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The purpose of this paper is to examine the source of a real
exchange-rate adjustment based on the impulse-response function
constructed from local projections when the true data-generating
process (DGP) is unknown. This work extends the local-projection
method proposed by Jordà [2005. Estimation and inference of
impulse responses by local projections. American Economic
Review 95, 161–182] to allow for variables that are I(1) and exhibit
cointegration. Our paper shows that nominal exchange-rate
adjustments dominate in the reversion toward PPP regardless of
a nominal exchange-rate shock or a price shock. It is also shown
that the half-life of real exchange rates is close to that of nominal
exchange rates. Since these results are consistent with those of
Cheung et al. [Cheung, Y.W., Lai, K.S., Bergman, M., 2004. Dissecting
the PPP puzzle: the unconventional roles of nominal exchange
rate and price adjustments. Journal of International Economics
64, 135–150], we therefore conclude that their main findings are
robust to possible misspecifications in the true DGP.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

For decades, the purchasing power parity (PPP) hypothesis has been a major research field within
empirical international finance. Existing empirical evidence based on unit-root tests provided mixed
results for the long-run validity of PPP (Mark, 1990; Abuaf and Jorion, 1990; Taylor and Sarno, 1998;
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O’Connell,1998; Cheung and Lai, 1993;Michael et al., 1997). Although several articles appear to support
the mean reversion of real exchange rates, their estimates of the half-life range from 3 to 5 years
(Rogoff, 1996). These half-life estimates seem too long to be explained by sticky-price models which
predict a half-life of 1–2 years. This is the PPP puzzle outlined by Rogoff (1996).

Since the seminal work of Rogoff (1996), the adjustment mechanism of PPP deviations has become
an interesting issue in literature. Some articles examine the dynamic adjustment of real exchange rates,
but the literature about the adjustment mechanism of nominal exchange rates and prices resulting
from PPP deviations is limited. Two articles investigate the adjustment mechanism of PPP deviations.
First, Engel and Morley (2001) use a state-space model to show that, while it takes years for nominal
exchange rates to converge, it only takes a fewmonths for prices to do so. Next, Cheung et al. (2004) use
a linear vector error-correction model (VECM) to reach a similar conclusion. Cheung et al. (2004) also
conclude that “about 60–90% of real exchange-rate convergence is driven by nominal exchange rates
and the contribution of prices to PPP convergence is relatively minor”. Their findings sharply contrast
with conventional explanations based on nominal rigidities and therefore offer a new look at theo-
retical modeling of real exchange-rate dynamics.

Cheung et al. (2004) apply a VECMmodel to construct impulse-response functions (IRFs) given that
nominal exchange rates and prices are I(1) but cointegrated. The conventional VAR-VECM approach
assumes that the true data-generating process (DGP) follows a vector autoregressive (VAR) process. A
reduced rank VAR specification may also be misspecified in a set of cointegrated variables, since an
error-correction model may be formed by a reduced rank vector autoregressive moving average
(VARMA) specification (Engle and Granger, 1987).1 Hence, the construction of IRFs based on the VAR-
VECM model is not robust to misspecifications in the true DGP.

Jordà (2005) proposes a local-projection approach that uses multi-step direct forecasts as an
alternative to a VARMA transformation.2 Furthermore, he shows that IRF estimates derived from local
projections are consistent and asymptotically normal. One advantage of Jordà’s local projections is that
they allow IRFs to be constructed without knowing the true DGP.3 In other words, the IRFs constructed
from local projections are robust to misspecifications in the true DGP.

Unfortunately, Jordà’s local-projection method cannot be directly applied to cases where variables
are I(1), since the standard multi-step forecast and projection theorem requires the existence of the
second moment of variables.4 Lin and Tsay (1996) find, based on monthly financial and macro-
economic data of six major economies, that direct forecasting outperforms VECM-based forecasting in
the presence of unknown unit roots and cointegration – even though unit roots and cointegration are
ignored in direct forecasting. Theoretically, cointegration implies the existence of a long-run equilib-
rium among the variables, which could be exploited to improve the accuracy of long-term forecasts.
The simulations of Lin and Tsay (1996) show the long-term forecasting benefit of modeling cointe-
grating relationships among variables, if they exist. Therefore, having the correct knowledge of coin-
tegrating relationships among variables improves the accuracy of forecasts.

The purpose of our paper is to re-examine the adjustment mechanism of prices and nominal
exchange rates based on IRFs constructed from local projections. This paper extends Jordà’s local-
projection method to obtain IRFs in a model where variables are integrated of order one, I(1), but with
1 Let yt be an n� 1 random vector such that all components of yt are I(1) and that there exists a vector b such that b0ytw I(0).
Engle and Granger (1987) show that there exists an error-correction representation with zt¼ b0yt, an r� 1 vector of stationary
random variables:A�ðLÞð1� LÞyt ¼ �ab0yt�1 þ dðLÞet :It is worth noting that the above vector error-correction model is not
a VAR model unless d(L)¼ I.

2 Jordà (2005) establishes the equivalence of IRFs calculated by local projections and VAR, respectively, when the true DGP
follows a VAR process.

3 When variables under investigation are I(0), a standard VAR approach is applied to construct an IRF. The conventional
approach may not be appropriate if one is interested in the true dynamics of underlying process. This is because VAR speci-
fications are typical parsimonious and likely misspecified and hence a VAR(k) model is not likely to be the exact representation
of the process under study (Chang and Sakata, 2007). In addition, an unappealing feature of conventional IRF estimates is that
these estimates are constructed by extrapolating the parsimonious VAR model which will typically impose smooth decay in the
estimated IRF and therefore excludes potentially high-order dynamics of underlying process.

4 To be specific, it requires that variables are in a Hilbert space, L2ðU;F ; PÞ (Weiss, 1991; Brockwell and Davis, 1991, Chapter 2;
Ing, 2003).
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cointegration among them. The key idea of our extension is to project the differenced variables on lag
differenced variables and cointegrating residuals which are constructed based on a theoretical
implication. The IRFs of level variables are then constructed from the accumulation of all related
projecting coefficients that were used.

This work finds that nominal exchange-rate adjustments dominate the reversion to PPP regardless
of shocks, and that the half-life of real exchange rates is close to that of nominal exchange rates. These
results are consistent with those of Cheung et al. (2004). Given this agreement, we hypothesize that the
interesting findings of Cheung et al. (2004) are robust to possible misspecifications in the true DGP.

