
Ch. 16 Stochastic Model Building
April 8, 2014

Unlike linear regression model which usually has already an economic theoretic

model built somewhere in economic literature, the parametric time series analysis

of a stochastic process needs the ability to relating a stationary ARMA model to

real data. It is usually best achieved by a three-stage iterative procedure based on

model identification, estimation, and diagnostic checking as suggested by Box

and Jenkins (1976).

1 Model Identification

By identification we mean the use of the data, and of any information on how

the series was generated, to suggest a subclass of parsimonious model worthy to

be entertained. We usually transform the data, if necessary, so the assumption of

covariance stationarity is a reasonable one. We then at this stage make an initial

guess of small values of p and q for an ARMA(p, q) model that might describe the

transformed data.

1.1 Identifying the degree of Difference

Trend stationary or difference stationary ? See Ch. 19.
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Ch. 16 1 MODEL IDENTIFICATION

1.2 Use of the Autocorrelation and Partial Autocorrelation
Function in Identification

1.2.1 Autocorrelation

Recall that if the data really follow an MA(q) process, then its (population) auto-

correlation rj(= γj/γ0) will be zero for j > q. By contrast, if the data follow an

AR(p) process, then rj will gradually decay toward zero as a mixture of exponential

or damped sinusoids. On guide for distinguishing MA and AR representation, then,

would be the decay properties of rj. It is useful to have a rough check on whether

rj is effectively zero beyond a certain lag.

A natural estimate of the population autocorrelation rj is provided by the cor-

responding sample moment (remember at this stage, you still have no “model” to

estimate, so it is natural to use moment estimator):

r̂j =
γ̂j
γ̂0
,

where

γ̂j =
1

T

T∑
t=j+1

(Yt − Ȳ )(Yt−j − Ȳ ) for j = 0, 1, 2, ..., T − 1

and

Ȳ =
1

T

T∑
t=1

Yt.

If the data were really generated by a Gauss MA(q) process, then the covariance

of the estimated autocorrelation r̂j, could be approximated by (see Box et al. (1994),

p. 33)

V ar(r̂j) ∼=
1

T

{
1 + 2

q∑
i=1

r2i

}
for j = q + 1, q + 2, ... (1)

To use (1) in practice, the estimated autocorrelation r̂j (j = 1, 2, ..., q) are sub-

stituted for the theoretical autocorrelation rj, and when this is done we shall refer

to the square root of (1) as the large − lag standard error. In particular, if we

suspect that the data were generated by Gaussian white noise, then r̂j ∼ N(0, 1/T )

for j 6= 0, that is r̂j should lie between ±2/
√
T about 95% of the time.
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Ch. 16 1 MODEL IDENTIFICATION

Example:

The following estimated autocorrelations were obtained from a time series of

length T = 200 observations, generated from a stochastic process for which it was

known that r1 = −0.4 and rj = 0 for j ≥ 2:

r̂1 = −0.38, r̂2 = −0.08, r̂3 = 0.11, r̂4 = −0.08, r̂5 = 0.02, r̂6 = 0.00, r̂7 = 0.00,

r̂8 = 0.00, r̂9 = 0.07 and r̂10 = −0.08.

On the assumption that the series is complete random: H0 : rj = 0, ∀ j, then

for all j, (1) yields

V ar(r̂1) ∼=
1

T
=

1

200
= 0.005.

Under the null hypothesis,

r̂1 ∼ N(0, 0.005)

or the 95% confidence interval is

−2 <
r̂1√

0.005
< 2

≡ −0.14 < r̂1 < 0.14.

Since the value of estimated r̂1 is −0.38, which is outside the confidence interval, it

can be conclude that the hypothesis that rj = 0,∀j is rejected.

It might be reasonable to ask next whether the series was compatible with the

hypothesis that r1 6= 0, rj = 0, j ≥ 2. Using (1) with q = 1, the estimated large-lag

variance under this assumption is

V ar(r̂2) ∼=
1

200
[1 + 2(−0.38)2] = 0.0064.

Under the null hypothesis H0 : r2 = 0:

r̂2 ∼ N(0, 0.0064)

or the 95% confidence interval is

−2 <
r̂2√

0.0064
< 2

≡ −0.16 < r̂2 < 0.16.
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Ch. 16 1 MODEL IDENTIFICATION

Since the value of estimated r̂2 is −0.08, which is lying in the confidence interval,

there is no reason to doubt the adequacy of the model r1 6= 0, rj = 0, j ≥ 2. �

Similar approximate expressions as (1) for the covariance between the estimated

correlation rk and rk+s at two different lags k and ks have been given by Bartlett.

