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1 Introduction

The identification process having led to a tentative formulation for the model, we

then need to obtain efficient estimates of the parameters. After the parameters have

been estimated, the fitted model will be subjected to diagnostic checks. This chapter

contains a general account of likelihood method for estimation of the parameters in

the stochastic model.

Consider an ARMA (from model identification) model of the form

Yt = c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt + θ1εt−1

+θ2εt−2 + ...+ θqεt−q,

with εt white noise:

E(εt) = 0

E(εtετ ) =

{
σ2 for t = τ
0 otherwise

.

This chapter explores how to estimate the value of (c, φ1, ..., φp, θ1, ..., θq, σ
2) on

the basis of observations on Y .

The primary principle on which estimation will be based is maximum likeli-

hood estimation. Let θ = (c, φ1, ..., φp, θ1, ..., θq, σ
2)′ denote the vector of popula-

tion parameters. Suppose we have observed a sample of size T (y1, y2, ..., yT ). The

approach will be to calculate the joint probability density

fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ), (1)

which might loosely be viewed as the probability of having observed this particular

sample. The maximum likelihood estimate (MLE) of θ is the value for which

this sample is most likely to have been observed; that is, it is the value of θ that

maximizes (1).

This approach requires specifying a particular distribution for the white noise

process εt. Typically we will assume that εt is Gaussian white noise:

εt ∼ i.i.d. N(0, σ2).
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2 MLE of a Gaussian AR(1) Process

The most important step to study the MLE is to evaluate the sample joint distri-

bution which are also called the likelihood function. In the case of identical and

independent sample, the likelihood function is just the product of marginal density

of individual sample. However, in the study of time series analysis, the depen-

dence structure of observation is specified and it is not correct to use the product

of marginal density to evaluate the likelihood function.1 To evaluate the sample

likelihood, the use of conditional density is needed as seen in the following.

2.1 Evaluating the Likelihood Function Using (Scalar) Con-
ditional Density

A stationary Gaussian AR(1) process takes the form

Yt = c+ φYt−1 + εt, (2)

with εt ∼ i.i.d. N(0, σ2) and |φ| < 1 (How do you know at this stage ?). For this

case, θ = (c, φ, σ2)′.

Consider the p.d.f. of Y1, the first observations in the sample. This is a random

variable with mean and variance

E(Y1) = µ =
c

1− φ
and

V ar(Y1) =
σ2

1− φ2
.

Since {εt}∞t=−∞ is Gaussian, Y1 is also Gaussian. That is, Y1 ∼ N(c/(1−φ), σ2/(1−
φ2)). Hence,

fY1(y1;θ) = fY1(y1; c, φ, σ
2)

=
1√

2π
√
σ2/(1− φ2)

exp

[
−1

2
· {y1 − [c/(1− φ)]}2

σ2/(1− φ2)

]
.

Next consider the distribution of the second observation Y2 conditional on the

observing Y1 = y1. From (2),

Y2 = c+ φY1 + ε2. (3)

1It is to be noticed that while εt is independently and identically distributed, Yt is not inde-
pendent, however.
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Conditional on Y1 = y1 means treating the random variable Y1 as if it were the

deterministic constant y1. For this case, (3) gives Y2 as the constant (c + φy1) plus

the N(0, σ2) variable ε2. Hence,

(Y2|Y1 = y1) ∼ N((c+ φy1), σ
2),

meaning that

fY2|Y1(y2|y1;θ) =
1√

2πσ2
exp

[
−1

2
· (y2 − c− φy1)2

σ2

]
.

The joint density of observations 1 and 2 is then just

fY2,Y1(y2, y1;θ) = fY2|Y1(y2|y1;θ)fY1(y1;θ).