The organization of the paper is given as follows. Section 2 extends Jordà’s local-projection method
to the casewhere variables are cointegrated I(1) variables. Section 3 shows that projection errors follow
amoving average process when the true DGP is a cointegrated VAR process – a finding that can be used
to improve estimation efficiency. Section 4 estimates the extent to which real exchange-rate evolution
can be explained by either nominal exchange rates or prices through our modified local-projection
method. The 90% confidence interval of the relative contribution of nominal exchange-rate and price
adjustments in the reversion toward PPP is also constructed. In addition, this work similarly constructs
the half lives of nominal and real exchange rates and prices, along with each half-life’s 90% confidence
interval. Finally, concluding remarks are given in Section 5.

2. Local-projection-based IRFs when variables are a cointegrated I(1) process

An impulse-response function measures the time profile of the effect of shocks on the (expected)
future value of variables in a dynamic system. According to Koop et al. (1996), the generalized impulse-
response function of yt at horizon h is defined as follows:

IRðt;h; d;Ut�1Þ ¼ Eðytþhjvt ¼ d;Ut�1Þ � Eðytþhjvt ¼ 0;Ut�1Þ; h ¼ 1;2;.; (1)

where d is a n� 1 vector indicating the shocks, 0 is a n� 1 vector of zeroes, vt is a n� 1 vector of
additive random shocks,Ut�1 denotes the information set including values of variables up to t� 1, and
E(,j,) denotes the best mean square predictor. If both yt and the elements of Ut�1 are in Hilbert space
L2ðU;F ; PÞ, then the impulse-response function defined in equation (1) based on linear projection can
be easily obtained by projecting ytþh onto a linear function of elements ofUt�1. This is the idea of Jordà’s
(2005) local-projection method.

But Jordà’s (2005) method cannot be so simply applied when the variables under investigation are I
(1) (that is yt; L2) and have a cointegration relationship. To solve this problem, we now define the
evolution of the first difference of yt as follows. Consider the Hilbert space L2ðU;F ; PÞ defined on an
abstract probability space and letDyt¼ yt� yt�1¼ (DYt,1,DYt,2,.,DYt,n)

0
,b

0
yt¼ (Zt,1,Zt,2,.,Zt,r)

0
, t¼ 1,2,.,T

be a sequence of n and r (r< n) dimensional stochastic vector, respectively. Both Dyt and b0yt are in
L2ðU;F ; PÞ and are adapted to the information set {Ut, t¼ 1,2,.,T}, whereUt¼ s(Dy1,.,Dyt,b

0
yt) is the

sigma-field onwhichDyt ismeasurable. That is, yt is an� 1 I(1) randomvectorwith cointegratingmatrix
b such thatb

0
yt is a r� 1 I(0) randomvector. In such a case,modeling a cointegrating relationship among

variables is helpful because cointegrating residuals provide useful information for improving forecasts
(Engle and Yoo,1987; Reinsel and Ahn,1988). In this respect, this paper considers projecting Dytþh onto
the linear space generated by (b

0
yt�1, Dyt�1, Dyt�2,. ,Dyt�kþ1)

0
. Specifically, this work defines:5

P
�
Dytþhjb0yt�1;Dyt�1;Dyt�2;.;Dyt�kþ1

� ¼ �
Phk

DYtþh;1; Phk
DYtþh;2;.; Phk

DYtþh;n
�0
; (2)

where

Phk
DYtþh;i ¼ ci þ

Xr
j¼1

aijZt�1;j þ
Xn
m¼1

bð1Þim DYt�1;m þ/þ
Xn
m¼1

bðk�1Þ
im DYt�kþ1;m; ci ¼ 1;.; n:

By the projection theorem, the set of coefficients ci, aij and bim
(1), ., bim(k�1) all exist and satisfy the

following two equations for all i¼ 1, 2, ., n:
5 Vector projection is just the collection of scalar projection in a vector (Brockwell and Davis, 1991, p. 421).
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E
�
DYtþh;i � Phk

DYtþh;i
�
Zt�1;j ¼ 0; cj ¼ 1;.; r;

E
�
DYtþh;i � Phk

DYtþh;i
�
DYt�l;m ¼ 0; cl ¼ 1;.; k� 1; cm ¼ 1;.;n:
We next denote the forecast error, utþh
(h), by:

uðhÞ
tþh ¼ Dytþh � P

�
Dytþhjb0yt�1;Dyt�1;Dyt�2;.;Dyt�kþ1

�
: (3)

Equation (2) can now be substituted into equation (3) to obtain:

Dytþh ¼ cðhÞ þ Aðhþ1Þb0yt�1 þ Bðhþ1Þ
1 Dyt�1 þ/þ Bðhþ1Þ

k�1 Dyt�kþ1 þ uðhÞ
tþh; h ¼ 1;.; s; (4)

where

cðhÞ ¼ ½ci�n�1; Aðhþ1Þ ¼ �
aij

�
n�r ; Bðhþ1Þ

l ¼
h
bðlÞim

i
n�n

; l ¼ 1;.; k� 1:

It is worth noting that the forecast error, utþh
(h), is not necessarily a white noise process.

According to equation (1), the IRF of Dyt from the local linear projection (IRD
LP) based on

equation (4) is:6

IRLPD ðt;h; d;Ut�1Þ ¼
�
AðhÞb0 þ BðhÞ

1

�
d; h ¼ 1;2;.s: (5)

And, since ytþh¼DytþhþDytþh�1þ/þDytþ1þ yt, then, by the principle of linearity inherent to the
linear projection function, the IRF of yt (IRLP) is

IRLPðt;h; d;Ut�1Þ ¼ �
Iþ Ehb

0 þ Gh
�
d ¼ Fhd; h ¼ 1;2;.; s;

where Eh ¼ Ph
j¼1 A

ðjÞ and Gh ¼ Ph
j¼1 B

ðjÞ
1 are the matrices of cumulative effects.7 The impulse

response of the ith variable to a shock of the jth variable at horizon h corresponds to the (i,j) elements of
the n� n matrix, Fh. Following Jordà (2005), the consistent (but possibly not the most-efficient)

estimator of IRLP(t,h,d,Ut�1), cIRLPðt;h; d;Ut�1Þ, for a given d, is:

bIRLPðt;h; d;Ut�1Þ ¼
�
Iþ bEhb

0 þ bGh

�
d; h ¼ 1;2;.; s;

where bEh ¼ Ph
j¼1

bAðjÞ
, bGh ¼ Ph

j¼1
bBðjÞ
1 , and bAðjÞ

and bBðjÞ
1 , h¼ 1,2,.s, are estimates obtained by

regressing equation (4) for each horizon h by the least-square method.
One way to derive the statistical reliability of the above impulse-response estimates is to apply an

asymptotic normal approximation. To construct the asymptotic confidence interval of the impulse-
response function of yt from a linear projection, under a given d, we need the covariance matrices ofbAðhÞ

and bAðgÞ
, bBðhÞ

1 and bBðgÞ
1 , and bAðhÞ

and bBðmÞ
1 for h, g, m¼ 1,.s. Jordà (2005, 2009) adopts a hetero-

scedastic and autocorrelated (HAC) consistent estimator to estimate the asymptotic variance–covari-

ance matrix of cIRLP
D by stacking s local-projection equations in (4).8,9 The above mentioned estimator is

given as follows:
6 Because of the assumption that errors are additive and thatUt�1 is already known by time t, we can see that both Dyt and yt
will be equally affected by a shock at time t.

