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ABSTRACT

� � This paper derives the asymptotic distribution of the Phillips-Perron unit root tests
statistics and some of their variants under a general non-stationary fractionally-integrated

I(1+ d) process, for d ∈ (−0.5, 0.5). By using the Newey-West estimator of long-run

variance, we show that both the Phillips-Perron’s t statistics and standardized coefficients

estimator are consistent against a non-stationary but mean-reverting alternative, such as

the I(1 + d) process for d ∈ (−0.5, 0). However, only the t statistic from a no-drift

and no-time trend regression is consistent against a non-stationary and non-mean-reverting

alternative, such as the I(1+ d) process for d ∈ (0, 0.5). Simulation results also confirm
that the power of these test statistics in large samples will decrease as the lag number

increases in the construction of a Newey-West estimator of the long-run variance.
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��� INTRODUCTION

It is very important that a statistical test be able to fully discriminate the null and the

alternative hypothesis in large samples. This paper is concerned with this issue in

testing the hypothesis of a unit root in the following simple autoregressive model:

yt = βyt−1+ ut, (1)

where the disturbanceut is a stationary but fractionally-integrated I(d) process with

−0.5< d < 0.5.

Sowell (1990) analyzes the asymptotic properties of the standard Dickey-Fuller

(DF, Dickey and Fuller (1979)) unit root teststatistics from the ordinary least square

estimator (OLS) ofβ for the case in (1), whereβ = 1, y0 = 0, and(1− L)dut = εt,
εt is independently and identically-distributed with mean zero and varianceσ2 (i.i.d.

(0, σ2)) andE(|εt|m) < ∞ for m ≥ max[4,−8d/(1+ 2d)]. Diebold and Rudebusch

(1991) show via a Monte-Carlo simulation that these tests, althoughconsistent, have

little power in finite samples.

The results of Sowell (1990) are of limited value for real world applications,

where one almost always has to allow under the null hypothesis,d = 0, for auto-

correlation amongut in (1). Therefore, the standard Dickey-Fuller test is rarely appro-

priate, and there is automatically some implied interest in the power of the Augmented

Dickey-Fuller test (ADF, Dickey and Fuller (1979)) or the Phillips-Perron test (PP,

Phillips (1987), Phillips and Perron (1988), and Perron and Ng (1996)), which allow

for a more general process inut than as in Sowell (1990).

Under Monte Carlo results, Hassler and Wolters (1994) conclude that the ADF

test is not consistent against a fractional alternative. They also say that the power

of the PP (t-statistics) test is not very much influenced by the choice of the number

of included residual autocovariances. However, the first conclusion of Hassler and

Wolters (1994) is shown to be misleading by Krämer (1998), who shows that the ADF

test is indeed consistent against a fractional alternative if the order of the autoregression

does not tend to go to infinite too fast. This paper is concerned with the theoretical

background underpinning the power of PP test statistics.

The objectives of our paper are twofold. The first extends the weak convergence
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results in characterizing thefractional unit root distribution given by Sowell (1990) to

general fractionally-integrated processes. Instead of assuming that the innovationsut

in model (1) are a fractional-i.i.d. process, we allow for it after differencingd times to

be a weakly dependent process as that in Phillips (1987) where the functional central

limit theorem of Davidson and de Jong (2000) can apply.

Our second objective is to derive the asymptotic distribution of the PP test statis-

tics under a non-stationary fractionally-integrated I(1+ d) process,d ∈ (−0.5,0.5).