Similarly, the distribution of the third observation conditional on the first two

is

fY3|Y2,Y1(y3|y2, y1;θ) =
1√

2πσ2
exp

[
−1

2
· (y3 − c− φy2)2

σ2

]
form which

fY3,Y2,Y1(y3, y2, y1;θ) = fY3|Y2,Y1(y3|y2, y1;θ)fY2,Y1(y2, y1;θ)

= fY3|Y2,Y1(y3|y2, y1;θ)fY2|Y1(y2|y1;θ)fY1(y1;θ).

In general, the value of Y1, Y2, ..., Yt−1 matter for Yt only through the value Yt−1,

and the density of observation t conditional on the preceding t − 1 observations is

given by

fYt|Yt−1,Yt−2,...,Y1(yt|yt−1, yt−2, ..., y1;θ)

= fYt|Yt−1(yt|yt−1;θ)

=
1√

2πσ2
exp

[
−1

2
· (yt − c− φyt−1)2

σ2

]
.
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The likelihood of the complete sample can thus be calculated as

fYT ,YT−1,YT−2,...,Y1(yT , yT−1, yT−2, ..., y1;θ) = fY1(y1;θ) ·
T∏
t=2

fYt|Yt−1(yt|yt−1;θ). (4)

The log likelihood function (denoted L(θ)) is therefore

L(θ) = log fY1(y1;θ) +
T∑
t=2

log fYt|Yt−1(yt|yt−1;θ). (5)

The log likelihood for a sample of size T from a Gaussian AR(1) process is seen

to be

L(θ) = −1

2
log(2π)− 1

2
log[σ2/(1− φ2)]− {y1 − [c/(1− φ)]}2

2σ2/(1− φ2)

−[(T − 1)/2] log(2π)− [(T − 1)/2] log(σ2)−
T∑
t=2

[
(yt − c− φyt−1)2

2σ2

]
. (6)

2.2 Evaluating the Likelihood Function Using (Vector) Joint
Density

A different description of the likelihood function for a sample of size T from a

Gaussian AR(1) process is some time useful. Collect the full set of observations in

a (T × 1) vector,

y ≡ (Y1, Y2, ..., YT )′.

The mean of this (T × 1) vector is

E(y) =


E(Y1)
E(Y2)
.
.
.

E(YT )

 =


µ
µ
.
.
.
µ

 = µ,
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where µ = c/(1− φ). The variance -covariance of y is

Ω = E[(y − µ)(y − µ)′] = σ2 1

(1− φ2)


1 φ . . . φT−1

φ 1 φ . . φT−2

. . . . . .

. . . . . .

. . . . . .
φT−1 . . . . 1

 = σ2V

where

V =
1

(1− φ2)


1 φ . . . φT−1

φ 1 φ . . φT−2

. . . . . .

. . . . . .

. . . . . .
φT−1 . . . . 1

 .

The sample likelihood function is therefore the multivariate Gaussian density:

fY(y;θ) = (2π)−T/2|Ω−1|1/2 exp

[
−1

2
(y − µ)′Ω−1(y − µ)

]
,

with log likelihood

L(θ) = (−T/2) log(2π) +
1

2
log |Ω−1| − 1

2
(y − µ)′Ω−1(y − µ). (7)

It should be noted that (6) and (7) must represent the identical likelihood func-

tion. It is easy to verify by direct multiplication that L′L = V−1, with

L =



√
1− φ2 0 . . . 0
−φ 1 0 . . 0
0 −φ 1 0 . 0
. . . . . .
. . . . . .
0 0 . . −φ 1

 .

Then (7) becomes

L(θ) = (−T/2) log(2π) +
1

2
log |σ−2L′L| − 1

2
(y − µ)′σ−2L′L(y − µ). (8)
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Define the (T × 1) vector ỹ to be

ỹ ≡ L(y − µ)

=



√
1− φ2 0 . . . 0
−φ 1 0 . . 0
0 −φ 1 0 . 0
. . . . . .
. . . . . .
0 0 . . −φ 1




Y1 − µ
Y2 − µ
Y3 − µ
.
.