7 Using the fact that yt� E(ytjUt�1)¼Dyt� E(ytjUt�1), the unnormalized forecasted mean-squared error (MSE) would be
MSEðEðytþh jUt�1ÞÞ ¼ E½ðuðhÞ

tþh þ uðh�1Þ
tþh�1 þ/þ uð1Þ

tþ1 þ uð0Þ
t ÞðuðhÞ

tþh þ uðh�1Þ
tþh�1 þ/þ uð1Þ

tþ1 þ uð0Þ
t Þ0�. This result is useful for

computing the forecast-error variance decomposition.
8 The lag order (k) in equation (4) is assumed to be the same at each horizon h for notational simplicity.
9 The block on the diagonal is the same as the HAC variance–covariance estimates obtained by regressing equation (4) for

each horizon h with a least-square method. The above derivation is not reported here but is available upon request from
authors.
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Var bðvec cJ ¼ �ðI5XÞ0ðI5XÞ��1ðI5XÞ0 bSðI5XÞ�ðI5XÞ0ðI5XÞ��1
; (6)
� ��
where (ignoring the constant terms):

J ¼

26666664
A0ð1Þ A0ð2Þ . A0ðsÞ

B0ð1Þ
1 B0ð2Þ

1 . B0ðsÞ
1

: : : :
: : : :
: : : :

B0ð1Þ
k�1 B0ð2Þ

k�1 . B0ðsÞ
k�1

37777775; Xt ¼ ��
b0ytÞ0; ðDyt�1Þ0;.; ðDyt�kþ1Þ0

�
;

and S ¼ Varðvecðu0
tþ1;.;u0

tþsÞÞ. The construction of the asymptotic variance–covariance matrix ofcIRLP
is straightforward after estimating the matrix of Var bðvecðcJÞÞ. For example, let

J� ¼
"Að1Þb0 þ Bð1Þ

1
«

AðsÞb0 þ BðsÞ
1

#
, then the standard deviation of the ith variable to a shock of the jth variable at

horizon h is available from the summation of the square root of the appropriate diagonal and non-

diagonal entries of the covariance matrix, Var bðvecðcJ�ÞÞ.
Note that, although the above variance–covariance matrix only reflects the uncertainty associated

with the slope parameter estimates, this is not a fundamental limitation. The tentative assumption, in
this paper, that d is constant, was only made for illustrative purposes to facilitate the illustration of how
to construct the asymptotic variance of impulse-response functions. Consequently, a component that
incorporates the estimation uncertainty associated with the estimate of d has been ignored (see Kilian
and Kim, 2009). Also note that our assumption of a constant d is innocuous to our empirical results,
because our confidence intervals (discussed in Section 4 below) are simulated based on a bootstrap that
re-constructs bd�

for each replication.
3. Asymptotic equivalence to VAR-VECM when DGP is a cointegrated VAR process

Jordà (2005) shows that the linear projection approach will be asymptotically equivalent to the
VARMA approach if the data-generating process is a stationary VAR process. In this section, this paper
extends Jordà’s result by showing that there is an asymptotic equivalence between the linear projec-
tion approach and the VAR-VECM approach under the case that the data-generating process is a non-
stationary but cointegrated VAR process.

Consider a n-dimensional linear vector autoregressive data-generating process of order k:

yt ¼ FþP1yt�1 þP2yt�2 þ/þPkyt�k þ et ; t ¼ 1;.; T; (7)

where F is a vector of constants and Pi is a matrix of coefficients for i¼ 1,.,k. The error term, et, is
assumed to be identically, independently and normally distributed with a zero mean and a constant
variance. The initial values, y0, y�1, ., y�kþ1, are taken as given. It is well known that equation (7) can
be re-written in a vector error-correction form:

Dyt ¼ Pyt�1 þ
Xk�1

i¼1

GiDyt�i þFþ et ; t ¼ 1;.; T; (8)

whereP ¼ �IþPk
i¼1 Pi ¼ ab0 with rank(P)¼ r< n and Gi ¼ �Pk

j¼ iþ1 Pj. This paper assumes that
all roots of the determinant of A(z)h I�P1z�P2z

2�/�Pkz
k¼ 0 are either outside the unit circle or

are equal to one. Such an assumption ensures that yt is integrated of order one and cointegrated.10

The current research rewrites equation (8) to a linear first-order system:
10 Please refer to Johansen (1991) and Hansen (2005) for detailed discussion.
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Wt ¼ FWt�1 þ vt ; (9)

with:

Wt ¼

266664
yt
Dyt

Dyt�1
«

Dyt�kþ2

377775; F ¼

266664
ab0 þ I G1 G2 / Gk�2 Gk�1
ab0 G1 G2 / Gk�2 Gk�1
0 I 0 / 0 0
« « « « « «
0 0 0 / I 0

377775; vt ¼

266664
Fþ et
Fþ et

0
«
0

377775:
Equation (9) is the companion form of the VECM, which allows us to construct h-ahead forecasts as
follows:

Wtþh ¼ vtþh þ Fvtþh�1 þ/þ Fhvt þ Fhþ1Wt�1:

The second equation of (9) states:

Dytþh ¼ ðFþ etþhÞ þ ðF12;1 þ F12;2ÞðFþ etþh�1Þ þ/þ ðFh2;1 þ Fh2;2ÞðFþ etÞ þ Fhþ1
2;1 yt�1

þ Fhþ1
2;2 Dyt�1 þ Fhþ1

2;3 Dyt�2 þ/þ Fhþ1
2;k Dyt�kþ1; (10)

where Fi,jh is the (i,j)th n� n block of the matrix Fh (i.e., F raised to the power of h). The Appendix of this
paper shows that F2,jhþ1/0 as h/N, cj¼ 1,2,.,k. Hence, the infinite vector-moving-average
representation of Dyt can be derived as follows:

