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Can dividend yields out-predict stock returns without short rates? Using
monthly data of the UK over the period of 1923–2007, in this paper we
investigate both in- and out-of-sample predictability of stock returns
based on dividend yields. Empirical results indicate that the predictability
of UK’s stock returns is visible without short rates if the forecast horizon
is greater than four months. The above finding is new in literature and
results from adopting a long data set and a non-linear modeling strategy.

1 Introduction

Since the seminal papers by Campbell and Shiller (1988) and Fama and
French (1988), a central research topic in empirical financial economics over
the past 30 years has been the predictability of stock returns.1 Most literature
related to return predictability has relied on a long-horizon regression equa-
tion with dividend yields or price-earning ratios as a regressor. The ‘conven-
tional wisdom’ in literature is that valuation ratios predict stock returns, and
the predictability is stronger for longer horizons (Campbell, 1991; Cochrane,
1992; Campbell et al., 1997).

Small sample bias and serial correlation in residuals are two well-known
technical problems inherent in long-horizon regressions. Considering these
two problems, the evidence of return predictability becomes weaker (Goetz-
mann and Jorion, 1993; Nelson and Kim, 1993; Ang and Bekaert, 2007).
Robertson and Wright (2006) argue that the reason could be due to a mis-
measurement of valuation ratios, and their study finds in-sample evidence of
long-horizon return predictability after constructing a new cash-flow yield.

Although stock returns are in-sample predictable at long horizons, many
articles have found that out-of-sample predictability is much weaker (Goyal
and Welch, 2003; Lettau and Van Nieuwerburgh, 2008). Rapach et al. (2005)

* Manuscript received 17.08.10; final version received 10.03.10.
1Campbell and Shiller (1988) find that valuation ratios, such as dividend yields, on aggregate

stock portfolios predict expected stock returns when forecast horizons are long.
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find evidence of out-of-sample return predictability in short horizons if
short-term interest rates are included. Several authors also emphasize the
significance of modeling financial variables with a non-linear framework
(Rapach and Wohar, 2005; Coakley and Fuertes, 2006; Paye and Timmer-
mann, 2006; McMillan, 2007; Lettau and Van Nieuwerburgh, 2008).
Whether non-linear modeling strategy allows for out-predicting UK stock
returns at short horizons without short rates is an interesting topic. This
paper applies an exponential smooth transition autoregressive model to
describe the dynamics of dividend yields and then examine if a conventional
return prediction equation beats random walks in out-of-sample contests.

Applying UK’s monthly data over the period of 1923–2007, empirical
results show that the predictability of UK’s stock returns is visible without
short rates if the forecast horizon is greater than four months. The simulation
analysis of this paper points out that bootstrap tests have the correct size and
achieve a reasonably high power and the main results of this paper are not
affected significantly if an alternative moving block bootstrap is applied.
Rapach et al. (2005) and Ang and Bekaert (2007) find evidence of return
predictability in short horizons if short-term interest rates are included.
Results of this paper contrast with the above two papers and two reasons are
responsible for these differences. First, the modeling strategy of this study is
notably non-linear instead of linear. Second, the sample period is much
longer than that of existing literature, increasing the number of observations
in out-of-sample contests and hence the power of out-of-sample statistics.

This paper is organized as follows. Section 2 describes the empirical
methodology. Section 3 provides the results of return predictability based
upon in- and out-of-sample tests. Section 4 investigates powers and sizes of
bootstrap tests based on a residual bootstrap. It also examines if our findings
based on residual bootstrap are robust to an alternative moving block boot-
strap provided by Künsch (1989). Finally, Section 5 summarizes major
conclusions.

2 Empirical Methodology

Existing literature typically uses the long-horizon predictive regression model
to examine the predictability of stock prices indicated below:

r w k jk t
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k
j
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j

t t k
j
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where, rk t
j
, is the jth, k horizon real stock return between t and t + k, and wt is

the dividend yield in log-levels constructed as the deviation of real dividend in
log-levels from the real stock price in log-levels (pt), hence wt = dt - pt. This
paper investigates two different returns: aggregate and excess returns. The
aggregate return (rk t,

1 ) includes both dividends and capital gains, and the
excess return (rk t,

2 ) is constructed by subtracting a risk-free interest rate (rt
f )

from the aggregate return. Let r P D Pt t t t1
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Pt and Dt are the real stock price and dividend payout, respectively, then the
stock return with a horizon k is r rk t

j
i
k

t i
j

, ,≡ ∑ = + −1 1 1 for j = 1, 2 and k = 1, 2, . . . .
The theoretical justification of equation (1) derives from the implication

of Gordon’s (1962) growth model which states that the long-run equilibrium
dividend yield is a constant determined by the mean real discount rate and the
mean growth rate of real dividends.2 If real stock prices are low relative to real
dividends, then investors expect stock prices to eventually adjust to restore
the long-run equilibrium between stock prices and fundamental values.
Therefore, a stable dividend yield provides an apparently plausible explana-
tion for stock return predictability.

