
Ch. 12 Introduction to Time Series
Analysis

(February 27, 2018)

Time judged all

1 Introduction

A time series is a sequence of observations taken sequentially in time. Many sets

of data appear as time series: a monthly sequence of the quantity of goods shipped

from a factory, a weekly series of the number of road accents, hourly observations

made on the yield of a chemical process, and so on. Examples of time series abound

in such fields as economics, business, engineering, the natural and the social science.

Example. (White-Noise data, no correlation)
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Example. (Stationary data, correlation in level)

�
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Ch.12 1 INTRODUCTION

In real economic and financial data, many time series observation are stationary

but with possible break, and that even they are apparently not stationary.

Example. (Structural Change Data)

Example. (Non-Stationary data, Linear Trend)
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Example. (Non-Stationary data, Stochastic Trend (Random walk or Unit root))

Example. (Non-Stationary data, Common Stochastic Trend (Cointegration))

An intrinsic feature of time series is that, typically, adjacent observation are

dependent. The nature of this dependence among observations of a time series

if of great considerable practical interest. Time series analysis is considered with

techniques for the analysis of this dependence. This requires the development of

stochastic and dynamic models for time series data.
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Example. (Stationary data, correlation in variance (Variance Clustering, ARCH))

1.1 Dynamic Probability Model

The analysis of experimental data that have been observed at different points in time

leads to new and unique problems in statistical modeling and inference. The obvious

correlation introduced by the observations of adjacent points in time can severely

restrict the applicability of the many conventional statistical method traditionally

dependent on the assumption that these adjacent observations are independent and

identically distributed. The systematic approach by which one goes about answer-

ing the mathematical and statistical questions posed by these time correlation is

commonly referred as time series analysis. Time series analysis is the theory of

stochastic processes dealing with system which develop in time in accordance with

probabilistic laws.

A particularly important aspect of real observable phenomena, which the random

variables concept cannot accommodate, is their time dimension; the concept of

random variable is essential static. A number of economic phenomena for which

we need to formulate probability models come in the form of dynamic processes for

which we have discrete sequence of observations in time. Observed data referring
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to economic variables such as inflation, national income, money stock, represent

examples where the time dependency might be very important. The problem we

have to face is extend the simple probability model,

Φ = {f(x; θ), θ ∈ Θ},

to one which enables us to model dynamic phenomena. We have already moved in

this direction by proposing the random vector probability model

Φ = {f(x1, x2, ..., xT ; θ), θ ∈ Θ}.

The way we viewed this model so far has been as representing different character-

istics of the phenomenon in question in the form of the jointly distributed r.v.’s

X1, X2, ..., XT . If we reinterpret this model as representing the same characteristic

but at successive points in time then this can be viewed as a dynamic probability

model. With this as a starting point let us consider the dynamic probability model

in the context of (S,F ,P).
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2 The Concept of a Time Series

The natural way to make the concept of a random variable dynamic is to extend its

domain by attaching a date to the elements of the sample space S.

Definition .

Let (S,F ,P) be a probability space, let T be an index set of real numbers and

define the function x(·, ·) by x(·, ·) : S × T → R. The ordered sequence of random

variables {X(·, t) ∈ T } is called a time series.1 �

This definition suggests that for a time series {X(·, t) ∈ T }, for each t ∈ T ,

{X(·, t) represents a random variables on S. On the other hand, for each s ∈ S,

{X(s, ·) represent a function of t which we call a realization of the process. X(s, t)

for a given s and t is just a real number.

In most economic and business applications, we only observe one realization of

the time series. Such a realization is called a sample path. The goal of time series

analysis is to make inference of the series based on the observed (one) realization.

Three main elements of a time series {X(·, t) t ∈ T } are:

(a). its range space (sometimes called the state space),2 usually R;

(b). the index T , usually one of R,R+ = [0,∞), Z = {..., 0, 1, 2, ...} and

(c). the dependence structure of the r.v.’s {X(·, t), t ∈ T } itself (level) or even the

second moment of X(·, t) (variation). �

In what follows a (discrete) times series will be denoted by {X(t), t ∈ T } (s is

dropped). We will concern mainly exclusively with discrete time series, that is,

the index set T is a countable set such as T = {....,−2,−1, 0, 1, 2, ...}, we reserve

the notation {X(t), t ∈ T } for continuous time series (which is also called stochastic

process). Hence, we use {Xt, t ∈ T } in the remaining analysis.