Dyt ¼ gþ et þ ðF12;1 þ F12;2Þet�1 þ/þ ðFh2;1 þ Fh2;2Þet�h þ/:: (11)

The impulse-response function of Dyt from equation (11) is therefore given by:

IRMA
D ðt;h; d;Ut�1Þ ¼ ðFh2;1 þ Fh2;2Þd; h ¼ 1;2;.; s: (12)

Equation (10) can be used to establish the relationship between the impulse-response function
calculated by local projections and that by the conventional VAR-VECM method. To justify the above
statement, this paper rewrites equation (10) as follows:

Dytþh ¼ ½Iþ ðF12;1 þ F12;2Þ þ/þ ðFh2;1 þ Fh2;2Þ�Fþ Fhþ1
2;1 yt�1 þ Fhþ1

2;2 Dyt�1 þ Fhþ1
2;3 Dyt�2 þ/

þFhþ1
2;k Dyt�kþ1 þ ½etþh þ ðF12;1 þ F12;2Þetþh�1 þ/þ ðFh2;1 þ Fh2;2Þet �: ð13Þ

Comparing equations (4) and (13), this paper obtains the following equalities:

cðhÞ ¼ ½Iþ ðF12;1 þ F12;2Þ þ/þ ðFh2;1 þ Fh2;2Þ�F;

Aðhþ1Þb0 ¼ Fhþ1
2;1 ;

Bðhþ1Þ
1 ¼ Fhþ1

2;2 ;

uðhÞ
tþh ¼ etþh þ ðF12;1 þ F12;2Þetþh�1 þ/þ ðFh2;1 þ Fh2;2Þet :

: (14)

Equation (14) establishes the equivalence of impulse-response functions constructed from local
projections and from the VAR-VECM approach, when the DGP follows a cointegrated VAR process as in
equation (7). It is worth noting that the error term from local projections, utþh

(h), is a moving average of
forecast errors in equation (7) from time t to tþ h. This special structure of the error term from local
projections allows GLS estimation of the system block by block (Jordà, 2005).
4. Empirical investigation

Monthly data for consumer price indices and exchange rates (foreign currencies per US dollar) over
the period from April 1973 through December 1998 have been downloaded from the IMF’s interna-
tional financial statistics. Four industrial countries are considered in our empirical investigation:
France, Germany, Italy and the United States. The data source, sample period and countries in the



Table 1
Results from unit-root tests.

DF-GLS

FRN/US GER/US ITA/US

st �1.172 �0.389 0.384
pt �0.675 0.114 0.190
qt �2.139** �1.945* �2.133**

Notes: FRN, GER and ITA denote France, Germany and Italy, respectively. “*” and “**” indicate significance at the 10%
and 5% level, respectively. DF-GLS is the unit-root statistic provided by Elliott et al. (1996). The lag order of themodel is
selected based on the MAIC rule.
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sample are the same as those in Cheung et al. (2004). Real exchange rates are defined as the difference
between the nominal exchange rates and the relative price, i.e. qt¼ st� (pt*� pt

us), where st and qt are
the nominal and real exchange rates, respectively, andwhere ptus and pt* are the price level in the US and
a foreign country, respectively.

The purpose of this section is to apply the method of local projections, discussed in Section 2, to
investigate the source of real exchange-rate adjustment toward PPP. This work first examines the unit-
root hypothesis of nominal exchange rates, prices (pth pt*� pt

us) and real exchange rates based on the
DF-GLS statistic provided by Elliott et al. (1996). The lag order of the model is selected based on the
modified AIC rule. Results from Table 1 point out that the unit-root hypothesis of nominal exchange
rates and prices is not rejected at conventional levels. This paper then applies Johansen’s (2002)
Bartlett-corrected trace test to determine the existence of a long-run relationship between nominal
exchange rates and prices.11 The lag order of the VAR system for France, Germany and Italy is 5, 3 and 3,
respectively, which is consistent with what was found in Cheung et al. (2004). Results from Table 2
indicate that the hypothesis of no cointegration is rejected but the hypothesis of the existence of at
least one cointegrating vector is not rejected at conventional levels for all countries. The above results
support the existence of a long-run relationship between prices and nominal exchange rates. This work
then examines whether the cointegrating vector of nominal exchange rates and relative prices is not
significantly different from (1, �1). Results from Table 2 point out that the restriction of the cointe-
grating vector being (1, �1) is rejected, at conventional levels, for all countries.

It is worth noting that if nominal exchange rates are cointegrated with relative prices and the
cointegrating vector is (1, �1) then real exchange rates must be stationary. Froot and Rogoff (1995)
suggest that the most direct way to examine the long-run PPP specification is to perform unit-root
tests on real exchange rates. Results displayed in the third row of Table 1 indicate that the unit-root
hypothesis of real exchange rates is rejected at conventional levels. This indicates that nominal
exchange rates are cointegrated with prices and the cointegrating vector is not significantly different
from (1, �1). Accordingly, this paper supports that the long-run PPP condition hold and hence replaces
the cointegrating residual of the model by real exchange rates.

To examine the sources of real exchange-rate adjustments, IRFs based on local projections,
described in Section 2, are first constructed. To obtain the largest sample size possible in a given data
set, the current research applies moment estimators to estimate the coefficients of the local-projection
equation, rather than OLS estimators as proposed by Jordà (2005).12 The method provided by Pesaran
and Shin (1998) is applied to scale the hypothesized vector of shocks, d), and hence our results are
invariant to the ordering of variables in the projection vector.
11 Johansen (2002) points out that the limiting distribution of the conventional trace statistic is often a poor approximation to
the finite sample distribution, and hence proposes a Bartlett-corrected trace test to improve the finite sample performance of
the conventional trace test.
12 The projection coefficients can be calculated from a linear transformation of the first and second moments of variables
(Hamilton, 1994, p. 86). In projecting a variable h-period ahead conditional on its k� 1 most recent observations, the OLS
estimators are constructed based on the first hþ (k� 1) observations and therefore only use the sample size of T� h� (k� 1) to
estimate all theoretical moments in a data set of T observations (Hamilton, 1994, p. 75). This paper adopts moment estimators
obtained by equating theoretical and sample moments and therefore will have different sample size on each individual
moment estimator. OLS and moment estimators have the same limit law (Brockwell and Davis, 1991, p. 240 and 262; and Fuller,
1996, p. 313).