YT − µ



=



√
1− φ2(Y1 − µ)

(Y2 − µ)− φ(Y1 − µ)
(Y3 − µ)− φ(Y2 − µ)

.

.
(YT − µ)− φ(YT−1 − µ)



=



√
1− φ2[Y1 − c/(1− φ)]

Y2 − c− φY1
Y3 − c− φY2

.

.
YT − c− φYT−1

 .

The last term in (8) can thus be written

1

2
(y − µ)′σ−2L′L(y − µ) =

[
1

2σ2

]
ỹ′ỹ

=

[
1

2σ2

]
(1− φ2)[Y1 − c/(1− φ)]2 +

[
1

2σ2

] T∑
t=2

(Yt − c− φYt−1)2.

The middle term in (8) is similarly

1

2
log |σ−2L′L| =

1

2
log{σ−2T · |L′L|}

= −1

2
log σ2T +

1

2
log |L′L|

= −T
2

log σ2 +
1

2
log{|L′||L|} (since L is triangular)

= −T
2

log σ2 + log |L|

= −T
2

log σ2 +
1

2
log(1− φ2).

Thus equation (6) and (7) are just two different expressions for the same magnitude.
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Either expression accurately describes the log likelihood function.

2.3 Exact Maximum Likelihood Estimators for the Gaus-
sian AR(1) Process

The MLE θ̂ is the value for which (6) is maximized. In principle, this requires

differentiating (6) with respect to c, φ and σ2 and setting the derivatives equal to

zero, we obtain

c = [2 + (T − 2)(1− φ)]−1

[
Y1 + (1− φ)

T−1∑
t=2

Yt + YT

]
,

[(Y1 − c)2 − (1− φ2)−1σ2]φ+
T∑
t=2

[(Yt − c)− φ(Yt−1 − c)](Yt−1 − c) = 0,

σ2 = T−1

{
(Y1 − c)2(1− φ2) +

T∑
t=1

[(Yt − c)− φ(Yt−1 − c)]2
}
.

In practice, when an attempt is made to carry this out, the result is a system of

nonlinear equation in θ and (Y1, Y2, ..., YT ) for which there is no simple solution for θ

in terms of (Y1, Y2, ..., YT ). Maximization of (6) thus requires iterative or numerical

procedure described in p.21 of Chapter 3.

2.4 Conditional Maximum Likelihood Estimation

An alternative to numerical maximization of the exact likelihood function is to

regard the value of y1 as deterministic (that is, fY1(y1) = 1) and maximize the

likelihood conditioned on the first observation

fYT ,YT−1,YT−2,..,Y2|Y1(yT , yT−1, yT−2, ..., y2|y1;θ) =
T∏
t=2

fYt|Yt−1(yt|yt−1;θ),

the objective then being to maximize

L∗(θ) = −[(T − 1)/2] log(2π)− [(T − 1)/2] log(σ2)−
T∑
t=2

[
(yt − c− φyt−1)2

2σ2

]

= −[(T − 1)/2] log(2π)− [(T − 1)/2] log(σ2)−
T∑
t=2

[
ε2t

2σ2

]
(9)
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Maximization of (9) with respect to c and φ is equivalent to minimization of

T∑
t=2

(yt − c− φyt−1)2 = (y −Xβ)′(y −Xβ), (10)

which is achieved by an ordinary least square (OLS) regression of yt on a constant

and its own lagged value, where

y =


y2
y3
.
.
.
yT

 , X =


1 y1
1 y2
. .
. .
. .
1 yT−1

 , and β =

[
c
φ

]
.

The conditional maximum likelihood estimates of c and φ are therefore given by[
ĉ

φ̂

]
=

[
T − 1

∑T
t=2 yt−1∑T

t=2 yt−1
∑T

t=2 y
2
t−1

]−1 [ ∑T
t=2 yt−1∑T
t=2 yt−1yt

]
.