In particular, the large-lag approximation reduces to

Cov(r̂k, r̂k+s) ∼=
1

T

q∑
v=−q

rvrv+s for j = q + 1, q + 2, ....

Bartlett’s results show that care is required in the interpretation of individual au-

tocorrelations because large covariance can exist between neighboring values. This

effect can sometimes distort the visual appearance of the autocorrelation function,

which may fail to damp out according to expectation. Thus patterns in the esti-

mated r̂j may represent sampling error rather than patterns in the true rj.

1.2.2 Partial Autocorrelation Function

In the AR(1) process, Yt and Yt−2 are correlated even though Yt−2 does not directly

appear in the model. The correlation between Yt and Yt−2 (i.e., γ2) is equal to the

correlation between Yt and Yt−1 (i.e., γ1) multiplied by the correlation between Yt−1

and Yt−2 (i.e., γ1 again) so that γ2 = γ21 . It is important to note that all such “indi-

rect” correlation are present in the ACF of any autoregressive process. In contrast,

the partial autocorrelation between Yt and Yt−s eliminates the effects of the in-

tervening values Yt−1 through Yt−s+1. As such, in an AR(1) process, the partial

autocorrelation between Yt and Yt−2 is equal to zero.

Definition (Partial Autocovariance):

The partial correlation between Yt and Yt−m is the simple covariance between Yt

and Yt−m minus that part explained linear by the intervening lags. That is,

γparm = Cov[Yt − P̂ (Yt|Yt−1, ..., Yt−m+1), Yt−m].

The partial autocorrelation is therefore rparm = γparm

γ0
.

Theorem:
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The partial autocorrelation between Yt and Yt−m is the last coefficient in the

linear projection of Yt on (Yt−1, Yt−2, ..., Yt−m).

Proof:

The forecast error of the linear projection of Yt on (Yt−1, Yt−2, ..., Yt−m), εt is:

εt = Yt − P̂ (Yt|Yt−1, ..., Yt−m) = Yt − α1Yt−1 − α2Yt−2 − ...− αm−1Yt−m+1 − rparm Yt−m (2)

which is uncorrelated with (Yt−1, Yt−2, ..., Yt−m). From (2) we get

(Yt − α1Yt−1 − α2Yt−2 − ...− αm−1Yt−m+1) = rparm Yt−m + εt. (3)

Multiply both side of (3) by Yt−m and take expectation we further have

E[Yt−m · (Yt − α1Yt−1 − α2Yt−2 − ...− αm−1Yt−m+1)] = E[Yt−m · (rparm Yt−m + εt)], (4)

i.e.

Cov[Yt − P̂ (Yt|Yt−1, ..., Yt−m+1), Yt−m] ≡ γparm = rparm γ0

That is

rparm =
γparm

γ0
,

as the definition of partial autocorrelation. �

The partial autocorrelation is a device to exploits the fact that whereas an AR(p)

has an autocorrelation function which is infinite in extent, it can by its very nature

be described in terms of p nonzero functions of the autocorrelations. The mth

population partial autocorrelation (denoted α
(m)
m ) is defined as the last coefficient in

a linear projection of Y on its m most recent value:

Ŷt+1|t − µ = α
(m)
1 (Yt − µ) + α

(m)
2 (Yt−1 − µ) + ...+ α(m)

m (Yt−m+1 − µ). (5)

We saw in (16) of Chapter 15 that the vector α(m) can be calculated from

α
(m)
1

α
(m)
2

.

.

.

α
(m)
m


=


γ0 γ1 . . . γm−1
γ1 γ0 . . . γm−2
. . . . . .
. . . . . .
. . . . . .

γm−1 γm−2 . . . γ0



−1 
γ1
γ2
.
.
.
γm

 .
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Recall that if the data were really generated by an AR(p) process, only the p

most recent values of Y would be useful for forecasting. In this case, the projection

coefficients on Y ’s more than p periods in the past are equal to zeros:

α(m)
m = 0 for m = p+ 1, p+ 2, ...

By contrast, if the data really were generated by an MA(q) process with q ≥ 1,

then the partial autocorrelation α
(m)
m asymptotically approaches zero instead of cut-

ting off abruptly.

