
Ch.10 Autocorrelated Disturbances
(June 15, 2016)

In a time-series linear regression model setting,

Yt = x′tβ + ut, t = 1, 2, ..., T, (10-1)

a common problem is autocorrelation, or serial correlation of the disturbance ut across

periods.

Example.
See the plot of the residuals at Figure 12.1 on p. 251 of Greene 5th edition. �

1 Time-Series Data

A particularly important aspect of real observable phenomena, which the random vari-

ables concept cannot accommodate, is their time dimension; the concept of random

variable is essential static. A number of economic phenomena for which we need to

formulate probability models come in the form of dynamic processes for which we have

discrete sequence of observations in time. The problem we have to face is to extend

the simple probability model,

Φ = {f(x;θ),θ ∈ Θ},

to one which enables us to model dynamic phenomena. We have already moved in

this direction by proposing the random vector probability model

Φ = {f(x1, x2, ..., xT ;θ),θ ∈ Θ}.
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The way we viewed this model so far has been as representing different characteristics

of the phenomenon (at the same time) in question in the form of the jointly distributed

r.v.’s X1, X2, ..., XT . If we reinterpret this model as representing the same character-

istic but at successive points in time then this can be viewed as a dynamic probability

model. With this as a starting point let us consider the dynamic probability model in

the context of (S,F ,P).

1.1 The Concept of a Stochastic Process

The natural way to make the concept of a random variable dynamic is to extend its

domain by attaching a date to the elements of the sample space S.

Definition .

Let (S,F ,P) be a probability space and T an index set of real numbers and define

the function X(·, ·) by X(·, ·) : S ×T → R. The ordered sequence of random variables

{X(·, t), t ∈ T } is called a stochastic process. �

This definition suggests that for a stochastic process {X(·, t), t ∈ T }, for each t ∈ T ,

X(·, t) represents a random variable on S. On the other hand, for each s in S, X(s, ·)
represents a function of t which we call a realization of the process. X(s, t) for given

s and t is just a real number.

Three main elements of a stochastic process {X(·, t), t ∈ T } are:

(a). its range space (sometimes called the state space), usually R;

(b). the index T , usually one of R,R+ = [0,∞), and

(c). the dependence structure of the r.v.’s {X(·, t), t ∈ T }. �

In what follows a stochastic process will be denoted by {Xt, t ∈ T } (s is dropped

and X(t) is customary used as continuous stochastic process) and we are concerning

exclusively on discrete stochastic process.
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The dependence structure of {Xt, t ∈ T }, in direct analogy with the case of a

random vector, should be determined by the joint distribution of the process. The

question arises, however, since T is commonly an infinite set, do we need an infinite

dimensional distribution to define the structure of the process ?

This question was tackled by Kolmogorov (1933) who showed that when the stochas-

tic process satisfies certain regularity conditions the answer is definitely “no”. In par-

ticular, if we define the “tentative” joint distribution of the process for the subset (t1 <

t2 < ... < tT ) of T by F (Xt1 , Xt2 , ..., XtT ) = Pr(Xt1 ≤ x1, Xt2 ≤ x2, ..., XtT ≤ xT ),

then if the stochastic process {Xt, t ∈ T } satisfies the conditions:

(a). symmetry:

F (Xt1 , Xt2 , ..., XtT ) = F (Xtj1 , Xtj2 , ..., XtjT ) where j1, j2, ..., jT is any permuta-

tion of the indices 1, 2, ..., T (i.e. reshuffling the ordering of the index does not

change the distribution).

(b). Compatibility:

limxT→∞ F (Xt1 , Xt2 , ..., XtT ) = F (Xt1 , Xt2 , ..., XtT−1
) (i.e. the dimensionality of

the joint distribution can be reduced by marginalisation); �

then there exists a probability space (S,F ,P) and a stochastic process {Xt, t ∈ T } de-

fined on it whose finite dimensional distribution is the distribution F (Xt1 , Xt2 , ..., XtT )

as defined above. That is, the probability structure of the stochastic process {Xt, t ∈
T } is completely specified by the joint distribution of F (Xt1 , Xt2 , ..., XtT ) for all values

of T (a positive integer) and any subset (t1, t2, ..., tT ) of T .