Table 2
Results from cointegration tests.

Hypothesis Statistics FRN [5] GER [3] ITA [3]

A. Cointegration tests on st and pt
r¼ 0 BTr 41.01** 33.90** 46.78**
r¼ 1 BTr 4.17 2.43 3.33

B. Testing the hypothesis of the cointegrating vector being (1, �1)
CV¼ (1, �1) LR 25.02** 10.62** 14.91**

Note: FRN, GER and ITA denote France, Germany and Italy, respectively. r¼ 0 and r¼ 1 indicate the hypothesis of existing at least
0 and 1 cointegrating vector, respectively. CV¼ (1, �1) indicates the hypothesis of the cointegrating vector being (1, �1). BTr is
the Barlett corrected trace statistic provided by Johansen (2002). LR is the likelihood ratio statistic of testing the cointegrating
vector being (1, �1), which has a c2 distribution. A number in a bracket is the lag order of the VAR system. “**” indicates
significance at the 5% level.
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Following the suggestion of Kilian and Kim (2009), this paper computes the confidence interval of
estimates by a block bootstrap method (Künsch, 1989, and Liu and Singh, 1992).13,14 To preserve the
correlation across variables in data, the overlapping blocks of l consecutive (kþ 1) tuples of
(Dytþh,b

0
yt�1, Dyt�1, ., Dyt�kþ1) are drawn with replacement. The bootstrapped sample is used to

construct
Ph

j¼1
bA�ðjÞ

and
Ph

j¼1
bB�ðjÞ
1 (and hence bE�

h and bG�
h) in equation (5).15 For each bootstrap

replication, this paper constructs bd�
based on Pesaran and Shin (1998). Kilian and Kim (2009) indicate

that it is not clear, in literature, how to estimate the variance of the bootstrapped local-projection
impulse-response estimators for constructing the studentized t* statistic. Instead of constructing
a symmetric percentile-t confidence interval, this paper constructs a nominal (1� a)% confidence

interval by the percentile method which is defined as: PðbqLP�a=2 � q � bqLP�1�a=2Þ ¼ 1� a, where bqLP�a=2 andbqLP�

1�a=2 are the a/2 and 1� a/2 quantiles of the distribution of bqLP�. The block size is set to eight for all
horizons, since this will produce the smallest local-projection confidence intervals amongst all of the
different possible block sizes between 3 and 15.16

This paper decomposes real exchange-rate dynamics by constructing the impulse-response func-
tion of nominal exchange rates, prices and real exchange rates under both a price and nominal
exchange-rate innovations. Since real exchange rates are defined as the difference between nominal
exchange rates and prices, the relationship between the IRFs of nominal and real exchange rates and
prices is given as follows:

IRqit ¼ IRsit � IRpit ; (15)

where the subscript i indicates a nominal exchange-rate shock (i¼ 1) or a price shock (i¼ 2). Taking the
first difference of equation (15), this work measures the relative contribution of nominal exchange
rates and prices as follows:

xpi ¼ 1� xsi;

where xsihDIRsit=DIRqit , xpih� DIRpit=DIRqit , and where xsi and xpi each represent the proportion of the
real exchange-rate evolution explained by, respectively, the nominal exchange rate and the price.
13 Instead of generating the confidence interval of impulse-response estimates, this paper constructs the confidence interval
of the relative contribution of nominal exchange rates and relative prices and that of half lives. These confidence intervals are
nonlinear functions of the impulse-response coefficient estimates, and hence the delta expansion of the asymptotic distribution
of the impulse-response estimator is complicate. Because of this, the current research adopts a block bootstrap to construct the
confidence interval of the relative contribution of the nominal exchange rate and price and the confidence interval of half lives.
14 Although our estimators are based on sample moments, Romano and Thombs (1996) show that block bootstrap re-
sampling methods can be used to approximate the distribution of sample moment estimators under weak assumptions.
15 One may apply a bias-corrected method to estimate parameters and then construct the confidence interval of estimates
accordingly, but Kilian and Kim (2009) point out that the improvement to the bias-corrected method is limited.
16 This paper also constructs a local-projection bootstrapped confidence interval by varying the block size with horizons, but
results show that a fixed block size of eight produces the smallest confidence interval.
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Since the sum of relative contribution to nominal exchange rates and prices is equal to one
(xpiþ xsi¼ 1), this work only reports the impact of a shock on nominal exchange rates, to save space. If
xsi is greater than 0.5 but less than 1.0, then the current research claims that the nominal exchange-rate
adjustment dominates in the reversion toward PPP after facing the ith shock. This indicates that, facing
a positive shock, the price and nominal exchange-rate adjustments work in opposite directions. The
price adjusts to correct the PPP deviation, but the nominal exchange rate moves further away from
equilibrium driving the real exchange rate away from its long-run equilibrium level. If xsi is greater than
1, then xpi must be negative since xsiþ xpi¼ 1. This indicates that when facing a positive shock, nominal
exchange-rate and price adjustments work in the same direction, driving the real exchange rate away
from its long-run equilibrium level. Furthermore, the nominal exchange-rate adjustment dominates
the price adjustment in driving real exchange rates.

Table 3 reports the estimated proportion of real exchange-rate evolution explained by the nominal
exchange rate ðbxsiÞ, the 90% confidence interval of the proportion, and the standard deviation of the
estimated proportion under both a nominal exchange rate and a price shock. The above standard
deviation and confidence interval are constructed based on 1000 block bootstrap replications with the
block size being set to eight for all horizons. Results from the third and eighth columns of Table 3
indicate that the nominal exchange-rate adjustment generally dominates the reversion toward PPP
regardless of shocks, since bxsi > 0:5 for all but two cases.17 Given a nominal exchange-rate shock,
however, results from the fourth column of Table 3 fail to reject the hypothesis of xs1¼0 (percentile
confidence interval contains zero) in one, five and nine out of nine horizons for France, Germany and
Italy, respectively. Moreover, xs2 is insignificant, regardless of horizons, for Italy. The standard deviation
of bxs1 (SE1) under different horizons ranges from 2.4 to 19.7 for France, 3.1 to 49.3 for Germany and 3.7
to 68.1 for Italy. Given a price shock, the standard deviation of bxs2 (SE2) under different horizons varies
from 1.5 to 148.7 for France, 1.6 to 31 for Germany and 3.6 to 25.8 for Italy. The standard deviations ofbxs1 and bxs2 under different horizons are much larger than those founded in Cheung et al. (2004).