Based on equation (1), the non-predictability of stock returns can be
examined by testing the hypothesis of bk = 0 versus bk > 0 for a given
forecast horizon of k. The estimate of bk is subject to the problem of finite-
sample bias since the innovations of dividend yields and returns may be
correlated (Keim and Stambaugh, 1986). Therefore, the t statistic of bk,
t(k), does not have the conventional distribution. This work constructs the
finite-sample distribution of t statistics and a joint statistic tmax (max{t(k): k
= 1, 3, 4, 6, 9, 12, 24, 36, 48, 60}) through a residual bootstrap described in
Appendix A.

The current study examines out-of-sample return predictability by
testing the hypothesis of equal accuracy of forecast errors from equation (1)
and a random walk benchmark. Conventionally, researchers apply t- and
F-type Diebold–Mariano statistics, provided by Diebold and Mariano (1995)
and Clark and McCracken (2001, 2004), to examine the null hypothesis of
equal accuracy of forecasts when the two models are nested. The above
Diebold–Mariano statistics use the mean square prediction error to test the
hypothesis of no-predictability of stock returns. Clark and West (2006, 2007)
point out that under the null hypothesis of no predictive ability, the mean
square prediction error of the null model should be smaller than that of the
alternative model. They therefore suggest using the mean square prediction
error-adjusted series to test the non-predictability hypothesis, denoted as the
CW test. The limiting distribution of the CW statistic and the joint statistic
CWmax (max{CW(k): k = 1, 3, 4, 6, 9, 12, 24, 36, 48, 60}) is not standard, and
hence its finite-sample distribution is simulated through the bootstrap.3

Conventional literature assumes that dividend yields follow a linear
autoregressive process. Rapach and Wohar (2005) point out that the pattern

2The basic stock price valuation model points out that the current stock price is equal to the
present values of the next period’s expected stock price and dividend: Pt = Et[pt+1 + Dt+1)/(1
+ rt+1)], where rt+1 is the real discount rate. After assuming that both the real discount rate
and real dividend growth are constant, and that there is no bubble solution, we solve the
above equation for the stock price by forward induction. The resulting long-run equilib-
rium dividend yield (w*) is a function of mean real discount rate (r) and the mean growth
of real dividends (g): w* = log[(r - g)/(1 + g)].

3The bootstrap procedures are similar to those described in Appendix A. The only difference is
that we construct the CW statistic in the third step.
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of return predictability will be consistent with that of power if assuming
non-linear dynamics of dividend yields. This work therefore assumes that
dividend yields follow a second-order, non-linear exponential smooth tran-
sition autoregressive (ESTAR(2)) model given as follows:4

w b w b w b F w b ut t t t t= + ∗ −( ) + −( )∗ −( )[ ]∗ [ ]+− − −α α θ1 2 11 , ,

(2)F w b w b ut t t− −[ ] = −( )⎡⎣ ⎤⎦ ( ) <1 1
2 20 0, , exp . . . ,θ θ σ θ∼ i i d

where F[wt-1, q, b] is a transition function bounded between zero and one. In
the case where the deviation of the dividend yield from its long-run equilib-
rium (b) is small, the value of F is close to one, and the dividend yield is highly
persistent. Otherwise, it is stationary.

Financial markets may be characterized by non-linear behavior resulting
from market friction and transaction costs (Dumas, 1992; Sercu et al., 1995),
and the interaction between heterogeneous traders (Poterba and Summers,
1986; Shleifer and Summers, 1990; Gallagher and Taylor, 2001). Given the
actions of noise traders, the perceived deviations of asset prices from their
fundamental value represent risky arbitrage opportunities. Arbitrage in stock
markets will be observed only when perceived price deviations are large, since
small price deviations imply that the perceived gains may be too small to
outweigh this risk. The above risk arbitrage hypothesis implies non-linear
dynamics of asset prices.

3 Empirical Investigation

3.1 Data Description

This study obtains monthly data for the consumer price index, stock prices
and dividends for the UK over the period of 1923–2007 from Global Finan-
cial Data. Dividend yields are constructed by dividing the dividend through
the stock price. The UK stock price is the real Financial Times Stock
Exchange all-share price index. The consumer price index is used to convert
the series of nominal stock prices into real terms. The current empirical
analysis applies two different definitions of stock returns. The aggregate
return (rk t,

1 ) includes both capital gains and dividends, and the alternative is
the excess return (rk t,

2 ) defined as the aggregate return minus a risk-free interest
rate, measured by the three-month treasury-bill rate.