1.1.1 The First Two Moment of a Stochastic Process

Given that, for a specific t, Xt is a random variable, we can denote its distribution and

density function by F (Xt) and f(Xt) respectively. Moreover the mean, variance and

higher moments of Xt (as a r.v.) can be defined as standard form as:

E(Xt) =

∫
xt

xtf(xt)dxt = µt

E(Xt − µt)2 =

∫
xt

(xt − µt)2f(xt)dxt = v2(t)

E(Xt)
r = µrt, r ≥ 1, t ∈ T .
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The linear dependence measures between Xti and Xtj

v(ti, tj) = E[(Xti − µti)(Xtj − µtj)], ti, tj ∈ T ,

is now called the autocovariance function. In standardized form

r(ti, tj) =
v(ti, tj)

v(ti)v(tj)
, ti, tj ∈ T ,

is called is autocorrelation function. These numerical characteristics of the stochas-

tic process {Xt, t ∈ T } play an important role in the analysis of the process and its

application to modeling real observable phenomena. We say that {Xt, t ∈ T } is an

uncorrelated process if r(ti, tj) = 0 for any ti, tj ∈ T , ti 6= tj.

Example .

One of the most important example of a stochastic process is the normal process. The

stochastic process {Xt, t ∈ T } is said to be normal (or Gaussian) if any finite subset of

T , say t1, t2, ..., tT , (Xt1 , Xt2 , ..., XtT ) ≡ X′T has a multivariate normal distribution, i.e.

f(Xt1 , Xt2 , ..., XtT ) = (2π)−T/2|VT |−1/2 exp[−1

2
(XT − µT )′V−1T (XT − µT )],

where

µT = E(XT ) =


µ1

µ2

.

.

.
µT

VT =


v2(t1) v(t1, t2) . . . v(t1, tT )
v(t2, t1) v2(t2) . . . v(t2, tT )

. . . . . .

. . . . . .

. . . . . .
v(tT , t1) . . . . v2(tT )

 . �

As in the case of a normal random variable, the distribution of a normal stochastic

process is characterized by the first two moment but now they are function of t.

One problem so far in the definition of a stochastic process given above is much

too general to enable us to obtain an operational probability model. In the analysis

of stochastic process we only have a single realization of the process and we will have

to deduce the value of µt and v(t) with the help of a single observation. (which is

impossible !)

The main purpose of the next three sections is to consider various special forms of

stochastic process where we can construct probability models which are manageable in

the context of statistical inference. Such manageability is achieved by imposing certain
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restrictions which enable us to reduce the number of unknown parameters involved in

order to be able to deduce their value from a single realization. These restrictions come

in two forms:

(a). restriction on the time-heterogeneity of the process; and

(b). restriction on the memory of the process.

1.2 Restricting the Time-Heterogeneity of a Stochastic Process

For an arbitrary stochastic process {Xt, t ∈ T } the distribution function F (Xt; θt) de-

pends on t with the parameter θt characterizing it being function of t as well. That is, a

stochastic process is time-heterogeneous in general. This, however, raises very difficult

issues in modeling real phenomena because usually we only have one observation for

each t. Hence in practice we will have to estimate θt on the basis of a single observa-

tion, which is impossible. For this reason we are going to consider an important class

of stationary process which exhibit considerable time-homogeneity and can be used

to model phenomena approaching their equilibrium steady − state, but continuously

undergoing “random” functions. This is the class of stationary stochastic processes.

Definition .

A stochastic process {Xt, t ∈ T } is said to be (strictly) stationary if any subset

(t1, t2, ..., tT ) of T and any τ ,

F (Xt1 , ..., XtT ) = F (Xt1+τ , ..., XtT+τ ). �

That is, the distribution of the process remains unchanged when shifted in time

by an arbitrary value τ . In terms of the marginal distributions, (strictly) stationarity

implies that

F (Xt) = F (Xt+τ ), t ∈ T ,
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and hence F (Xt1) = F (Xt2) = ... = F (XtT ). That is stationarity implies that

Xt1 , Xt2 , ..., XtT are (individually) identically distributed.

The concept of stationarity, although very useful in the context of probability the-

ory, is very difficult to verify in practice because it is defined in terms of distribution

function. For this reason the concept of the second order stationarity, defined in terms

of the first two moments, is commonly preferred.

Definition .

A stochastic process {Xt, t ∈ T } is said to be (weakly) stationary if

E(Xt) = µ for all t;

v(ti, tj) = E[(Xti − µ)(Xtj − µ)] = γ|tj−ti|, ti, tj ∈ T .

These suggest that weakly stationarity for {Xt, t ∈ T } implies that its mean and vari-

ance v2(ti) = γ0 are constant and free of t and its autocovariance depends on the

interval |tj − ti|; not ti and tj. �

Example .