Due to the secondpower term inestimating avariance fromsample average, thevalueof the standard
error can be arbitrarily large when there are extreme values in the sample (Kim and White, 2004).
Therefore, the above large standard deviations and wide 90% confidence intervals could be due to the
existence of fewextreme values of bxsi.18 After detailed inspection of the histogramof the 1000 bootstrap
estimatesof xsi, this paperfinds fewextremeestimates of xsi.19Hence, the current research removes these
extreme estimates and then re-constructs the standard deviation of bxsi and the 90% confidence interval
of xsi. Given a nominal exchange-rate shock, results from the sixth column of Table 3 indicate that xs1 is
significantly different from zero at all horizons regardless of countries.20 Results from the seventh
column of Table 3 indicate that the standard deviation of bxs1 (SE1*) under different horizons varies
around 0.27, 0.31 and 0.50 for France, Germany and Italy, respectively. This paper only removes about
one-tenth of bxs1 (according to the criterion in footnote 19) regardless of horizons and countries but the
reduction in the standard deviation of bxs1 is substantial as indicated by the fifth and seventh columns of
Table 3. Similar results are obtained under a price shock. Although the standard errors of bxsi decreases
after removing the extreme values, they are still larger than those found in Cheung et al. (2004). Kilian
and Kim (2009) point out that the estimated variance of local-projection-based estimates is larger than
that of VAR-based estimates, and hence our results are consistent with theirs.

Based on a VAR-VECM framework, Cheung et al. (2004) point out that real exchange-rate conver-
gence is driven by nominal exchange rates and the contribution of prices to PPP convergence is rela-
tively minor. Our results from Table 3 are generally consistent with theirs, since xsi is significant (after
17 The estimated proportions of real exchange-rate evolution explained by the nominal exchange rate from a price shock, xs2,
is �2.84 for FRN at the horizon of 10. This is due to the sharp fluctuation of the impulse-response function for nominal and real
exchange rates indicated by Fig. 1.
18 The problem of existing extreme bootstrap estimates is not serious in Kilian and Kim (2009) but it is worth noting that their
variables are I(0) but ours are I(1).
19 Based on the box plot used in descriptive statistics, an extreme value of bxsi is detected if it is less than Q1�3IQ or larger than
Q2þ 3IQ, where Q1 is the lower quartile and Q2 is the upper quartile and IQ¼ (Q2�Q1) is the interquartile.
20 Few of our estimates lie outside their confidence intervals since this paper constructs percentile intervals rather than
centered percentile used by some authors such as Kazimi and Brownstone (1999).



Table 3
Relative contributions of nominal exchange rate and price adjustments to PPP reversion based on local projections.

h A nominal exchange-rate innovation A price innovationbxs1 CI1 SE1 CI1* SE1* bxs2 CI2 SE2 CI2* SE2*

FRN/US 10 1.11 (�0.04, 1.91) 6.72 (0.53, 1.49) 0.28 �2.84 (0.17, 1.78) 2.08 (0.45, 1.61) 0.33
30 0.89 (0.06, 2.04) 4.38 (0.49, 1.45) 0.28 2.01 (0.22, 1.81) 5.57 (0.58, 1.48) 0.26
50 0.16 (0.01, 1.83) 2.72 (0.54, 1.48) 0.27 0.76 (0.03, 1.83) 3.48 (0.46, 1.43) 0.28
70 0.64 (0.17, 2.06) 7.63 (0.47, 1.45) 0.28 0.95 (0.29, 1.71) 1.56 (0.51, 1.42) 0.26
90 1.04 (0.16, 1.73) 9.36 (0.52, 1.40) 0.26 0.57 (0.13, 2.01) 12.69 (0.53, 1.46) 0.28

130 1.11 (0.13, 2.04) 3.38 (0.56, 1.44) 0.26 0.97 (0.04, 1.85) 148.70 (0.55, 1.41) 0.25
170 1.49 (0.07, 1.81) 2.48 (0.50, 1.43) 0.27 1.15 (0.15, 1.82) 1.90 (0.44, 1.53) 0.30
200 1.33 (0.18, 1.77) 19.75 (0.49, 1.49) 0.28 0.54 (0.11, 2.04) 2.54 (0.49, 1.45) 0.33
240 1.17 (0.13, 1.83) 4.18 (0.37, 1.39) 0.28 1.02 (0.01, 1.81) 1.49 (0.49, 1.42) 0.26

GER/US 10 1.07 (�0.11, 1.79) 3.94 (0.41, 1.47) 0.30 0.89 (0.17, 1.78) 4.37 (0.42, 1.50) 0.31
30 2.43 (�0.07, 1.89) 8.91 (0.37, 1.50) 0.32 0.79 (0.22, 1.81) 6.72 (0.45, 1.53) 0.30
50 1.45 (0.01, 1.92) 2.67 (0.39, 1.50) 0.31 1.07 (0.03, 1.83) 5.36 (0.49, 1.46) 0.28
70 2.80 (�0.02, 1.89) 3.85 (0.42, 1.62) 0.33 1.16 (0.29, 1.71) 2.98 (0.45, 1.41) 0.28
90 1.06 (0.02, 1.82) 3.11 (0.42, 1.40) 0.29 1.48 (0.13, 2.01) 1.62 (0.44, 1.43) 0.29

130 1.01 (�0.20, 2.00) 15.62 (0.39, 1.45) 0.29 0.71 (0.04, 1.85) 30.97 (0.41, 1.49) 0.31
170 0.76 (�0.37, 1.67) 9.97 (0.42, 1.44) 0.30 0.96 (0.15, 1.82) 2.28 (0.39, 1.45) 0.31
200 0.97 (0.09, 1.86) 49.36 (0.49, 1.46) 0.30 1.20 (0.11, 2.31) 12.26 (0.45, 1.47) 0.30
240 0.68 (0.05, 1.90) 14.55 (0.49, 1.47) 0.32 0.96 (0.01, 1.81) 2.71 (0.50, 1.46) 0.29

ITA/US 10 1.22 (�0.89, 2.79) 4.23 (0.25, 1.88) 0.48 3.81 (�0.56, 2.67) 3.61 (0.24, 1.89) 0.49
30 0.99 (�0.67, 2.66) 50.31 (0.07, 1.89) 0.54 1.79 (�0.88, 2.71) 5.60 (0.08, 1.79) 0.49
50 1.50 (�0.62, 2.20) 6.15 (0.08, 1.82) 0.51 0.68 (�0.92, 2.26) 21.26 (0.20, 1.92) 0.50
70 0.92 (�0.42, 2.83) 68.11 (0.14, 1.91) 0.52 0.60 (�0.51, 2.23) 11.41 (0.12, 1.81) 0.49
90 1.04 (�0.58, 2.92) 21.44 (0.19, 1.79) 0.48 1.03 (�0.50, 2.42) 25.79 (0.10, 1.80) 0.49