The conditional maximum likelihood estimator of σ2 is found by setting

∂L∗

∂σ2
=
−(T − 1)

2σ2
+

T∑
t=2

[
(yt − c− φyt−1)2

2σ4

]
= 0

or

σ̂2 =
T∑
t=2

[
(yt − ĉ− φ̂yt−1)2

T − 1

]
=

∑T
t=2 ε̂

2
t

T − 1
.

It is important to note if you have a sample of size T to estimate an AR(1) process

by conditional MLE, you will only use T − 1 observation of this sample.
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3 MLE of a Gaussian AR(p) Process

This section discusses the estimation of a Gaussian AR(p) process,

Yt = c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt,

where all the roots of 1 − φ1L − φ2L
2 − · · · − φpLp = 0 lie outside the unit circle

and εt ∼ i.i.d. N(0, σ2). In this case, the vector of population parameters to be

estimated is θ = (c, φ1, φ2, ..., φp, σ
2)′.

3.1 Evaluating the Likelihood Function

We first collect the first p observation in the sample (Y1, Y2, ..., Yp) in a (p×1) vector

yp which has mean vector µp with each element

µ =
c

1− φ1 − φ2 − ...− φp

and variance-covariance matrix is given by

σ2Vp =



γ0 γ1 γ2 . . . γp−1
γ1 γ0 γ1 . . . γp−2
γ2 γ1 γ0 . . . γp−3
. . . . . . .
. . . . . . .
. . . . . . .

γp−1 γp−2 γp−3 . . . γ0



The density of the first p observations is then

fYp,Yp−1,...,Y1(yp, yp−1, ..., y1;θ) = (2π)−p/2|σ−2V−1p |1/2 exp

[
− 1

2σ2
(yp − µp)′V−1p (yp − µp)

]
= (2π)−p/2(σ−2)p/2|V−1p |1/2 exp

[
− 1

2σ2
(yp − µp)′V−1p (y − µp)

]
.

For the remaining observations in the sample (Yp+1, Yp+2, ..., YT ), conditional on

the first t− p observations, the tth observations is Gaussian with mean

c+ φ1yt−1 + φ2yt−2 + ...+ φpyt−p
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and variance σ2. Only the p most recent observations matter for this distribution.

Hence for t > p

fYt|Yt−1,...,Y1(yt|yt−1, ..., y1;θ) = fYt|Yt−1,..,Yt−p(yt|yt−1, .., yt−p;θ)

=
1√

2πσ2
exp

[
−(yt − c− φ1yt−1 − φ2yt−2 − ...− φpyt−p)2

2σ2

]
.

The likelihood function for the complete sample is then

fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ) = fYp,Yp−1,...,Y1(yp, yp−1, ..., y1;θ)

×
T∏

t=p+1

fYt|Yt−1,..,Yt−p(yt|yt−1, .., yt−p;θ),

and the loglikelihood is therefore

L(θ) = log fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ)

= −p
2

log(2π)− p

2
log(σ2) +

1

2
log |V−1p | −

1

2σ2
(yp − µp)′V−1p (y − µp)

−T − p
2

log(2π)− T − p
2

log(σ2)

−
T∑

t=p+1

(yt − c− φ1yt−1 − φ2yt−2 − ...− φpyt−p)2

2σ2
.

Maximization of this exact log likelihood of an AR(p) process must be accomplished

numerically.

3.2 Conditional Maximum Likelihood Estimates

The log of the likelihood conditional on the first p observation assume the simple

form

L∗(θ) = log fYT ,YT−1,..,Yp+1|Yp,...,Y1(yT , yT−1, ..yp+1|yp, ..., y1;θ)

= −T − p
2

log(2π)− T − p
2

log(σ2)

−
T∑

t=p+1

(yt − c− φ1yt−1 − φ2yt−2 − ...− φpyt−p)2

2σ2

= −T − p
2

log(2π)− T − p
2

log(σ2)−
T∑

t=p+1

ε2t
2σ2

. (11)

c© 2014 by Prof. Chingnun Lee 10 Ins.of Economics,NSYSU,Taiwan



Ch. 16 3 MLE OF A GAUSSIAN AR(P ) PROCESS

The value of c, φ1, ..., φp that maximizes (11) are the same as those that minimize

T∑
t=p+1

(yt − c− φ1yt−1 − φ2yt−2 − ...− φpyt−p)2.