1Since a time series determine the joint density of X1, X2, ..., XT , the marginal density of Xt, t =
1, 2, ..., T is not necessary to be identical.

2In the function y = f(x), x is referred to as the argument of the function, and y is called the
value of the function. We shall also alternatively refer x as the independent variable and y as the
dependent variable. The set of all permissible value that x can take in a given context is known
as the domain of the function. The value into which an x value is mapped is called the image of
that x value. The set of all images is called the range of the function, which is the set of all values
that y variable will take.
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2.1 The Joint Distribution of a Time Series in a Finite Time Horizon

The dependence structure of {Xt, t ∈ T }, in direct analogy with the case of a

random vector, should be determined by the joint distribution of the process. The

question arises, however, since T is commonly an infinite set, do we need an infinite

dimensional distribution to define the structure of the process ?

This question was tackled by Kolmogorov (1933) who showed that when the

time series satisfies certain regularity conditions the answer is definitely “no”. In

particular, if we define the “tentative” joint distribution of the process for the subset

(t1 < t2 < ... < tT ) of T by F (xt1 , xt2 , ..., xtT ) = Pr(Xt1 ≤ x1, Xt2 ≤ x2, ..., XtT ≤
xT ), then if the time series {Xt, t ∈ T } satisfies the conditions:

(a). symmetry: F (xt1 , xt2 , ..., xtT ) = F (xtj1 , xtj2 , ..., xtjT ) where j1, j2, ..., jT is any

permutation of the indices 1, 2, ..., T (i.e. reshuffling the ordering of the index

does not change the distribution).

(b). compatibility: limxT→∞ F (xt1 , xt2 , ..., xtT ) = F (xt1 , xt2 , ..., xtT−1
) (i.e. the

dimensionality of the joint distribution can be reduced by marginalization)

there exist a probability space (S,F ,P) and a time series {Xt, t ∈ T } defined on it

whose finite dimensional distribution is the distribution F (xt1 , xt2 , ..., xtT ) as defined

above. That is, the probability structure of the time series {Xt, t ∈ T } is completely

specified by the joint distribution of F (xt1 , xt2 , ..., xtT ) for all values of T (a positive

integer) and any subset (t1, t2, ..., tT ) of T .

2.2 The First and Second Moment of a Time Series

Given that, for a specific t, Xt is a random variable (in S), we can denote its distri-

bution and density function by F (xt) and f(xt) respectively. Moreover the mean,

variance and higher moments of Xt (as a r.v.) can be defined as standard form as

follows.
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Definition. (Mean, Variance, and Higher Moments of Xt.)

E(Xt) =

∫
xt

xtf(xt)dxt = µt,

E(Xt − µt)2 =

∫
xt

(xt − µt)2f(xt)dxt = γ2t , and

E(Xr
t ) = µrt, r ≥ 1,

for all t ∈ T . �

As we can see, these numerical characteristic of Xt are in general function of t,

given that at each t ∈ T , Xt has a different distribution F (xt).

Definition. (Auto-covariance Function)

The linear dependence measures between Xi and Xj

γi,j = E[(Xi − µi)(Xj − µj)], i, j ∈ T ,

is now called the autocovariance function. In standardized form

ri,j =
γi,j
γiγj

, i, j ∈ T ,

is called is autocorrelation function. �

These numerical characteristics of the time series {Xt, t ∈ T } play an important

role in the analysis of the process and its application to modeling real observable

phenomena. We say that {Xt, t ∈ T } is an uncorrelated process if ri,j = 0 for any

i, j ∈ T , i 6= j.

Example .

One of the most important example of a time series is the normal process. The time

series {Xt, t ∈ T } is said to be normal (or Gaussian) if any finite subset of T , say

t1, t2, ..., tT , (Xt1 , Xt2 , ..., XtT ) ≡ x′T has a multivariate normal distribution, i.e.

f(xt1 , xt2 , ..., xtT ) = (2π)−T/2|VT |−1/2 exp

[
−1

2
(xT − µT )′V−1T (xT − µT )

]
,
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where

µT = E(xT ) =


E(Xt1)
E(Xt1)

.

.

.
E(XtT )

 =


µ1

µ2

.