4One may argue that a threshold-type model is appropriate for modeling the non-linear dynamics
of the dividend yield (Coakley and Fuertes, 2006). In fact, different agents might have
different transaction costs, suggesting that thresholds might become blurred as one aggre-
gates the model over different agents. In other words, non-synchronous adjustment of
heterogeneous agents and time aggregation are likely to result in smooth aggregate regime
switching. Therefore, a smooth transition autoregressive model seems a more attractive
option than a threshold autoregressive model in describing the non-linear adjustment of the
dividend yield.
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3.2 The Stationarity of Dividend Yields

Dividend yields in equation (1) must be stationary, otherwise predicting
returns with a non-stationary regressor is meaningless (Lanne, 2002). Empiri-
cal literature widely uses conventional augmented Dicky–Fuller (ADF) tests
to examine the stationarity of variables. However, the power of ADF tests is
low when the root is close to one, and the tests are very sensitive to model
misspecification (Schwert, 1987). Elliott et al. (1996, hereafter ERS) and Ng
and Perron (2001, hereafter NP) develop unit-root tests, based on generalized
least square de-trended data, with better size and power properties than
conventional ADF tests. This work therefore applies the ADF, ERS and NP
tests to examine the stationarity of dividend yields and reports results in
Table 1. The model adopted in unit-root tests is the one with a constant and
the model’s lag length is determined based on the modified Akaike informa-
tion criterion. Results from Table 1 indicate that all statistics consistently
reject the unit-root hypothesis at conventional levels of significance. The
above results are interesting since several articles support the unit-root
hypothesis of the price–dividend ratio and hence reject the present value
model (Froot and Obstfeld, 1991; Lamont, 1998). The reason could be due to
the fact that the sample period in this paper covers almost a century that
significantly raises the power of unit-root tests. Rejecting the unit-root
hypothesis of dividend yields is important since it points out that the dividend
yield is a legitimate variable in predicting returns.

3.3 Return Predictability with Non-linear Dynamics of Dividend Yields

Several articles indicate the non-linear dynamics of financial variables, ren-
dering the bias inference of test statistics if such behavior is not taken into
account.5 The current study examines if non-linearities of dividend yields in
the UK’s stock markets are significant.

Results from Table 2 point out that parameters in equation (2) are all
significant at the 5 per cent level of significance. The test statistic (tq) for the

5The finite-sample distribution of t and CW statistics under a linear data-generating process
(DGP) will be different from that under a non-linear DGP. This leads to bias inferences of
tests if there are significant non-linearities in dividend yields but empirical analysis neglects
these non-linearities.

Table 1
Unit-Root Tests of Dividend Yields

ADF ERS MZa MZt MSB MPT

-3.098* -2.784* -17.764* -2.808* 0.158* 2.010*

Notes: ADF is the augmented Dicky–Fuller statistic. ERS is the unit-root statistic provided by Elliott et al.
(1996). MZa, MZt, MSB and MPT are statistics provided by Ng and Perron (2001). The lag order of the model
is determined based on modified Akaike information criterion. The term ‘*’ indicates significance at the 5 per
cent level.
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hypothesis that q equals zero does not have a conventional distribution as
pointed out by Taylor and Peel (2000), and hence the empirical distribution
of tq is simulated through the bootstrap. Q statistics reveal no evidence of
serial correlation in estimated residuals. The test by Eitrheim and Teräsvirta
(1996) indicates no evidence of any remaining autocorrelation in the residuals
of a non-linear regression model. Finally, Ramsey’s regression specification
error test (RESET) indicates no evidence of model misspecification at con-
ventional levels. Finding non-linear dynamics of dividend yields supports the
significance of noise trading on asset price dynamics (Poterba and Summers,
1986; Shleifer and Summers, 1990; Gallagher and Taylor, 2001)

Table 3 reports forecast contests for the horizon of one, three, four, six,
nine months and one to five years under the assumption of non-linear dynam-
ics of dividend yields in equation (2).6 The significance of bk in equation (1)
reveals evidence of in-sample return predictability, and this work simulates
critical values of t(k) and tmax through a residual bootstrap to conduct the
inference of bk. Results from rows three and six of Table 3 reject the hypoth-
esis of no return predictability at the 5 per cent level for both returns when the
forecast horizon is greater than one month. In addition, the joint statistic tmax

also rejects the hypothesis. In short, empirical results reveal that the predic-
tive ability of dividend yields is visible at both short and long horizons.
Results from Table 3 contrast with those from Ang and Bekaert (2007) which
found that excess return predictability is not statistically significant at long
horizons.