Thus, the conditional MLE of these parameters can be obtained from an OLS

regression of yt on a constant and p of its own lagged values. The conditional MLE

estimator of σ2 turns out to be the average squared residual from this regression:

σ̂2 =
1

T − p

T∑
t=p+1

(yt − ĉ− φ̂1yt−1 − φ̂2yt−2 − ...− φ̂pyt−p)2.

It is important to note if you have a sample of size T to estimate an AR(p) process

by conditional MLE, you will only use T − p observation of this sample.
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4 MLE of a Gaussian MA(1) Process

This section discusses the estimation of a Gaussian MA(1) process,

Yt = µ+ εt + θεt−1 (12)

where |θ| < 1 and εt ∼ i.i.d. N(0, σ2). In this case, the vector of population param-

eters to be estimated is θ = (µ, θ, σ2)′.

4.1 Evaluating the Likelihood Function Using (Vector) Joint
Density

We collect the observations in the sample (Y1, Y2, ..., YT ) in a (T × 1) vector y which

has mean vector µ with each element µ and variance-covariance matrix given by

Ω = E(y − µ)(y − µ)′ = σ2



(1 + θ2) θ 0 . . . 0
θ (1 + θ2) θ . . . 0
0 θ (1 + θ2) . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . (1 + θ2)


.

The likelihood function is then

fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ) = (2π)−T/2|Ω|−1/2 exp

[
−1

2
(y − µ)′Ω−1(y − µ)

]
.

Using triangular factorization of the variances covariance matrix, the likelihood func-

tion can be written

fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ) = (2π)−T/2

[
T∏
t=1

dtt

]−1/2
exp

[
−1

2

T∑
t=1

ỹ2t
dtt

]
and the loglikelihood is therefore

L(θ) = log fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ)

= −T
2

log(2π)− 1

2

T∑
t=1

log(dtt)−
1

2

T∑
t=1

ỹ2t
dtt
,

where

dtt = σ2 1 + θ2 + θ4 + ...+ θ2t

1 + θ2 + θ4 + ...+ θ2(t−1)

c© 2014 by Prof. Chingnun Lee 12 Ins.of Economics,NSYSU,Taiwan



Ch. 16 4 MLE OF A GAUSSIAN MA(1) PROCESS

and

ỹt = yt − µ−
θ[1 + θ2 + θ4 + ...+ θ2t]

1 + θ2 + θ4 + ...+ θ2(t−1)
ỹt−1.

Maximization of this exact log likelihood of an MA(1) process must be accomplished

numerically.

4.2 Evaluating the Likelihood Function Using (Scalar) Con-
ditional Density

Consider the p.d.f. of Y1,

Y1 = µ+ ε1 + θε0,

the first observations in the sample. This is a random variable with mean and

variance

E(Y1) = µ

V ar(Y1) = σ2(1 + θ2).

Since {εt}∞t=−∞ is Gaussian, Y1 is also Gaussian. Hence,

Y1 ∼ N(µ, (1 + θ2)σ2)

or

fY1(y1;θ) = fY1(y1;µ, θ, σ
2)

=
1√

2π
√
σ2(1 + θ2)

exp

[
−1

2
· (y1 − µ)2

σ2(1 + θ2)

]
.