130 1.00 (�0.68, 2.32) 8.05 (0.16, 1.88) 0.51 1.17 (�0.89, 2.84) 23.69 (0.03, 1.91) 0.54
170 1.18 (�0.85, 3.13) 8.25 (0.13, 1.79) 0.50 0.84 (�0.44, 2.53) 6.66 (0.21, 1.79) 0.48
200 0.92 (�0.38, 2.29) 3.85 (0.24, 1.89) 0.47 0.72 (�0.54, 2.55) 5.03 (0.19, 1.94) 0.49
240 0.86 (�0.35, 2.67) 3.70 (0.18, 1.94) 0.51 1.37 (�0.52, 2.46) 5.88 (0.13, 1.82) 0.49

Notes: FRN, GRE and ITA denote France, Germany and Italy, respectively. The column bxsi indicates the estimated proportion of
real exchange-rate evolution explained by the nominal rates under the ith shock. The columns SEi and CIi provide the standard
error of bxsi and the 90% percentile confidential of xsi for i¼ 1,2. The standard error and confidence interval are constructed based
on 1000 block bootstrap replications with the block size being set to eight. The columns SEi* and CIi* provide the standard error
of bxsi and the 90% percentile confidential of xsi after removing the extreme values of bxsi . Bold values in a parenthesis indicate that
the interval does not include zero and hence xsi is significantly different from zero.
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removing extreme values of bxsi) and its estimate is generally greater than 0.5 regardless of horizons and
countries. The limitation of the VAR-VECM approach is that it assumes that the true DGP follows a VAR
(k) model –which may not be true. The advantage of the local-projection approach is its robustness to
specifications in the true DGP. However, our results from local projections are consistent with those
found in Cheung et al. (2004), implying that their main findings are not sensitive to a possible mis-
specification in the true DGP.

Fig. 1 plots the IRF of nominal exchange rates, prices and real exchange rates, respectively, under
different shocks. Several interesting results are observed. First, IRFs from local projections are not as
smooth as conventional IRFs based on the VAR-VECM such as those found in Cheung et al. (2004). This
is due to the fact that VAR-VECM-based IRFs across horizons are constructed based on the same VAR
coefficients, whereas local-projections-based IRFs are obtained from direct forecasting across horizons
and new estimates are involved for each horizon. Second, the IRF of real exchange rates is close to that
of nominal exchange rates, indicating the significance of nominal exchange-rate adjustments in the
reversion toward PPP. Third, this paper finds that price adjustment toward equilibrium is highly
persistent relative to nominal exchange-rate adjustments for all three countries, implying that nominal
exchange-rate adjustments play a significant role for PPP convergence. Overall, findings from Fig. 1
indicate that nominal exchange-rate adjustments play a major role in the reversion toward PPP for
all countries, which is in line with the results in Table 3.

Table 4 reports the estimated half-life of prices, nominal and real exchange rates under different
shocks as well as the 90% confidence interval of the half-life. The confidence interval is obtained from
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Fig. 1. IRFs of prices, nominal and real exchange rates with respect to shocks.
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Table 4
Half-life estimation by local projections.

FRN/US GER/US ITA/US

st pt qt st pt qt st pt qt

A nominal exchange-rate shock
HL 38 95 28 36 98 33 31 104 28
0.05_bound 12 10 14 4 12 4 20 5 17
0.95_bound 108 119 110 104 118 113 118 116 118

A price shock
HL 114 39 114 74 60 76 114 26 114
0.05_bound 30 2 39 20 4 3 5 4 28
0.95_bound 118 118 118 118 118 118 119 118 119

Note: FRN, GER and ITA denote France, Germany and Italy, respectively. HL denotes half-life. The long-run equilibrium for
nominal exchange rates and prices is measured as the average value of the impulse response of these two variables at the 120th
period under a shock. 0.05_bound and 0.95_bound are the lower and upper bound of a 90% confidence interval.
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1000 block bootstrap replications with the block size being set to 8.21 Following Cheung et al. (2004)
and Engel and Morley (2001), this paper measures the equilibrium value for st and pt as
(IRsijh¼120þ IRpijh¼120)/2, i¼ 1, 2.22 Several interesting results are observed from Table 4. First, under
a nominal exchange-rate shock, results from the upper panel of Table 4 indicate that the half-life of
prices ranges from 8 to 9 years, but the half-life of nominal and real exchange rates ranges from 2.3 to
3.2 years. The half-life of real exchange rates in each country is close to that of nominal exchange rates.
Although price adjustment is much more persistent than that of nominal exchange rates, nominal
exchange-rate adjustments dominate in the reversion to PPP. This is the reasonwhy the half-life of real
exchange rates is close to that of nominal exchange rates. Second, under a price shock, the half-life of
nominal and real exchange rates increases but that of prices decreases. The half-life varies from 6.2 to
9.5 years for real and nominal exchange rates and 2.2 to 5 years for prices. Again, the half-life of real
rates is close to that of nominal rates. Themuch longer half-life of real and nominal exchange rates than
that of prices under a price shock results from oscillatory IRFs with irregular cycles. Third, the confi-
dence interval of the half-life is generally wide, regardless of shocks, which is consistent with Murray
and Papell (2002). The reason could be that local-projection-based IRFs are constructed from direct
forecasting across horizons and hence they are volatile relative to those constructed from VAR-VECM.
5. Conclusion

Ever since the seminal paper by Rogoff (1996), the role of price and nominal exchange-rate
adjustments in the reversion toward PPP has been an interesting issue in relevant literature. Engel and
Morley (2001) find that exchange-rate adjustment drives for PPP convergence at a torpid rate.
Adopting a VAR-VECM approach, Cheung et al. (2004) find that “about 60–90% of real exchange-rate
convergence is driven by nominal exchange rates and the contribution of prices to PPP convergence is
relatively minor”. Their findings are in sharp contrast with the conventional explanation based on
nominal rigidities and offer a new look at the theoretical modeling of real exchange-rate dynamics.