To evaluate the out-of-sample predictability of stock returns, this paper
estimates the long-horizon predictive equation in (1) and then compares the
sequence of forecast errors from equation (1) with those from a random walk
with drift: r t

j j
t
j

1 1 1, = + +α ε where εt
j
+1 is an independent and identically distrib-

uted disturbance. This study reserves the first 30-year observations for esti-
mation and hence the out-of-sample forecast period starts from 1953. We

6Following Rapach and Wohar (2005), we simulate the finite-sample distribution of t and CW
statistics through the bootstrap.

Table 2
Model Estimates

wt = b + {exp[q*(wt-1 - b)2]}*[a*(wt-1 - b) + (1 - a)*(wt-2 - b)] + et

b q a Q(8) Q(12) ET RESET(1) RESET(2)

-3.20 -0.086 1.205 8.332 19.280 0.481 0.493 0.318
(<0.001) (<0.001) (0.001) (0.402) (0.082) (0.488) (0.483) (0.728)

Notes: The number in a parenthesis is a p value. ‘<0.001’ in a parenthesis indicates the p value is less than
0.001. Q(p) is the Ljung–Box autocorrelation tests for up to a pth-order autocorrelation having a c2 distribu-
tions with p degrees of freedom. ET is the statistic provided by Eitrheim and Teräsvirta (1996) testing for any
remaining autocorrelation in the residuals of a non-linear regression model. RESET is the Ramsey’s regression
specification error test that has an F distribution. The p values for the estimated transition parameter, q, is
constructed based on a non-parametric bootstrap.
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re-estimated the long horizon predictive equation each time after adding one
observation to the sample and thus used only data available up to the forecast
date.

This paper applies the CW(k) statistic provided by Clark and West
(2006, 2007) to examine the out-of-sample predictability of stock returns at
the kth forecast horizon and examines whether forecast errors from the
long-horizon predictive equation are significantly smaller than those from the
benchmark random walk model. The Newey–West method is applied to
construct an autocorrelation consistent standard error. The truncated lag in
constructing the Newey–West covariance matrix is determined based on
Andrew’s (1991) procedure. A joint test is also applied to examine whether
the largest CW statistic, CWmax, among the 10 horizons is significant. The
finite-sample distribution of CW statistics is simulated through the residual
bootstrap based on the data-generating process (DGP) of equation (3).
Results from rows four and seven of Table 3 indicate that the CW statistic is
significant at the 10 per cent level when the forecast horizon is greater than
three months for aggregate returns and four months for excess returns. The
CWmax statistic is significant for both returns.

How robust are the results from Table 3 to the assumption of non-linear
regressors and the residual-bootstrapped method? In response, this paper
adopts a block bootstrap which does not require specific assumptions on the
DGP of regressors. To be specific, this work applies the moving block boot-
strap to resample the pairs of observations x r wt

j
k t
j

t= ( ) ′, , and then
re-examines the p values of bootstrap tests (Künsch, 1989; Liu and Singh,
1992).7 The reason for using the block bootstrap is because of the existence of
a serial correlation in both dependent and independent variables. An advan-
tage of using the block bootstrap is that it does not depend on the specific
non-linear model in equation (2) and allows for a more general form of
non-linearity in dividend yields. In addition, the block bootstrap is valid even
in the presence of conditional heteroskedasticity whereas the previous
residual-based bootstrap is not.8

It is worth noting that rk t
j
, in equation (1) is serially correlated and

the degree of serial correlation increases with forecast horizons. The current
research therefore adopts overlapping blocks with the block size increasing
with forecast horizons.9 Results from Table 4 indicate that the hypothesis
of no return predictability is rejected at conventional levels by t and CW

7To be specific the block size is set to 1, 3, 4, 6, 9, 12, 24, 36, 40 and 40 for the horizon of 1, 3,
4, 6, 9, 12, 36, 48 and 60 months, respectively. Notice that when the block size is one, the
block bootstrap here is the same as pairwise bootstraps originally proposed by Freedman
(1981) (Davidson and MacKinnon, 2004).

8We appreciate a referee suggesting this alternative bootstrap method to us, and detailed proce-
dures of the block bootstrap are described in Appendix C.

9Simulation results by Goncalves and Vogelsang (2008) point out that increasing the block size
helps to reduce the size distortion of the block bootstrap if the strength of the serial
correlations increases.
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statistics when the forecast horizon is greater than one and four months,
respectively. Based on the block bootstrap, this paper finds that divi-
dend yields are helpful in predicting the UK’s aggregate and excess
returns when the forecast horizon is greater than four months. The CWmax

statistic is significant for aggregate returns but is insignificant, with a p value
of 0.102, for excess returns. These results are similar to those founded in
Table 3.