.

.
µT

 , and

VT = E(xT − µT )(xT − µT )′ =


γ2t1 γt1,t2 . . . γt1,tT
γt2,t1 γ2t2 . . . γt2,tT
. . . . . .
. . . . . .
. . . . . .

γtT ,t1 . . . . γ2tT

 . �

As in the case of a normal random variable, the distribution of a normal time

series is characterized by the first two moment but now they are function of t.

One problem so far in the definition of a time series given above is much too

general to enable us to obtain a operational probability model. In the analysis of

time series we only have a single realization of the process and we will

have to deduce the value of µt and γ2t with the help of a single observation.

(which is impossible !)

The main purpose of the next three sections is to consider various special forms

of time series where we can construct probability models which are manageable in

the context of statistical inference. Such manageability is achieved by imposing

certain restrictions which enable us to reduce the number of unknown parameters

involved in order to be able to deduce their value from a single realization. These

restrictions come in two forms:

(a). restriction on the time-heterogeneity of the process; and

(b). restriction on the memory of the process.
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3 Model’s Restrictions in a Time Series

3.1 Restricting the Time-Heterogeneity

For an arbitrary time series {Xt, t ∈ T } the distribution function F (xt; θt) depends

on t with the parameter θt characterizing it being function of t as well. That is,

a time series is time-heterogeneous in general. This, however, raises very difficult

issues in modeling real phenomena because usually we only have one observation for

each t. Hence in practice we will have to estimate θt on the basis of a single obser-

vation, which is impossible. For this reason we are going to consider an important

class of stationary process which exhibit considerable time-homogeneity and can be

used to model phenomena approaching their equilibrium steady-state, but continu-

ously undergoing “random” functions. This is the class of stationary time series.

Definition. (Strongly Stationary)

A time series {Xt, t ∈ T } is said to be strongly stationary if any subset (t1, t2, ..., tT )

of T and any τ ,

F (xt1 , ..., xtT ) = F (xt1+τ , ..., xtT+τ ).

That is, the distribution of the process remains unchanged when shifted in time by

an arbitrary value τ . In terms of the marginal distributions, (strictly) stationarity

implies that

F (Xt) = F (Xt+τ ), t ∈ T ,

and hence F (xt1) = F (xt2) = ... = F (xtT ). That is stationarity implies that

Xt1 , Xt2 , ..., XtT are (individually) identically distributed. �

The concept of stationarity, although very useful in the context of probability

theory, is very difficult to verify in practice because it is defined in terms of distribu-

tion function. For this reason the concept of the second order stationarity, defined

in terms of the first two moments, is commonly preferred.

Definition. (Weakly Stationary)

A time series {Xt, t ∈ T } is said to be weakly stationary if

E(Xt) = µ for all t;

γi,j = E[(Xi − µ)(Xj − µ)] = γ|i−j|, i, j ∈ T . �
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These suggest that weakly stationarity for {Xt, t ∈ T } implies that its mean µ,

and variance γ2t = γ0 are constant and free of t and its autocovariance depends on

the interval |i− j|; not i and j. Therefore, γk = γ−k.

Example .

Consider the normal time series in the above example. With the weakly stationarity

assumption, now

µT = E(XT ) =


µ
µ
.
.
.
µ

 , VT =


γ0 γ1 . . . γT−1
γ1 γ0 . . . γT−2
. . . . . .
. . . . . .
. . . . . .

γT−1 . . . . γ0

 ,

a sizeable reduction in the number of unknown parameters from T + [T (T + 1)/2]

to (T + 1). �

It is important, however, to note that even in the case of stationarity the number

of parameters increase with the size of the subset (t1, ..., tT ) although the parameters

do not depend on t ∈ T .3 This is because time-homogeneity does not restrict the

“memory” of the process. In the next section we are going to consider “memory”

restrictions in an obvious attempt to ’solve’ the problem of the parameters increas-

ing with the size of the subset (t1, t2, ..., tT ) of T .

3To see this, consider VT+1 =



γ0 γ1 . . . γT−1 γT
γ1 γ0 . . . γT−2 γT−1
. . . . . .
. . . . . .
. . . . . .