Consider the normal stochastic process in the above example. With the weakly sta-

tionarity assumption, now

µT = E(XT ) =


µ
µ
.
.
.
µ

 , VT =


γ0 γ1 . . . γT−1
γ1 γ0 . . . γT−2
. . . . . .
. . . . . .
. . . . . .

γT−1 . . . . γ0

 ,

a sizeable reduction in the number of unknown parameters from T + [T (T + 1)/2] to

(T + 1). �

It is important, however, to note that even in the case of stationarity the number of

parameters increases with the size of the subset (t1, ..., tT ) although the parameters do

not depend on t ∈ T . This is because time-homogeneity does not restrict the ’memory’

of the process. In the next section we are going to consider ’memory’ restrictions in

an obvious attempt to ’solve’ the problem of the parameters increasing with the size

of the subset (t1, t2, ..., tT ) of T .
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1.3 Restricting the Memory of a Stochastic Process

In the case of a typical economic times series, viewed as a particular realization of a

stochastic process {Xt, t ∈ T } one would expect that the dependence between Xti and

Xtj would tend to weaken as the distance (tj− ti) increases. Formally, this dependence

can be described in terms of the joint distribution F (Xt1) = F (Xt2) = ... = F (XtT ) as

follows.

Definition. (Asymptotically Uncorrelated):

A time series {Xt, t ∈ T } is said to be asymptotically uncorrelated if there exists a

sequence of constants {ρ(τ), τ ≥ 1} defined by

r(t, t+ τ) =

∣∣∣∣ γt,t+τγtγt+τ

∣∣∣∣ ≤ ρ(τ), for all t ∈ T ,

such that

0 ≤ ρ(τ) ≤ 1 and
∞∑
τ=0

ρ(τ) <∞. �

1.4 Some Special Stochastic Processes

We will consider briefly several special stochastic processes which play an important

role in econometric modeling. These stochastic processes will be divided into paramet-

ric and non-parametric process. The non-parametric processes are defined in terms of

their joint distribution function or the first few joint moments. On the other hand,

parametric processes are defined in terms of a generating mechanism which is com-

monly a functional form based on a non-parametric process.
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1.4.1 Non-Parametric Process

A common used non-parametric process which forms a basis of most parametric pro-

cesses is the white noise process.

Definition .

A stochastic process {εt, t ∈ T } is said to be a white-noise process if

(a). E(εt) = 0;

(b). E(εtετ ) =

{
σ2, if t = τ
0, if t 6= τ.

�

Hence, a white-noise process is both time-homogeneous, in view of the fact that it

is a weakly-stationary process, and has no memory. In the case where {εt, t ∈ T } is

also assumed to be normal the process is also strictly stationary.

1.4.2 Parametric Stochastic Processes

The main difference between the type of time series considered, white noise and the one

to be considered in this section is that the latter are defined in terms of a generating

mechanism; they are “derived” stochastic processes from a white noise process.

Definition .

A stochastic process {ut, t ∈ T } is said to be a autoregressive of order one (AR(1))

if it satisfies the stochastic difference equation,

ut = φut−1 + εt, (10-2)

where φ is a constant and εt is a white-noise process. �

We first consider the case that |φ| < 1. Let the index set T ∗ = {0,±1,±2, ...} and

assume that X−T → 0 as T →∞. Define a lag-operator “L” by

LXt ≡ Xt−1,
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then the AR(1) process in (10-1) can be rewritten as

(1− φL)ut = εt,

or

ut = (1− φL)−1εt

= (1 + φL+ φ2L2 + ....)εt

= εt + φεt−1 + φ2εt−2 + .....

=
∞∑
i=0

φiεt−i,

from which we can deduce that

E(ut) = 0,

v(τ) = E(utut+τ ) = E

{(
∞∑
i=0

φiεt−i

)(
∞∑
j=0

φiεt+τ−j

)}

= σ2
u

(
∞∑
i=0

φiφi+τ

)

= σ2
εφ

τ

(
∞∑
i=0

φ2i

)

=
σ2
ε

(1− φ2)
· φτ , τ ≥ 0.

Hence, for |φ| < 1, the stochastic process {Xt, t ∈ T ∗} is both weakly-stationary and

asymptotically uncorrelated since the autocovariance function

v(τ) =
σ2
ε

(1− φ2)
φτ → 0, as τ →∞.