Künsch (1989) points out that the block bootstrap distribution and the
true distribution are in good agreement for linear statistics. However, if the
statistic is a non-linear transformation of a linear statistic, such as tmax and
CWmax, having distribution not close to normal, the block bootstrap reflects
the non-normality of the distribution only to some extent.10 Therefore, it may
not be appropriate to examine the hypothesis of no return predictability
based on tmax and CWmax statistics unless the sizes of these statistics are
known.

Table 3 reveals two interesting results. First, results from out-of-sample
tests are similar to those from in-sample tests. Inoue and Kilian (2004) and
Rapach and Wohar (2006) show that, if appropriate tests are used, in-sample
and out-of-sample tests are equally reliable, and hence should have similar
results. Second, the predictability of UK’s stock returns is visible without
short rates if the forecast horizon is greater than four months. This result is
interesting since the literature did not observe short-term out-predictability of
UK stock returns.

Rapach et al. (2005) point out that the evidence of return predictability
based on financial ratios is weak and hence re-examine the predictability of
price returns by adding several macro-variables to their predictive equation.11

Based on monthly data, Rapach et al. (2005) find that the government bond
yield is helpful to predict UK stock returns when the forecast horizon is short
(one month). Focusing on excess returns, Ang and Bekaert (2007) find that
the in-sample predictive ability of dividend yields is best revealed at short
forecast horizons with a short rate as an additional regressor, consistent with
that of Rapach et al. (2005). Ang and Bekaert (2007) also point out that
excess return predictability is not statistically significant at long horizons,
different from that of Campbell (2003).

Results from Table 3 point out that, without the assistance of macro
variables, dividend yields are helpful in predicting UK stock returns when the
forecast horizon is short (greater than one and four months with t and CW
statistics, respectively). The above result is in contrast to those of Rapach
et al. (2005) and Ang and Bekaert (2007). In addition, return predictability
increases with forecast horizons, different from that of Ang and Bekaert
(2007) but consistent with that of Campbell (2003).

10See Table 5 in Künsch (1989).
11The price return is defined as the log change of stock prices.
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This paper and the above-mentioned papers contain two major differ-
ences. First, this work adopts a non-linear instead of a linear framework to
investigate UK’s stock return predictability. Results from Table 3 indicate
that a non-linear modeling strategy is helpful to predict stock returns.
Second, the sample period of the paper is much longer than that in existing
literature.12 A long data set increases the number of observations in out-of-
sample contests, which increases the power of in- and out-of-sample statistics.

4 Size and Power of Bootstrap Tests

Are results from Table 3 due to the over-rejection of bootstrap tests? To
address this question, this study investigates the size and power of boot-
strap tests. The size of bootstrap tests is evaluated by imposing the non-
predictability hypothesis of stock returns. The DGP of stock returns and
dividend yields is given as follows:

r jt
j j

t
j

1 1 1 1 1 2, − = + =ˆ ,α ε�

(3)w b w b w b F w bt t t t= + ∗ −( ) + −( )∗ −( )⎡⎣ ⎤⎦∗ ⎡⎣ ⎤⎦ +− − −
ˆ ˆ ˆ ˆ ˆ , ˆ, ˆα α θ ε1 2 11 �22t

The residuals for each equation are bootstrapped from actual regression
residuals. Based on Kilian (1999) and Rapach and Wohar (2005), this inves-
tigation applies a three-step procedure to evaluate the size of bootstrap tests,
described in Appendix B.

Results presented on the Size panel of Table 5 indicate that the effective
size of in- and out-of-sample bootstrap tests at different forecast horizons is
close to the nominal size of 0.10, which is not sensitive to adopted returns. No
significant evidence of over-rejection for the bootstrap tests is apparent, and
hence our rejection should be due to the high power of bootstrap tests.

To evaluate the power of bootstrap tests, this paper simulates the series
for the dividend fundamental (dt) and dividend yields, which in turn allows us
to construct stock returns. The DGP, similar to the one adopted in Rapach
and Wohar (2005), is given as follows:

Δ Δ Δ Δ
Δ

d d d dt t t t= − ∗ − ∗ + ∗
− ∗

− − −0 0016 0 2709 0 1351 0 0935
0 1724

1 2 4. . . .
. pp p ut t t− −− ∗ +1 2 10 0818. Δ �

(4)
w w

w
t t

t

= − + − ∗ +( )⎡⎣ ⎤⎦{ }∗
∗ +( ) −

−

−

3 20 0 086 3 20
1 205 3 20 0

1
2

1

. exp . .
. . .2205 3 202 2∗ +( )[ ]+−w ut t. �

The price series (pt) can be constructed from the simulated series of dividends
and dividend yields since pt = dt - wt. Having the simulated series of pt and dt,
we construct simulated aggregate returns, �rk t,

1 . To simulate excess returns, �rk t,
2 ,

12The sample periods in Campbell (2003), Rapach et al. (2005) and Ang and Bekaert (2007) are
1970–99, 1979–2000 and 1953–2001, respectively.
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the DGP in equation (4) is augmented by an interest rate process following a
stationary second-order autoregressive process. After simulating �rk t,

1 , we then
subtract the simulated interest rate from �rk t,

1 to obtain the simulated excess
returns.

