(j+1)L−(j+1)]

= lim
j→∞

[1− (φ−1)(j+1)L−(j+1)]

= 1 since |φ−1| < 1.
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