γT−1 . . . . γ0 γ1
γT . . . . γ1 γ0


. With an additional

observation XtT+1
, we have an additional autocovariance γT .
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3.2 Restricting the Memory of a Time Series

3.2.1 Asymptotic Independence

In the case of a typical economic times series, viewed as a particular realization of a

time series {Xt, t ∈ T } one would expect that the dependence between Xti and Xtj

would tend to weaken as the distance (tj − ti) increase. Formally, this dependence

can be described in terms of the joint distribution F (xt1 , xt2 , ..., xtT ) as follows:

Definition. (Asymptotically Independent)

A time series {Xt, t ∈ T } is said to be asymptotically independent if for any subset

(t1, t2, ..., tT ) of T and any τ , β(τ) defined by∣∣F (xt1 , xt2 , ..., xtT , xt1+τ , ..., xtT+τ
)− F (xt1 , xt2 , ..., xtT )F (xt1+τ , ..., xtT+τ

)
∣∣

≤ β(τ) goes to zero as τ →∞.

That is if β(τ)→ 0 as τ →∞, the two subsets (Xt1 , Xt2 , ..., XtT ) and (Xt1+τ , ..., XtT+τ
)

become independent. �

A particular case of asymptotic independence is that of m-dependence which re-

stricts β(τ) to be zero for all τ > m. That is, Xt1 and Xt2 are independent for

|t1 − t2| > m.

3.2.2 Asymptotic Un-correlation

An alternative way to express the weakening of the dependence between Xti and

Xtj as |tj − ti| increases in terms of the autocorrelation function which is a measure

of linear dependence.

Definition. (Asymptotically Uncorrelated):

A time series {Xt, t ∈ T } is said to be asymptotically uncorrelated if for there exists

a sequence of constants {ρ(τ), τ ≥ 1} defined by

r(t, t+ τ) =

∣∣∣∣ γt,t+τγtγt+τ

∣∣∣∣ ≤ ρ(τ), for all t ∈ T ,

such that

0 ≤ ρ(τ) ≤ 1 and
∞∑
τ=0

ρ(τ) <∞. �
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As we can see, the sequence of constants {ρ(τ), τ ≥ 1} defines an upper bound

for the sequence of autocorrelation coefficients, r(t, t + τ). Moreover, given that

ρ(τ)→ 0 as τ →∞ is a necessary and ρ(τ) < τ−(1+δ) for δ > 0, a sufficient condition

for
∑∞

τ=0 ρ(τ) <∞, the intuition underlying the above definition is obvious.

At this stage it is important to note that the above concept of asymptotic in-

dependence and un-correlatedness which restrict the memory of a time series are

not defined in terms of a stationary time series but a general time-heterogeneous

process. This is the reason why β(τ) and ρ(τ) for τ ≥ 1 define only upper bounds for

the two measures of dependence given that when equality is used in their definition

they will depend on (t1, t2, ..., tT ) as well as τ .

3.2.3 Ergodicity

In the context of weakly-stationary time series, asymptotic uncorrelatedness can be

defined more intuitively in terms of the temporal covariance as follows:

Cov(Xt, Xt+τ ) = γτ → 0 as τ →∞.

A stronger form of such memory restriction is so called ergodicity property. Ergod-

icity can be viewed as a condition which ensures that the memory of the process as

measured by γτ “weakens by averaging overtime”.

Definition . (Ergodicity)

A weakly-stationary time series {Xt, t ∈ T } is said to be ergodic if

lim
T→∞

(
1

T

T∑
τ=0

γτ

)
= 0. �

This also imply
∑∞

τ=0 |γτ | <∞ and further implies that γτ → 0.

3.2.4 Mixing Process

A more general formulation of asymptotic independence can be achieved using the

concept of a σ-field generated by a random vector. Let F t1 denote the σ-field gen-

erated by X1, X2, ..., XT where {Xt, t ∈ T } is a time series. A measure of the
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dependence among the elements of the time series can be defined in terms of the

events B ∈ F t−∞ and A ∈ F∞t+τ by

α(τ) = sup
τ
|P (A ∩B)− P (A)P (B)| .

Definition . (Strongly Mixing Process):

A time series {Xt, t ∈ T } is said to be strongly mixing (α−mixing) if α(τ)→ 0

as τ →∞. �

As we can see, this is a direct generalization of the asymptotic independence

which is defined in terms of particular events A and B related to the definition of

the joint distribution function. In the case where {Xt, t ∈ T } is an independent

process α(τ) = 0 for τ ≥ 1.