Next consider the distribution of the second observation Y2 conditional on the ”ob-

serving” Y1 = y1. From (12),

Y2 = µ+ ε2 + θε1. (13)

(Following the method in calculating the joint density of the complete sample of AR

process.) Conditional on Y1 = y1 means treating the random variable Y1 as if it were

the deterministic constant y1. For this case, (13) gives Y2 as the constant (µ+ θε1)

plus the N(0, σ2) variable ε2. However, it is not the case since observing Y1 = y1

give no information on the realization of ε1 because you can not distinguish ε1

from ε0 even after the first observation on y1.
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4.2.1 Conditional Maximum Likelihood Estimation

To make the conditional density fY2|Y1(y2|y1;θ) feasible,2 we must impose an addi-

tional assumption such as that we know with certainty that ε0 = 0.

Suppose that we know for certain that ε0 = 0. Then

(Y1|ε0 = 0) ∼ N(µ, σ2)

or

fY1|ε0=0(y1|ε0 = 0;θ) =
1√

2πσ2
exp

[
−1

2
· (y1 − µ)2

σ2

]
=

1√
2πσ2

exp

[
− ε21

2σ2

]
.

Moreover, given observation of y1, the value of ε1 is then known with certainty as

well:

ε1 = y1 − µ.

Hence

(Y2|Y1 = y1, ε0 = 0) ∼ N((µ+ θε1), σ
2),

meaning that

fY2|Y1,ε0=0(y2|y1, ε0 = 0;θ) =
1√

2πσ2
exp

[
−1

2
· (y2 − µ− θε1)2

σ2

]
=

1√
2πσ2

exp

[
− ε22

2σ2

]
.

Since ε1 is know with certainty, ε2 can be calculated from

ε2 = y2 − µ− θε1.

Proceeding in this fashion, it is clear that given knowledge that ε0 = 0, the full

sequence {ε1, ε2, ..., εT} can be calculated from {y1, y2, ..., yT} by iterating on

εt = yt − µ− θεt−1
2It means to make the information of observation on Y1 = y1 useful.
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for t = 1, 2, ..., T , starting from ε0 = 0. The condition density of the tth observation

can then be calculated as

fYt|Yt−1,Yt−2,...,Y1,ε0=0(yt|yt−1, yt−2, ..., y1, ε0 = 0;θ) = fYt|εt−1(yt|εt−1;θ)

=
1√

2πσ2
exp

[
− ε2t

2σ2

]
.

The likelihood (conditional on ε0 = 0) of the complete sample can thus be

calculated as the product of these individual densities:

fYT ,YT−1,YT−2,...,Y1|ε0=0(yT , yT−1, yT−2, ..., y1|ε0 = 0;θ)

= fY1|ε0=0(y1|ε0 = 0;θ) ·
T∏
t=2

fYt|Yt−1,Yt−2,...,Y1,ε0=0(yt|yt−1, yt−2, ..., y1, ε0 = 0;θ).

The conditional log likelihood function (denoted L∗(θ)) is therefore

L∗(θ) = log fYT ,YT−1,YT−2,...,Y1|ε0=0(yT , yT−1, yT−2, ..., y1|ε0 = 0;θ)

= −T
2

log(2π)− T

2
log(σ2)−

T∑
t=1

ε2t
2σ2

. (14)

In practice, the data implied in the log likelihood function can be calculated from

the iteration:

(Yt − µ) = (1 + θL)εt

and then we obtain (the reason why invertibility is needed) for t = 1, 2, . . . , T,

εt = (1 + θL)−1(Yt − µ)

= (Yt − µ)− θ(Yt−1 − µ) + θ2(Yt−2 − µ)− ...+ (−1)t−1θt−1(Y1 − µ) + (−1)tθtε0,

and setting εi = 0 for i ≤ 0, i.e.

ε0 = 0;

ε1 = (Y1 − µ);

ε2 = (Y2 − µ)− θ(Y1 − µ) = (Y2 − µ)− θε1;

.

.

.