Therefore, if any finite subset of T ∗, say t1, t2, ..., tT of a AR(1) process, (ut1 , ut2 , ..., utT ) ≡
u′T has covariance matrix

E(uTu′T ) = σ2
ε

1

(1− φ2)


1 φ . . . φT−1

φ 1 φ . . φT−2

. . . . . .

. . . . . .

. . . . . .
φT−1 . . . . 1

 = σ2
ε ·Σ, (10-3)
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where

Σ =
1

(1− φ2)


1 φ . . . φT−1

φ 1 φ . . φT−2

. . . . . .

. . . . . .

. . . . . .
φT−1 . . . . 1

 .

It is straightforward to show by direct multiplication that

P′P = Σ−1,

for

P =



√
1− φ2 0 . . . 0
−φ 1 0 . . 0
0 −φ 1 0 . 0
. . . . . .
. . . . . .
0 0 . . −φ 1

 . (10-4)
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2 OLS Estimation

We showed in Section 8.1 that in the presence of autocorrelation in the disturbance,

the OLS estimator β̂ for (10-1) is unbiased and consistent. However it is inefficient

relative to the GLS estimator.

2.1 Estimating the Appropriate Covariance Matrix for OLS Estimators

Following White’s suggestion for heteroscedasticity, Newey and West’s (1987) robust,

consistent covariance of β̂ estimator for heteroscedastic and autocorrelated disturbance

(HAC) with an unspecified structure is at (8-9), repeated here,

V̂ ar(β̂)HAC

= (X′X)
−1

(
T∑
t=1

e2txtx
′
t +

L∑
l=1

T∑
t=l+1

wletet−l(xtx
′
t−l + xt−lx

′
t)

)
(X′X)

−1

(10-5)

Here, et is the tth OLS residual and

wl = 1− l

L+ 1
.

The maximum lag L must be determined in advance to be large enough that autocor-

relations at lags larger than L are small enough to ignore.

Exercise 1.
Reproduce the results at Table 12.1 on p. 267 of Greene 5th Edition.
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3 Testing for Autocorrelation

Most of the available tests for autocorrelation are based on the principle that if the

true disturbances ut are autocorrelated, this fact will be revealed through the autocor-

relation of the OLS residuals et, because

Yt = x′tβ + ut

= x′tβ̂ + et.

The simplest indicator is the slope estimator in the artificial regression

et = ret−1 + vt,

i.e.

r̂ =

∑T
t=2 etet−1∑T
t=1 e

2
t

(10-6)

If there is autocorrelation, then the slope in this regression will be an estimator

of ρ = Corr[ut, ut−1]. The complication in the analysis lies in determining a formal

means of evaluating when the estimator is “large”, that is, on what statistical basis to

reject the null hypothesis that ρ equals zero.

3.1 The Durbin-Watson Test

The most extensively used test for AR(1) disturbance is the Durbin-Watson test de-

veloped by Durbin and Watson (1950,1951). The DurbinWatson statistic was the

first formal procedure developed for testing for autocorrelation using the least squares

residuals. Before making formal statement about the test, we have the following lemma

which is used to prove this test.

Lemma .

Let z and v be T × 1 random vector such that z = Mv, where M = I−X(X′X)−1X′

and X is a T ×k nonstochastic matrix of rank k. Furthermore, let r = z′Az/z′z, where

A is a real symmetric matrix. Then
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(a). There exists an orthogonal transformation v = Hδ such that

r =

∑T−k
i=1 uiδ

2
i∑T−k

i=1 δ
2
i

, (10-7)

where u1, u2, ..., uT−k are the T − k nonzero (ordered) eigenvalues of MA, the

rest being zero and δi ∼ N(0, 1). (That is, ui is function of X. Therefore the

distribution of r is unknown.)

(b). If s of the columns of X are linear combinations of s of the eigenvectors of A and

if the eigenvalues of A associated with the remaining T − s eigenvalues of A are

renumbered so that

λ1 ≤ λ2 ≤ ... ≤ λT−s,

then

λi ≤ ui ≤ λi+k−s (i = 1, 2, ..., T − k). �

From the above lemma the following corollary can be deduced.

Corollary .

The r in (10-6) is bounded by

rL ≤ r ≤ rU ,

where

rL =

∑T−k
i=1 λiδ

2
i∑T−k

i=1 δ
2
i

,

and

rU =

∑T−k
i=1 λi+k−sδ

2
i∑T−k

i=1 δ
2
i

. �
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The importance of this results is that it set bounds on r which are independent of

X. We now turn to the test H0 : ρ = 0, of the AR(1) disturbances in the linear model:

yt = x′tβ + ut;

ut = ρut−1 + εt, t = 1, 2, ..., T,

where εt is a white noise process and −1 < ρ < 1.