Since forecast error εt+1 is uncorrelated with xt, we could rewrite (2) as

Yt+1 − µ = α
(m)
1 (Yt − µ) + α

(m)
2 (Yt−1 − µ) + ...+ α(m)

m (Yt−m+1 − µ) + εt+1, t ∈ T

or

Yt − µ = α
(m)
1 (Yt−1 − µ) + α

(m)
2 (Yt−2 − µ) + ...+ α(m)

m (Yt−m − µ) + εt, t ∈ T . (6)

The reason why the quantity α
(m)
m defined through (2) is called the partial autocor

-relation of the process {Yt} at lag m is clear from (3), since it is actually equal

to the partial correlation between the variable Yt and Yt−m adjusted for the inter-

mediate variables Yt−1, Yt−2, ..., Yt−m+1, and α
(m)
m measures the correlation between

Yt and Yt−m after adjusting for the effect of Yt−1, Yt−2, ..., Yt−m+1 (or the correlation

between Yt and Yt−m not account for by Yt−1, Yt−2, ..., Yt−m+1). See the counterpart-

result from sample on p.6 of Chapter 6.

A natural estimate of the mth partial autocorrelations is the last coefficients in

an OLS regression of Y on a constant and its m most recent values:

Yt = ĉ+ α̂
(m)
1 Yt−1 + α̂

(m)
2 Yt−2 + ...+ α̂(m)

m Yt−m + êt, (7)

where êt denotes the OLS regression residual. If the data were really generated by

an AR(p) process, then the sample estimate α̂
(m)
m would have a variance around the

true value (0) that could be approximated by (see Box et al. 1994, p.68)

V ar(α̂(m)
m ) ∼=

1

T
for m = p+ 1, p+ 2, ...

Example:

See Example 4.1 on p. 112 of Hamilton. (The standard error of Figure 4.2 (a)

may be wrong for it is only the standard error of H0 : rj = 0 j ≥ 1.)

c© 2014 by Prof. Chingnun Lee 6 Ins.of Economics,NSYSU,Taiwan



Ch. 16 1 MODEL IDENTIFICATION

Exercise:

Let Yt = −0.7Yt−1 + εt − 0.7εt−1. Calculate the first 9 autocorrelations, rj, j =

1, 2, .., 9 and the first 8 partial autocorrelations, rpari , i = 1, 2, ..., 8 of Yt.
1

1.3 Use of Model Selection Criteria

Another approach to model selection is the use of information criteria such as the

Akaike Information Criterion (AIC) proposed by Akaike (1974) or the Schwartz

Bayesian Criterion (SBC) of Schwartz (1978). In the implementation of this ap-

proach, a range of potential ARMA models is estimated by maximum likelihood

methods to be discussed in Chapter 17, and for each, a criterion such as mimizing

AIC (normalized by sample size T , given by

AICp,q =
−2 ln(maximized likelihood) + 2m

T
≈ ln(σ̂2) +

2m

T

or mimizing the related SBC given by

BICp,q = ln(σ̂2) +
m ln(T )

T

1Hint: The partial autocorrelation rpar2 can be calculated from multiplying Yt−1 and Yt−2 on

Yt = α
(2)
1 Yt−1 + α

(2)
2 Yt−2 + εt

and take expectation to obtain

E(Yt−1Yt) = α
(2)
1 E(Yt−1Yt−1) + α

(2)
2 E(Yt−1Yt−2) + E(Yt−1εt)

E(Yt−2Yt) = α
(2)
1 E(Yt−2Yt−1) + α

(2)
2 E(Yt−2Yt−2) + E(Yt−2εt),

i.e.

γ1 = α
(2)
1 γ0 + α

(2)
2 γ1

γ2 = α
(2)
1 γ1 + α

(2)
2 γ0

or

r1 = α
(2)
1 + α

(2)
2 r1 (8)

r2 = α
(2)
1 r1 + α

(2)
2 . (9)

Solving (8) and (9) we have

rpar2 = α
(2)
2 =

r2 − r21
1− r21

.
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Ch. 16 3 MODEL DIAGNOSTIC CHECKING

is evaluated, where σ̂2 denotes the maximum likelihood estimate of σ2, and m =

p+q+1 denotes the number of parameters estimated in the model, including a con-

stant term. In the criteria above, the first term essentially corresponds to minus 2/T

times the log of the maximized likelihood, while the second term is a ”penalty fac-

tor” for inclusion of additional parameters in the model. In the information criteria

approach, models that yield a minimum value for the criterion are to be preferred,

and the AIC or SBC values are compared among various model as the basis for

selection of the models. However, one immediate disadvantage of this approach is

that several models may have to be estimated by MLE, which is computationally

time consuming and expensive. For this reason, Hannan and Rissanen (1982) pro-

pose an alternative model selection procedure. See Box and Jenkins (1994), p. 201

for details.

2 Model Estimation

By estimation we mean efficient use of the data to make inference about param-

eters conditional on the adequacy of the model entertained. See Chapter 17 for

details.