Results from the Power panel of Table 5 indicate that the power of the
in-sample bootstrap test is high and varies between 0.89 and 1.0, and the
power of the out-of-sample bootstrap test varies in the range of 0.81–0.99. No
significant difference exists between the powers of in- and out-of-sample
bootstrap tests.

To examine the robustness of results in Table 5, this paper examines the
size and power of bootstrap tests based on a block bootstrap. Following
Goncalves and Vogelsang (2008) and Cameron et al. (2008), this paper speci-
fies the DGP for rk t

j
, and wt and then apply the three-step procedure to

evaluate the size and power of bootstrap tests based on a direct block boot-
strap.13 The DGP of rk t

j
, and wt are assumed to be the same as those used in

residual bootstrap. Under this assumption, we expect that the size and power
from block bootstrap should not be as good as those from residual bootstrap
since the information of DGP is ignored in block bootstrap.

Table 6 reports the size and power of bootstrap tests based on a direct
block bootstrap. Results from the Power panel of Table 6 indicate that the
power of bootstrap tests exceeds 0.85, except for joint statistics and the CW
statistic in one-month horizon. Results from the Size panel of Table 6 point
out that the size of t statistic for aggregate (excess) returns is close to the

13Goncalves and Vogelsang (2008) and Cameron et al. (2008) provide standard methods to
examine the finite-sample properties of block bootstrap.

Table 5
Size and Power: Residual Bootstraps

k

Size Power

rk t,
1 rk t,

2 rk t,
1 rk t,

2

t(k) CW(k) t(k) CW(k) t(k) CW(k) t(k) CW(k)

1 month 0.108 0.118 0.090 0.088 0.938 0.834 0.942 0.814
3 months 0.108 0.110 0.094 0.094 0.998 0.982 0.998 0.974
4 months 0.112 0.114 0.098 0.092 1.000 0.988 0.998 0.972
6 months 0.114 0.116 0.094 0.088 1.000 0.990 0.998 0.974
9 months 0.114 0.120 0.082 0.080 1.000 0.988 0.998 0.972

12 months 0.110 0.126 0.092 0.086 1.000 0.988 0.996 0.968
24 months 0.114 0.110 0.090 0.094 0.996 0.990 0.976 0.944
36 months 0.114 0.114 0.090 0.092 0.994 0.984 0.944 0.902
48 months 0.126 0.124 0.080 0.092 0.992 0.964 0.920 0.850
60 months 0.122 0.126 0.082 0.090 0.984 0.946 0.892 0.806
JS 0.116 0.114 0.076 0.096 0.996 0.988 0.972 0.920

Notes: CW(k) indicates the statistic provided by Clark and West (2007) where k is the forecast horizon. JS
indicates a joint statistic. rk t,

1 and rk t,
2 are aggregate returns and excess returns, respectively. Boldface values

indicate significance at the 10 per cent level.
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nominal size, 0.10, when the forecast horizon is less than 12 (60) months.
The size distortion of t statistic is mild if forecast horizons are greater than
9 (48) months for aggregate (excess) returns. Except for the forecast
horizon of five years, the size of CW statistic lies between 0.052 and 0.068
for aggregate returns and 0.038 and 0.074 for excess returns. The above
results based on the block bootstrap indicate that t statistic tends to over-
reject the non-predictability hypothesis when the forecast horizon is greater
than one year, but CW statistic is conservative in general. However, the
slight size distortion of t test in long horizon should not affect the conclu-
sions of Table 4 since p values in Table 4 are very small (less than 0.02).
Moreover, CW statistics are conservative since their sizes are far below 1.0
and hence rejecting the non-predictability hypothesis of stock returns by
CW statistics in Table 4 indicates fairly strong evidence of rejecting the
hypothesis. It is worth noting that the p value of CWmax in Table 4 exceeds
0.1 (0.102) for excess returns, but this should indicate significance given a
small size of CWmax (0.012). Because of ignoring the information of DGP,
results from the block bootstrap (Table 6) are slightly worse than those
from the residual bootstrap (Table 5), which is also consistent with findings
in Cameron et al. (2008).