Our results show that both the Phillips-Perron’st statisticsZt and standardized co-

efficients’ estimatorZβ are consistent against a non-stationary but mean-reverting1

alternative, such as the I(1+d) process ford ∈ (−0.5,0). However, only theZt statis-

tic from a no-drift and no-time trend regression is consistent against a non-stationary

and non-mean-reverting alternative, such as the I(1+ d) process ford ∈ (0,0.5).
The statisticsZt from a regression with a drift, and with a drift and a time trend, and

theZβ test statistics are unable to distinguishconsistently between the unit root and

a non-stationary and non-mean-reverting fractionally-integrated I(1+ d) process, for

d ∈ (0,0.5). We also show that in the cases when the test statistics are consistent, the

power of these test statistics is in fact affected by the choice of the number included in

the residual autocovariance in the construction of the Newey and West (1987) estima-

tor of the long-run variance. Therefore, the results of Hassler and Wolters (1994) are

again misleading in their conclusion on the power of the PP test against a fractionally-

integrated process. According to our simulation, we find that the results of Hassler and

Wolters (1994) may be due to the problem ofa small sample size in their simulation.

This paper is organized as follows. Replacing a stronger condition with David-

son and De Jong’s (2000), a functional central limit theory for a general fractionally-

integrated process is given in section 2, wherethe generalized fractional unit root dis-

tribution is also presented. Section 3 analyzes the asymptotic properties of the Phillips-

Perron test statistics under this general non-stationary fractionally-integrated process.

Section 4 provides the simulation evidenceof the power of the Phillips-Perron test. A

conclusion completes the analysis. Themain proofs are contained in the Appendix.

Throughout this paper, we use “⇒” to denote weak convergence of associated

probability measures, “
p−→” denotes convergence in probability, [z] means the largest

integer that is smaller than or equal to z, and we letei ∼ fi denote thatei/fi → 1 as

i→∞.

1 For a mean-reverting process, the impact of a unit innovationεt at timet on the processut+k is zero
ask →∞.
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��� ASYMPTOTICS OF A GENERAL FRACTIONALLY�

INTEGRATED PROCESS

���� Functional central limit theory for a fractionally�integrated process

A general fractionally-integrated I(d) processut is customarily written in the form

(1− L)dut = εt, (2)

where the innovation processεt, the fractional difference ofut, is assumed to be a

stationary and weakly dependent process asspecified below. By the obvious binomial

expansion, they have the moving average (MA) representation:

ut =
∞
S
j=0
bjεt−j , (3)

where

bj =
C(j + d)

C(d)C(j + 1)
.

Stirling’s approximation formulation forthe gamma function yields the well-known

property that the MA coefficients decline hyperbolically to zero. We can now write

bj ∼
1

C(d)
jd−1.

The termsbj are therefore square summable ford < 0.5, which is the condition nec-

essary for the process to be stationary with a finite variance, whereasd > −0.5 is

necessary for the process to have an invertible AR representation. Moreover,d < 1

implies thatut is mean-reverting. The autocorrelations ofut, ρj can be shown to be

ρj ∼ cj
2d−1,
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wherec is constant and has the same sign asd whenεt is i.i.d..

For 0<d<0.5, the process is long memory in the sense that limT→∞STj=−T |ρj |
is non-finite. Its autocorrelations are all positive and decay at a hyperbolic rate. For

−0.5< d < 0, the sum of the absolute values of the processes autocorrelation tends to

a constant, and all its autocorrelations, excluding the lag zero, are negative and decay

hyperbolically to zero. Helson and Sarason (1967) show that an I(d) process with

d > −0.5 and an autocorrelation given byρj violate the strong mixing condition and

hence is a long memory. Beran (1994) and Baillie (1996) are standard references to an

I(d) process.

To begin we must be precise about the sequenceεt of allowable innovations in

(2) for the present paper. Following Phillips (1987), we assume thatεt is a sequence

of random variables that satisfy the following Assumption.

Assumption 1� The sequenceεt,−∞ < t <∞,

(a) has zero mean;

(b) satisfies suptE|εt|γ <∞ for someγ > 2;

(c) is stationary,2 and 0< σ2
ε <∞, whereσ2

ε = limT→∞ T−1STt=1S
T
s=1E(εtεs);

(d) is strong mixing with mixing coefficientsαm that satisfyS∞m=1α
1−2/γ
m <∞.