Another interesting special case defined above of a mixing process is the m −
dependent process where α(τ) = 0 for τ > m. In this sense an independent process

is a zero-dependent process. The usefulness of the concept of an m−dependent pro-

cess stems from the fact that commonly in practice any asymptotically independent

(or mixing) process can be approximated by such a process for ’large enough’ m.4

A stronger form of mixing, sometimes called uniform mixing, can be defined

in terms of the following measure of dependence:

ϕ(τ) = sup
τ
|P (A|B)− P (A)| , P (B) > 0.

Definition . (Uniformly Mixing Process):

A time series {Xt, t ∈ T } is said to be uniformly mixing (ϕ−mixing) if ϕ(τ)→ 0

as τ →∞. �

Looking at the two definitions of mixing we can see that α(τ) and ϕ(τ) define

absolute and relative measures of temporal dependence, respectively. The former is

based on the definition of dependence between two events A and B separated by τ

periods using the absolute measure

[P (A ∩B)− P (A) · P (B)] ≥ 0

4For example, the Augmented Dickey-Fuller test in an ARIMA(p, 1, q) model. See Chapter 21
for detail.
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and the latter the relative measure

[P (A|B)− P (A)] ≥ 0.

Because ϕ(τ) ≥ α(τ) (why ?),5 ϕ−mixing implies α−mixing.

3.3 Some Equivalent Implications

Definition .

A necessary condition is in the nature of a prerequisite: suppose that a statement p

is true only if another statement q is true; then q constitutes a necessary condition

of p. Symbolically, we express this as follows:

p =⇒ q

which is read:

(a). ”p only if q, ” or alternative

(b). ”if p, then q”. It is also logically correct to mean

(c). ”p implies q”, and

(d). ”p is a stronger condition than q ” and

(e). p ⊂ q.

5By definition, ϕ(τ) = [P (A|B)−P (A)] = P (A∩B)
P (B) −P (A), i.e. P (B)ϕ(τ) = P (A∩B)−P (A) ·

P (B)] = α(τ). Since 0 < P (B) < 1, we have ϕ(τ) ≥ α(τ). That is if ϕ(τ) = 0, then α(τ) must be
zero.
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4 Some Special time series

We will consider briefly several special time series which play an important role in

econometric modeling. These stochastic processes will be divided into parametric

and non-parametric process. The non-parametric process are defined in terms of

their joint distribution function or the first few joint moments. On the other hand,

parametric process are defined in terms of a generating mechanism which is com-

monly a functional form based on a non-parametric process.

4.1 Non-Parametric process

4.1.1 White Noise Process

Definition . (White Noise process):

A time series {Xt, t ∈ T } is said to be a white-noise process if

(a). E(Xt) = 0;

(b). E(XtXτ ) =

{
σ2 if t = τ
0 if t 6= τ.

�

Hence, a white-noise process is both time-homogeneous, in view of the fact that it

is a weakly-stationary process, and has no memory. In the case where {Xt, t ∈ T }
is also assumed to be normal the process is also strictly stationary.

Despite its simplicity (or because of it) the concept of a white-noise process plays

a very important role in the context of parametric time-series models to be consid-

ered next, as a basic building block.

4.1.2 Martingales Process

Definition . (Martingales Process)

Let {Xt, t ∈ T } be a time series defined on (S,F , P (·)) and let {Ft} be a sequence

of σ − fields Ft ⊂ F for all t (i.e. {Ft} is an increasing sequence of σ − fields)
satisfying the following conditions:

(a). Xt is a random variable relatives to {Ft} for all t ∈ T .

(b). E(|Xt|) <∞ for all t ∈ T .

r 2018 by Prof. Chingnun Lee 17 Ins.of Economics,NSYSU,Taiwan



Ch.12 4 SOME SPECIAL TIME SERIES

(c). E(Xt|Ft−1) = Xt−1, for all t ∈ T .

Then {Xt, t ∈ T } is said to be a martingale with respect to {Ft, t ∈ T }. �

That is, a martingale is a model of a fair game where knowledge of past events

never helps predict the mean of the future winnings and only the current event mat-

ters. In particular, a martingale is a sequence of random variables (i.e., a stochastic

process) for which, at a particular time in the realized sequence, the expectation

of the next value in the sequence is equal to the present observed value even given

knowledge of all prior observed values.