The Durbin-Watson d-statistics is written as

d =

∑T
t=1(et − et−1)2∑T

t=1 e
2
t

=
e′Ae

e′e
=

∑
t=2(e

2
t − 2etet−1 + e2t−1)∑

t=1 e
2
t

' 2(1− corr(et, et−1)),

where

A =



1 −1 0 . . 0
−1 2 −1 0 . 0
0 −1 2 −1 . 0
. . . . . .
. . . . . .
. . . . . 0
. . . −1 2 −1
0 . 0 −1 1


.

Therefore a small value of d would like to reject H0 for testing a positive ρ.

The eigenvalues of A are

λi = 2

{
1− cos

π(i− 1)

T

}
, i = 1, 2, ..., T.

The eigenvector of A corresponding to the zero eigenvalues λ1 is (1, 1, ..., 1)′, which is

the regression vector corresponding to a constant term in the regression model. (Notice

that, in this discussion, as well as in the statistical table, the existence of a constant

is implicitly assumed.) From the Corollary above and using the fact that e = Mε we

have

dL ≤ d ≤ dU ,

where

dL =

∑T−k
i=1 λiδ

2
i∑T−k

i=1 δ
2
i

,

and

dU =

∑T−k
i=1 λi+k−1δ

2
i∑T−k

i=1 δ
2
i

.
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Since the λi are the same in any regression models with T observations and k re-

gressors including the constant term, the distribution of dL and dU have been computed

critical values by DW.

Three hypotheses of interest with respect to AR(1) disturbance processes are

DW(a). H0 : ρ = 0 versus H1 : ρ > 0;

DW(b). H0 : ρ = 0 versus H1 : ρ < 0; and

DW(c). H0 : ρ = 0 versus H1 : ρ 6= 0. �

For testing DW(a)., the null hypothesis is rejected if d < F (d)5% which is guar-

anteed if d < F (dL)5% for the un-availability of F (d)5%. Equivalently speak, the null

hypothesis is accepted if d > F (d)5% which is guaranteed if d > F (dU)5%.

It is important to emphasize that:

(a). the statistical tables of Durbin and Watson assume the existence of a constant,

(b). no allowance is made for missing observations, and

(c). the DW test was derived under the assumption that X is nonstochastic and thus is

not applicable, for example, when lagged values of the dependent variable appear

among the regressors. �

3.2 The Box Q test

Box and Pierce (1970)’s Q test is carried out by referring

Q = T
k∑
j=1

r̂2j (e),

where r̂j is the estimation of the jth covariance in ut from et,.i.e.

r̂j =

∑T
t=j+1 etet−j∑T

t=1 e
2
t

. (10-8)
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When the null hypothesis, ρ = 0, Q is approximately distributed as χ2
k. On the other

hand, if the null hypothesis is inappropriate, the average value of Q will be inflated. A

refinement that appears to have better finite-sample properties is the Ljung-Box (1979)

statistics:

Q′ = T (T + 2)
k∑
j=1

r̂2j (e)

T − k
.

The limiting distribution of Q′ is the same as that of Q.
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4 GLS when Σ is known

As a prelude to deriving feasible estimator for β in this model, we consider full gener-

alized least squares estimation assuming that Σ is known. In the next section, we will

turn to the more realistic case in which Σ must be estimated as well.

4.1 Generalized Least Squares Estimators

If the parameters of Σ are known, then the GLS estimator,

β̃ = (X′Σ−1X)−1X′Σ−1y

= (X′P′PX)−1X′P′Py

can be computed directly.

For the disturbance AR(1) process, ut = ρut−1 + εt, as we have shown in (10-3)

that for P′P = Σ−1,

P =



√
1− ρ2 0 . . . 0
−ρ 1 0 . . 0
0 −ρ 1 0 . 0
. . . . . .
. . . . . .
0 0 . . −ρ 1

 .

The data for the transformed model therefore are

Py =



√
1− ρ2Y1
Y2 − ρY1
Y3 − ρY2

.

.

.
YT − ρYT−1


, PX =



√
1− ρ2x′1

x′2 − ρx′1
x′3 − ρx′2

.

.

.
x′T − ρx′T−1


, (10-9)
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and

Pu =



√
1− ρ2u1
u2 − ρu1
u3 − ρu2

.

.