In short, results from Table 4 are in general consistent with those of
Table 3. Results from Table 6 are in general consistent with those of Table 5
except for joint statistics. This paper therefore concludes that the predictabil-
ity of UK’s stock returns is visible in the short run without macro-variables
if the forecast horizon exceeds four months.

Table 6
Size and Power: Block Bootstraps

k

Size Power

rk t,
1 rk t,

2 rk t,
1 rk t,

2

t(k) CW(k) t(k) CW(k) t(k) CW(k) t(k) CW(k)

1 month 0.090 0.062 0.104 0.046 0.952 0.456 0.916 0.482
3 months 0.104 0.054 0.112 0.038 1.000 0.908 0.998 0.854
4 months 0.110 0.056 0.114 0.040 1.000 0.976 1.000 0.942
6 months 0.120 0.056 0.116 0.038 1.000 0.996 0.998 0.982
9 months 0.118 0.052 0.114 0.046 1.000 0.998 1.000 0.988

12 months 0.132 0.052 0.120 0.052 1.000 0.998 1.000 0.994
24 months 0.146 0.066 0.112 0.068 0.996 0.998 0.978 0.984
36 months 0.134 0.068 0.112 0.074 0.986 0.990 0.942 0.932
48 months 0.148 0.066 0.124 0.070 0.954 0.958 0.906 0.834
60 months 0.154 0.090 0.142 0.080 0.912 0.974 0.854 0.862
JS 0.058 0.008 0.050 0.012 0.798 0.790 0.760 0.690

Notes: CW(k) indicates the statistic provided by Clark and West (2007) where k is the forecast horizon. JS
indicates a joint statistic. rk t,

1 and rk t,
2 are aggregate returns and excess returns, respectively. Boldface values

indicate significance at the 10 per cent level.

Can Dividend Yields Out-Predict Stock Returns 1191

© 2011 The Authors
The Manchester School © 2011 Blackwell Publishing Ltd and The University of Manchester



5 Conclusions

Can dividend yields out-predict UK’s stock returns without short rates? This
question was investigated using monthly data from the UK’s stock markets
over the period from 1923 to 2007. The sample period of this paper is the
longest one in related literature. This paper modeled the dynamics of divi-
dend yields with a non-linear ESTAR process and found that UK’s dividend
yields support the non-linear specification. This work then applied a boot-
strap test to examine the predictability of UK’s stock returns based on a
bootstrap test. The current research found that the predictability of UK’s
stock returns was visible without short rates if the forecast horizon was
greater than four months. The above finding is crucial since the literature did
not observe short-term out-predictability of UK stock returns.

An alternative source of non-linearity may come from the prediction
equation itself. The long-horizon prediction equation may have an ESTAR
specification. This paper does not investigate this possibility due to the tech-
nical difficulty in performing multi-steps-ahead forecasts of an ESTAR
model as pointed out by Granger and Teräsvirta (1993). Additionally, an
ESTAR specification of the return prediction equation is not supported
empirically if the forecast horizon is less than nine months.14

Appendix A

This appendix describes the bootstrapping procedure for constructing finite-sample
distribution of in-sample tests. The procedure includes the following steps.

1. This paper estimates equation (1) under the hypothesis of no return predictability
(bk = 0) via ordinary least squares, and estimates equation (2) with the lag order
determined by Akaike information criterion using non-linear least squares. Given
these parameter estimates and estimated residuals, the DGP under the assump-
tion of no return predictability is given as follows:

r jt
j j

t
j

1 1 1 1 1 2, − = + =ˆ ,α ε�

(A1)w b w b w b w bt t t t= + ∗ −( )⎡
⎣

⎤
⎦{ }∗ ∗ −( ) + −( )∗ −( )− − −

ˆ exp ˆ ˆ ˆ ˆ ˆ ˆθ α α1

2

1 21⎡⎡⎣ ⎤⎦ + �εt

where r P D Pt t t t1
1

1 1, log≡ +( )[ ]+ + , r r rt t t
f

1
2

1
1

, ,= − and α̂1
j , b̂ and θ̂ are parameter

estimates.

2. Let ε̂ j
t1 and ε̂2t be estimated residuals from ordinary least squares. This work

randomly draws T + 1000 disturbances, with replacements, from the estimated
residuals, ˆ ˆ , ˆε ε εt

j
t
j

t= ( )′1 2 , to generate a series of residuals, � � �ε ε εt
j

t
j

t= ( )′1 2, , for our
pseudo-sample. This paper draws the residuals, ε̂1t

j and ε̂2t , in tandem, so that the
simulated sample preserves the contemporaneous correlation in the disturbances
presented in the original data. Given the parameter estimates, generated residuals

14Results are not reported here but are available upon request from authors.
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and initial value of wt-1 and wt-2, this research generates the pseudo-sample
of r t

j
1, and wt based on equation (A1). The initial values of wt-1 and wt-2 are set to

zero and the first 1000 observations are dropped. After generating the pseudo-
sample for r t

j
1, and wt, this paper constructs rk t

j
, for j = 1, 2 as follows: r rk t

j
i
k

t i
j

, ,≡ ∑ = + −1 1 1

and then estimates equation (1) at different forecast horizons.
3. Computes the t statistic for the slope coefficient of equation (1), t(k), and the

largest t statistic among 10 forecast horizons, tmax = max{t(k): k = 1, 3, 4, 6, 9, 12,
24,36, 48, 60}.