The VAR-VECM approach assumes that the true DGP follows a VAR(k) process which may be
empirically restrictive. Jordà (2005) provides a local-projection approach to construct the IRF function
of variables under investigation. Though it is robust to a misspecification in true DGP, Jordà’s (2005)
method is not directly applicable in a non-stationary but cointegrated framework. This paper
21 The half-life estimates are restricted to vary between 1 and 120 months since the equilibrium is assumed to be achieved at
the 120th month. No extreme estimate is removed based on the criterion in footnote 19.
22 Theoretically, there is no convergence for nominal exchange rates and relative prices in the impulse-response approach
since they are non-stationary variables. In order to construct the half-life of each individual series, this paper follows Cheung
et al. (2004) and Engel and Morley (2001) and presumes an “equilibrium value” for nominal exchange rates and relative prices
at a sufficiently long time where PPP convergence has been completed, meaning that the paths of nominal exchange rates and
relative prices are sufficiently close to each other.
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therefore extends Jordà’s method to the above framework and then constructs the IRF based on local
projections. Therefore, our IRF analysis is robust to any misspecifications of the true DGP. This paper
finds that nominal exchange-rate adjustments dominate in the reversion to PPP, regardless of nominal
exchange-rate or price shocks and that the half-life of real exchange rates is close to that of nominal
exchange rates. These results are consistent with those of Cheung et al. (2004). Therefore, the current
research concludes that their main findings are robust to possible misspecifications in the true DGP.
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Appendix

In this appendix, this paper shows that (11) derived from a companion form (9) is indeed a vector-
moving-average representation of Dyt. Johansen (1991) and Hansen (2005) have shown the MA
representation of a cointegrated VAR system. This work therefore adopts Hansen’s (2005) theorem 1 to
facilitate our proof. For the convenience of our presentation, the current research re-produces Hansen’s
theorem 1 as follows.

Theorem 1. (Granger Representation Theorem (Hansen, 2005)) A cointegrated VAR process as equation
(7) (where constant is the only deterministic term) has the following representation:

yt ¼ C
Xt
h¼1

eh þ CðLÞet þ sþ Cðy0 � G1y�1 �/� Gk�1y�kþ1Þ; (A1)

where C ¼ btða0
tGbtÞ�1a0

t and the matrix a0
tGbt has full rank with G ¼ I�Pk�1

i¼1 Gi, s¼ tCFþ C
(L)F, and the coefficients in C(L) are given by the following recursive formula:

DCh ¼ PCh�1 þ
Xk�1

j¼1

GjDCh�j; h ¼ 1;2;. (A2)

with the convention of C0¼ I� C, C�1¼/¼ C�kþ1¼�C and PC¼ 0.

From Theorem 1, Hansen (2005) immediately has the following corollary results:

Dyt ¼ CDðLÞet þ CF; (A3)

where CD,h¼ Ch� Ch�1, and Ch, h¼ 0,1,., are coefficients of the polynomials in Theorem 1.23 Further-
more, Hansen (2005) shows that (Lemma A.5, p.36) DCh can be calculated as

DCh ¼ k2;h; h ¼ 0;1;2;.; (A4)

where kh¼ (k1,h
0
,., kk,h

0
)
0 ¼ FhE, in which F is the matrix defined in the companion form of equation (9)

and E¼ (In,In,0,.,0)
0
. Based on equation (A4), it is straightforward to derive that DCh¼ (F2,1h þ F2,2h ). This

shows that coefficients in the moving average representation derived from the companion form of
equation (9) are identical with those derived from Hansen (2005).

To show that the coefficient matrices of yt�1 and Dyt�j in equation (10) converge to zero, i.e.
F2,jhþ1/0 cj¼ 1,.,k, this paper first shows that Fh does not diverge as h/N. Following Phillips
(1998), this work denotes
23 As is claimed in footnote 6, a shock at time t changes yt with Cþ C0 from (A1), that is identical with the change of the same
shock to Dyt as in (A3), i.e. C0� C�1¼ C0þ C.
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D ¼

266664
P1 P2 P3 / Pk�1 Pk
I 0 0 / 0 0
0 I 0 / 0 0
« « « « « «
0 0 0 / I 0

377775;
where D have eigenvalues equal to the inverse of the roots of det(A(z))¼ 0.24 The current research
further denotes

K ¼

266664
I 0 0 / 0 0
I �I 0 / 0 0
I �I �I / 0 0
« « « « « «
I �I �I / �I �I

377775; K�1 ¼

266664
I 0 0 / 0 0
I �I 0 / 0 0
0 I �I / 0 0
« « « « « «
0 0 0 / I �I

377775:
This paper then shows that matrix F in equation (9) andmatrix D are similar matrices since F¼K�1DK.
Therefore, matrix F has the same eigenvalues as matrix D. Since this work has assumed that eigen-
values of matrix D are either one or smaller than one. Thus, Fh will not diverge as h/N.

Based on our assumption on the roots of det(A(z))¼ 0 and the fact thatP¼ ab
0
, this work concludes

that the roots of det½Ið1� zÞ � ab0z�Pk�1
i¼1 Gið1� zÞzi� ¼ 0 are outside the unit circle implying that

DCh in (A2) is stable, and hence DCh/ 0 as h/N. It is then straightforward to show that
(F2,1hþ1þ F2,2hþ1)/ 0 as h/N since DCh¼ (F2,1h þ F2,2h ) as indicated by equation (A4). The structure of F
yields the following two equations:

Fhþ1
2;i ¼ ðFh2;1 þ Fh2;2ÞGi�1 þ Fh2;iþ1; ci ¼ 2;.; k� 1; (A5)

Fhþ1
2;k ¼ ðFh2;1 þ Fh2;2ÞGk�1: (A6)

Solving equations (A5) and (A6) with recursive substitution yields:

Fhþ1
2;j ¼ ðFh2;1 þ Fh2;2ÞGj�1 þ ðFh�1

2;1 þ Fh�1
2;2 ÞGj þ/þ ðFh�kþj

2;1 þ Fh�kþj
2;2 ÞGk�1;cj ¼ 2;.; k; (A7)

where F2,1h�kþjþ F2,2h�kþj¼ 0 if h� kþ j< 0. Equation (A7) indicates that F2,jhþ1 for j¼ 2,.,k, can be
expressed as a function of F2,1h�pþ F2,2h�p for a finite p¼ 0, ., P. Since this work has shown that
(F2,1hþ1þ F2,2hþ1)/ 0 as h/N, which implies that F2,jhþ1/0 as h/N, for j¼ 2,.,k. This would also imply
that F2,1hþ1/0. This paper concludes that for all j¼ 1,.,k, F2,jhþ1/0 as h/N in equation (10). There-
fore, equation (11) is indeed a MA representation.
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