.
uT − ρuT−1


=



√
1− ρ2u1
ε2
.
.
.
.
εT


.

Since E(
√

1− ρ2u1)2 = σ2
ε , thus

E(Puu′P′) = σ2
εIT

as expected.

4.2 Maximum Likelihood Estimators

If the parameters of the disturbance process are known, then GLS and the maximum

likelihood estimation of the AR(1) model are equivalent. To obtain the likelihood func-

tion for normally distributed disturbances, we use the multivariate normal density.

Result.
If the parameter in the AR(1) disturbances ρ is known, then the Gaussian MLE of β

is identical to the GLS.

Proof.
From (10-3) that we assume

y = Xβ + u, E(uu′) = σ2
εΣ,

Because u ∼ N(0, σ2
εΣ) and X is nonstochastic, we view the observed sample y as

a single draw from a N(Xβ, σ2
εΣ). The sample likelihood could be written down

immediately from the formula for the multivariate Gaussian density:

fy(y;β) = (2π)−T/2
∣∣(σ2

εΣ)−1
∣∣1/2 exp

[
−1

2
(y −Xβ)′(σ2

εΣ)−1(y −Xβ)

]
= (2π)−T/2

∣∣σ−2ε P′P
∣∣1/2 exp

[
− 1

2σ2
ε

(y −Xβ)′P′P(y −Xβ)

]
,
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with log likelihood

L(β) = (−T/2) log(2π) +
1

2
log
∣∣σ−2ε P′P

∣∣− 1

2σ2
ε

(y −Xβ)′P′P(y −Xβ). (10-10)

Because

1

2
log
∣∣σ−2ε P′P

∣∣ =
1

2
log{σ−2Tε · |P′P|}

= −T
2

log σ2
ε +

1

2
log{|P′P|}

= −T
2

log σ2
ε +

1

2
log{|P′||P||}, (∵ P is symmtric)

= −T
2

log σ2
ε + log |P|

= −T
2

log σ2
ε +

1

2
log(1− ρ2). (10-11)

Substitute (10-11) and (10-9) into (10-10) we obtain that

L(β, σ2
ε) = (−T/2)[log(2π) + log σ2

ε ] +
1

2
log(1− ρ2)

−1− ρ2

2σ2
ε

(Y1 − x′1β)− 1

2σ2
ε

T∑
t=2

[(Yt − ρYt−1)− (xt − ρxt−1)′β]
2
.

(10-12)

The sums of squares terms is the residual sums of squares from the transformed

classical regression model in (10-9). If ρ is known, then the MLE solution is GLS for

β. �
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5 FGLS When Σ is Unknown

We consider specifically the case the disturbance is a AR(1) process but with an un-

known ρ.

5.1 Feasible Generalized Least Squares Estimators

For a FGLS of β, all that need is a consistent estimator of Ω(ρ). Since the OLS β̂ is

consistent, we can use the OLS residual et in the first step,

ρ̂ =

∑T
t=2 etet−1∑T
t=1 e

2
t

as a consistent estimator of ρ. With this Ω̂ = Ω(ρ̂), the FGLS is in the second step

β̌ = (X′Ω̂−1X)−1X′Ω̂−1y.

For the second step of FGLS, there are two possibilities:

(a). Full FGLS. This estimator is the Prais-Winsten (1954) estimator.

(b). FGLS omitting the first observation. This estimator was first suggested by

Cochrane and Orcutt (1949).

5.2 Maximum Likelihood Estimator

Full maximum likelihood estimators can be obtained by maximizing the log likelihood

in (10-12) with respect to β, σ2
ε , and ρ, i.e.

L∗(β, σ2
ε , ρ) = (−T/2)[log(2π) + log σ2

ε ] +
1

2
log(1− ρ2)

−1− ρ2

2σ2
ε

(Y1 − x′1β)− 1

2σ2
ε

T∑
t=2

[(Yt − ρYt−1)− (xt − ρxt−1)′β]
2
.
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The solutions are nonlinear functions and the numerical methods in Ch. 3 are needed.

However, for a given ρ, the MLE of β and σ2
ε are the usual ones, GLS. The problem

is to estimate ρ. One possibility is to search the range −1 < ρ < 1 for the value that

with the implied estimates of the other parameters maximizes L∗(β, σ2
ε , ρ), which is

analogous to the Hildreth-Lu estimator.

Exercise 2 .

Reproduce the results at Table 12.2 on p.275 of Greene 5th edition. �

Kaohsiung Harbor, Taiwan.

End of this Chapter
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