4. After repeating the procedure in steps 2 and 3 1000 times, this paper obtains the
finite-sample distribution of the in-sample t(k) statistic.

Appendix B

This appendix describes the three-step procedure provided by Kilian (1999) and
Rapach and Wohar (2005).

1. The DGP of stock returns and dividend yields are given as follows:

r jt
j j

t
j

1 1 1 1 1 2, − = + =ˆ ,α ε�

w b w b w bt t t t= + −( ) −( )[ ] +− −1 1
2

2exp θ ε̂

This paper generates pseudo-data for returns and dividend yields based on
Monte-carlo simulations where the pseudo-residuals are randomly drawn from a
standard normal distribution.

2. Based on the pseudo-data simulated from step 1, this work constructs different
test statistics at different forecast horizons and bootstraps their finite-sample
distributions with 500 replications with the procedures described in Appendix A.

3. After repeating the previous procedures 500 times, this paper obtains the size of
bootstrap tests.

Appendix C

This appendix describes the procedures of the moving block bootstrap of Künsch
(1989), with a block size m, to construct the finite-sample distribution of in-sample
tests. A detailed discussion of this method can be found in Künsch (1989). The
procedures include the following steps.

1. Given the data of r t
j

1, and wt for j = 1, 2, this paper first constructs
k horizon returns as r rk t

j
i
k

t i
j

, ,≡ ∑ = + −1 1 1 in which r P D Pt t t t1
1

1 1, log≡ +( )[ ]+ + ,
r r rt t t

f
1
2

1
1

, ,= − . This paper regresses rk t
j
, on wt to obtain the estimate of bk and its t

value (β̂k and t̂ k( )), respectively, for k = 1, 3, 4, 6, 9, 12, 24, 36, 48 and 60.
2. Define the vector x r wt

j
k t
j

t= ( )′, , that collects the dependent and the explanatory
variables for each observation. Let m (1 2 m < T ) be a block length, and let
B x x xt m t

j
t
j

t m
j

, , , . . . ,= ( )+ + −1 1 be the block of m consecutive observations starting at
xt

j. The moving block bootstrap draw b0 = T/m blocks randomly with
replacements from the set of overlapping blocks {B1,m, . . . , BT-m+1,m} to generate
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our pseudo-sample, �xt
j

t

T{ } =1
. After generating the pseudo-sample for �rk t

j
, and �wt,

this work estimates equation (1) at different forecast horizons to obtain the
estimate of bk ( �βk) and then constructs the following statistics:

� �
�y k k k k( ) = ( ) − ( )⎡⎣ ⎤⎦ ( )β β σβ

ˆ

3. After repeating the procedure in steps 2 1000 times, this paper obtains the
finite-sample distribution of, �y k( ) . Künsch (1989) shows that the distribution of
t̂ k( ) can be approximated asymptotically by the distribution of �y k( ) .

To evaluate the size and power of bootstrap tests based on block bootstrap method,
this paper adopts the following three step procedures.

(a) The DGP of stock returns and dividend yields are given as follows:

r jt
j j

t
j

1 1 1 1 1 2, − = + =ˆ ,α ε�

w b w b w b w bt t t t t= + ∗ −( )[ ]{ }∗ ∗ −( ) + −( )∗ −( )[ ] +− − −exp θ α α ε1
2

1 21

This paper generates pseudo-data for returns and dividend yields based on
Monte-Carlo simulations where the pseudo-residuals are randomly drawn from
a standard normal distribution.

(b) Based on the pseudo-data simulated from step (a), this work constructs k
horizon returns as r rk t

j
i
k

t i
j

, ,≡ ∑ = + −1 1 1, and then estimates equation (1) to obtain
different test statistics at different forecast horizons. The current research then
bootstraps finite-sample distributions of test statistics with 500 replications with
the procedures described in Appendix C.

(c) After repeating the previous procedure in (a), (b) and (c) 500 times, this paper
obtains the size of bootstrap tests.

As for the power of bootstrap tests, the DGP in step (a) is the same as those of
equation (7). Following the same procedure in steps (a), (b) and (c), this work obtains
the power of bootstrap tests.
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