εT = (YT − µ)− θ(YT−1 − µ) + θ2(YT−2 − µ)− ...+ (−1)T−1θT−1(Y1 − µ).
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Although it is simple to program this iteration by computer, the log likelihood

function is a fairly complicated nonlinear function of µ and θ, so that an analytical

expression for the MLE of µ and θ is not readily calculated. Hence even the condi-

tional MLE for an MA(1) process must be found by numerical optimization.

It is important to note if you have a sample of size T to estimate an MA(1)

process by conditional MLE, you will use all the T observation of this sample since

it is conditional on ε0 = 0 and not on first observation Y1.
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5 MLE of a Gaussian MA(q) Process

This section discusses the estimation of a Gaussian MA(q) process,

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q (15)

where all the roots of 1 + θ1L + · · · + θqL
q = 0 lie outside the unit circle and

εt ∼ i.i.d. N(0, σ2). In this case, the vector of population parameters to be esti-

mated is θ = (µ, θ1, θ2, .., θq, σ
2)′.

5.1 Evaluating the Likelihood Function

The observations in the sample (Y1, Y2, ..., YT ) in a (T × 1) vector y which has mean

vector µ with each element µ and variance-covariance matrix given by Ω.

The likelihood function is then

fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ) = (2π)−T/2|Ω|−1/2 exp

[
−1

2
(y − µ)′Ω−1(y − µ)

]
.

Maximization of this exact log likelihood of an MA(q) process must be accom-

plished numerically.

5.2 Evaluating the Likelihood Function Using (Scalar) Con-
ditional Density

Consider the p.d.f of Y1,

Y1 = µ+ ε1 + θ1ε0 + θ2ε−1 + ...+ θqε−q+1.

A simple approach is to condition on the assumption that the first q value of ε were

all zero:

ε0 = ε−1 = ... = ε−q+1 = 0.

Let ε0 denote the (q × 1) vector (ε1, ε−1, ..., ε−q+1)
′ . Then

(Y1|ε0 = 0) ∼ N(µ, σ2)

or

fY1|ε0=0(y1|ε0 = 0;θ) =
1√

2πσ2
exp

[
−1

2
· (y1 − µ)2

σ2

]
=

1√
2πσ2

exp

[
− ε21

2σ2

]
.
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Next consider the distribution of the second observation Y2 conditional on the

”observing” Y1 = y1. From (15),

Y2 = µ+ ε2 + θ1ε1 + θ2ε0 + ...+ θqε−q+2. (16)

Moreover, given observation of y1, the value of ε1 is then known with certainty as

well:

ε1 = y1 − µ and ε0 = ε−1 = ... = ε−q+2 = 0.

Hence

(Y2|Y1 = y1, ε0 = 0) ∼ N((µ+ θ1ε1), σ
2),

meaning that

fY2|Y1, ε0=0(y2|y1, ε0 = 0;θ) =
1√

2πσ2
exp

[
−1

2
· (y2 − µ− θ1ε1)2

σ2

]
=

1√
2πσ2

exp

[
− ε22

2σ2

]
.

Since ε1 is know with certainty, ε2 can be calculated from

ε2 = y2 − µ− θ1ε1.

Proceeding in this fashion, it is clear that given knowledge that ε0 = 0, the full

sequence {ε1, ε2, ..., εT} can be calculated from {y1, y2, ..., yT} by iterating on

εt = yt − µ− θ1εt−1 − θ2εt−2 − ...− θqεt−q

for t = 1, 2, ..., T , starting from ε0 = 0. The likelihood (conditional on ε0 = 0) of the

complete sample can thus be calculated as the product of these individual densities:

fYT ,YT−1,YT−2,...,Y1|ε0=0(yT , yT−1, yT−2, ..., y1|ε0 = 0;θ)

= fY1|ε0=0(y1|ε0 = 0;θ) ·
T∏
t=2

fYt|Yt−1,Yt−2,...,Y1,ε0=0(yt|yt−1, yt−2, ..., y1, ε0 = 0;θ).
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The conditional log likelihood function (denoted L∗(θ)) is therefore