3 Model Diagnostic Checking

By diagnostic checking we mean checking the fitted model in its relation to the

data with intent to reveal model inadequacies and so to achieve model improvement.

Suppose that using a particular time series, the model has been identified and

the parameters estimated using the methods described in Chapter 17. The question

remains (unlike the regression analysis where an economic or finance model is pro-

vided by theoretical literature) of deciding whether this model is adequate. If there

should be evidence of serious inadequacy, we shall need to know how the model

should be modified. By reference to familiar procedures outside time series analysis,

the scrutiny of residuals for the analysis of variance would be called diagnostic checks.
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3.1 Diagnostic Checks Applied to residuals

It cannot be too strongly emphasized that visual inspection of a plot of the residual

is an indispensable first step in the checking process.

3.1.1 Autocorrelation Check

Suppose we have identified and fitted a model

φ(L)Yt = θ(L)εt

with MLE estimator (φ̂, θ̂) obtained for the parameters. Then we shall refer the

quantities

ε̂t = θ̂−1(L)φ̂(L)Yt

as the residuals. The residuals are computed recursive from θ̂(L)ε̂t = φ̂(L)Yt as

ε̂t = Yt −
p∑
j=1

φ̂jYt−j +

q∑
j=1

θ̂j ε̂t−j t = 1, 2, ..., T

using either zero initial values (conditional method) or back-forecasted initial value

(exact method) for the initial ε̂′s and Y ′s.

Now it is possible to show that if the model is adequate,

ε̂t = εt +O

(
1√
T

)
. (read as big O T−1/2, it means this term

has to multiply T 1/2 to be bounded. That is, it converges to zero itself !)

As the series length increase, the ε̂t’s become close to the white noise εt’s. There-

fore, one might expect that study of the ε̂t’s could indicate the existence and nature

of model adequacy. In particular, recognizable patterns in the estimated autocor-

relations function of the ε̂t’s, r̂j(ε̂), and using (1), could point out to appropriate

modification in the model.

3.1.2 Portmanteau Lack-of-Fit Test

Rather than consider the r̂j(ε̂)’s individually, an indication is often needed of whether,

say, the first 20 autocorrelations of the ε̂t’s taken as a whole, indicating inadequacy of

the model. Suppose we have the first k autocorrelation r̂j(ε̂), j = 1, 2, ..., k form any
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ARMA(p, q) process; then it is possible to show that if the model is appropriate,2

the Box-Pierce (1970) Q statistics

Q = T

k∑
j=1

r̂2j (ε̂),

is approximately distributed as χ2
k. On the other hand, if the model is inappropriate,

the average value of Q will be inflated. A refinement that appears to have better

finite-sample properties is the Ljung-Box (1979) statistics:

Q′ = T (T + 2)
k∑
j=1

r̂2j (ε̂)

T − k
.

The limiting distribution of Q′ is the same as that of Q.

3.1.3 Normality Test

The section considers the general problem of using the moments of the fitted resid-

uals to make inference about the distribution of the true disturbances.

The natural estimator of

µr = E(εr)

would be

mr =
1

T

T∑
t=1

ε̂rt .

The normal distribution is symmetric and mesokurtic. The symmetry implies

that the third moment E(ε3) is zero. The standard measure of symmetry of a

distribution is the skewness coefficient,

√
α1 =

E(ε3)

(σ2)3/2
.

Kurtosis is a measure of the thickness of the tails of a distribution. The measure is

α2 =
E(ε4)

(σ2)2
,

2Here, k is chosen sufficiently large so that the weight ϕj in the model written in the form

Yt = φ(L)−1θ(L)εt = ϕ(L)εt

will be negligible small after j = k.
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Ch. 16 3 MODEL DIAGNOSTIC CHECKING

which is 3 for a normal distribution. Therefore, we might compare a distribution

with the normal distribution by comparing this skewness with zero and its kurtosis

to three. In practice, the usual measure is the degree of excess, (α2 − 3). Bera

and Jarque (1980) use this device in a Wald test statistics. Under the hypothesis of

normality, the test statistics would be

W = T

[
a1
6

+
(a2 − 3)2

24

]
L−→ χ2

2,

where a1 and a2 are replacing µr with mr in α1 and α2, respectively. In large sam-

ples, W is distributed as chi-squared with two degrees of freedom.

Exercise:

Build up a stochastic model to the data set I give to you from Box-Jenkins

procedure.

c© 2014 by Prof. Chingnun Lee 11 Ins.of Economics,NSYSU,Taiwan