4.1.3 Markov Process

An important class of time series is that of Markov process. These process are based

on so- called Markov property that “the future” of the process, given the “present”,

is independent of the “past”.

Definition . (Markov Process):

A time series {Xt, t ∈ T } is said to be a Markov process if for every Borel function

h(Xt) ∈ B∞t (“the future”) such that

E|h(Xt)| < ∞,

E(h(Xt)|Bt−∞) = E(h(Xt|Ft−1),

where Bbα = {Ft, α < t < b}. �

4.1.4 Brownian Motion

A particular form of a Markov process with a long history in physics is the so-called

Brownian motion (or Wiener) process.

Definition (Brownian Motion):

Let (S,F ,P) be a complete probability space. Then W : S × [0, 1]→ R1 is a stan-

dard Wiener process if each of r ∈ [0, 1], W (·, r) is F -measurable, and in addition,

(a). The process starts at zero: P [W (·, 0) = 0] = 1.

(b). The increments are independent: if 0 ≤ a0 ≤ a1... ≤ ak ≤ 1, then W (·, ai) −
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W (·, ai−1) is independent of W (·, aj)−W (·, aj−1), j = 1, .., k, j 6= i for all i = 1, ..., k.

(c). The increments are normally distributed: For 0 ≤ a ≤ b ≤ 1, the increment

W (·, b)−W (·, a) is distributed as N(0, b− a). �

4.2 Parametric Stochastic Processes

The main difference between the type of time series considered so far and the one to

be considered in this section is that the latter are defined in terms of a generating

mechanism; they are “derived” stochastic processes.

4.2.1 (Weakly) Stationary Process

Definition (AR(1) Process):

A time series {Xt, t ∈ T } is said to be a autoregressive of order one (AR(1)) if it

satisfies the stochastic difference equation,

Xt = φXt−1 + ut

where φ is a constant and ut is a white-noise process. �

Definition (AR(p) Process):

A time series {Xt, t ∈ T } is said to be a autoregressive of order p (AR(p)) if it

satisfies the stochastic difference equation,

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + ut,

where φ1, φ2, ..., φp are constants and ut is a white-noise process. �

Definition (MA(q) Process):

A time series {Xt, t ∈ T } is said to be a moving average process of order q (MA(q))

if it can be expressed in the form

Xt = ut + θ1ut−1 + θ2ut−2 + ...+ θqut−q,
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where θ1, θ2, ..., θq are constants and ut is a white-noise process. �

That is, the white-noise process is used to build the process {Xt, t ∈ T }, being

a linear combination of the previous q period white noise, i.e., ut−i’s.

Definition (ARMA(p, q) Process):

A time series {Xt, t ∈ T } is said to be an autoregressive moving average process of

order p, q (ARMA(p, q)) if it can be expressed in the form

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + ut + θ1ut−1 + θ2ut−2 + ...+ θqut−q,

where φ1, φ2, ..., φp, θ1, θ2, ..., θq are constants and ut is a white-noise process. �

Definition (ARFIMA(p, d, q) Process):

A time series {Yt, t ∈ T } is said to be an fractionally autoregressive integrated

moving average process of order p, d, q (ARFIMA(p, d, q)) if it can be expressed as

a stationary ARMA(p, q) process after fractionally-differenced ”d” times:

(1− L)dYt = Xt,

and

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + ut + θ1ut−1 + θ2ut−2 + ...+ θqut−q,

where φ1, φ2, ..., φp, θ1, θ2, ..., θq are constants, |d| < 0.5 and ut is a white-noise

process. �

4.2.2 Non-Stationary Process

Definition (ARIMA(p, 1, q) Process):

A time series {Yt, t ∈ T } is said to be an autoregressive integrated moving aver-

age process of order p, q (ARIMA(p, 1, q)) if it can be expressed as a stationary

ARMA(p, q) process after first-differenced

(1− L)1Yt = Xt,

and

Xt = φ1Xt−1 + φ2Xt−2 + ...+ φpXt−p + ut + θ1ut−1 + θ2ut−2 + ...+ θqut−q,

where φ1, φ2, ..., φp, θ1, θ2, ..., θq are constants and ut is a white-noise process. �
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