L∗(θ) = log fYT ,YT−1,YT−2,...,Y1|ε0=0(yT , yT−1, yT−2, ..., y1|ε0 = 0;θ)

= −T
2

log(2π)− T

2
log(σ2)−

T∑
t=1

ε2t
2σ2

. (17)

It is important to note if you have a sample of size T to estimate an MA(q) process

by conditional MLE, you will also use all the T observation of this sample.
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6 MLE of a Gaussian ARMA(p, q) Process

This section discusses a Gaussian ARMA(p, q) process,

Yt = c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q,

where all the roots of 1 − φ1L − · · · − φpLp = 0 and 1 + θ1L + · · · + θqL
q = 0 lie

outside unit circle and εt ∼ i.i.d. N(0, σ2). In this case, the vector of population

parameters to be estimated is θ = (c, φ1, φ2, ..., φp, θ1, θ2, ..., θq, σ
2)′.

6.1 Conditional maximum Likelihood estimates

The approximation to the likelihood function for an autoregrssion conditional on

initial value of the y′s. The approximation to the likelihood function for a moving

average process conditioned on initial value of the ε’s. A common approximation

to the likelihood function for an ARMA(p, q) process conditions on both y’s and ε’s.

The (p+ 1)th observation is

Yp+1 = c+ φ1Yp + φ2Yp−1 + ...+ φpY1 + εp+1 + θ1εp + ...+ θqεp−q+1.

Conditional on Y1 = y1, Y2 = y2, ..., Yp = yp and setting εp = εp−1 = ... = εp−q+1 = 0

we have

Yp+1 ∼ N((c+ φ1Yp + φ2Yp−1 + ...+ φpY1), σ
2).

Then the conditional likelihood calculated from t = p+ 1, ..., T is

L∗(θ) = log f(yT , yT−1, ..yp+1|yp, ..., y1, εp = εp−1 = ... = εp−q+1 = 0;θ)

= −T − p
2

log(2π)− T − p
2

log(σ2)−
T∑

t=p+1

ε2t
2σ2

, (18)

where the sequence {εp+1, εp+2, ..., εT} can be calculated from {y1, y2, ..., yT} by it-

erating on

εt = Yt − c− φ1Yt−1 − φ2Yt−2 − ...− φpYt−p − θ1εt−1 − θ2εt−2 − ...− θqεt−q,

t = p+ 1, p+ 2, ..., T.

It is important to note if you have a sample of size T to estimate an ARMA(p, q)
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process by conditional MLE, you will only use the T − p observation of this sample.

From (9),(11),(14),(17), and (18) we see that all the conditional log-likelihood

function take a concise form

−T
∗

2
log(2π)− T ∗

2
log(σ2)−

T∑
t=t∗

[
ε2t

2σ2

]
,

where T ∗ and t∗ is the appropriate total and first observations used, respectively. The

solution to the conditional log-likelihood function θ̂ is also called the conditional

sums of squared estimator, CSS, denoted as θ̂CSS.
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7 Numerical Optimization

Refer to p.21 of Chapter 3.

8 Statistical Properties of MLE

(a). Refer to p.23 of Chapter 3 for the consistency, asymptotic normality and

asymptotic efficiency of θ̂MLE.

(b). Refer to p.25 of Chapter 3 for three methods of estimating the asymptotic

variance of θ̂MLE.

(c). Refer to p.9 of Chapter 5 for three asymptotic equivalent tests relating to θ̂MLE.

(d). For an large number of observations the CSS estimators will be equivalent to

MLE. See Pierce (1971), “Least square estimation of a mixed autoregressive-

moving average process”, Biometrika 58: pp. 299-312.

Exercise:

Use the data I give to you, identify what model it appears to be and estimate

the model you identify with CSS.
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