Define the variance of the partial sums of the I(d) processut byσ2
T =E(S

T
t=1ut)

2.

Davidson and De Jong (2000) have the following functional central limit theorem

(FCLT) for this broad class I(d) process whose underlying shock variables may them-

selves exhibit quite general weak dependence.3

Lemma 1� Suppose(1− L)dut = εt,−0.5< d < 0.5 andεt satisfy Assumption 1;

then asT →∞,

(a)σ2
T ∼ σ

2
εVdT

1+2d, and

(b) σ−1
T S

[Tr]
t=1ut ⇒ Bd(r), for r ∈ [0, 1].

Here,Bd(r) is the normalized fractional Brownian motion that is defined by the fol-

2 This is a stronger condition than Phillips (1987)’s. This condition excludes any possible heteroge-
neous innovation.

3 This is a stronger assumption than as in Assumption 1 of Davidson and De Jong (2000). We impose
the stationary condition in Assumption 1(c) that makes theut process be a linear function of a stationary
process,εt. Because the stationary linear processes are ergodic,ut under our assumption can apply the
stationary ergodic Theorem (see Stout (1974), p.181)
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lowing stochastic integral:4

Bd(r) ≡ 1

C(1+ d)V
1
2
d

(∫ r
0
(r − x)ddB(x) +

∫ 0

−∞

[
(r−x)d−(−x)d

]
dB(x)

)
, (4)

with Vd ≡ C(1 + d)−2{(1 + 2d)−1 +
∫∞

0 [(1 + τ)
d − τd]dτ} = C(1 − 2d)/[(1 +

2d)C(1+ d)C(1− d)] andB(r) is the standard Brownian motion.5

Lemma 1(a) shows that the variance of the partial sum of an I(d) process is

O(T 1+2d). Sowell (1990) obtains the same result under the assumption thatεt is i.i.d..

Lemma 1(b) is an FCLT for a general fractionally-integrated process that could apply

to a large class of fractionally-integrated processes including the well-known Gaus-

sian ARFIMA (p,d,q) process. These conditions allow for a wide variety of possibly

weakly dependent generating mechanisms in the innovations processεt. The main

novel feature of these results is that the innovation variables (fractional difference) are

permitted to be a mixing process, a very general form of weak dependence allowing

for various forms of non-linear dynamics.

Davydov (1970), Avram and Taqqu (1987), Mielniczuk (1997), and Chung (2002)

give results on FCLT for a long memory process directly from an I(d) process written

in a linear process as in (3) with square summable weights. Wang et al. (2003) derive

the FCLT for a fractionally-integrated process from (2) by assuming thatεt is a linear

process of ani.i.d. random variable, sayηt,

εt =
∞
S
j=0
ϕjηt−j , t = 1,2, ... (5)

with S∞j=0 j
0.5−d|ϕj | <∞, S∞j=0ϕj 	= 0, andE|ηt|max{2,2/(1+2d)} <∞.

When our mixing processesεt are specified to be a summable linear process as in

(5), it is interesting to compare the regularity conditions of Lemma 1 to those in Wang

et al. First, the moment condition ofεt in Assumption 1(b) is stronger than Wang et

al’s where only second moment is needed to exist. Second, the coefficient condition

4 The original definition of a fractional Brownian motion shown in Sowell (1990) isBd(r) = 1/C(1+
d)
∫ r

0 (r − x)ddB(x). However, Marinucci and Robinson (1999) show that it requires a correction by
replacing it with the definition of the fractional Brownian motion as in (4).

5 This type of fractional Brownian motion is so defined as to makeEBd(1)
2 = 1. A fractional

Brownian motion differs from a standard Brownian motionB(r) by having correlated increments. Please
refer to Marinucci and Robinson (1999) for additional details on the fractional Brownian motion.
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onϕj is weaker in our assumption due to mixing in a linear process, as we only need

ϕj to be absolute summable (See Davidson (1994), p. 215)

���� Generalized fractional unit root distribution

From here on, we discuss the following non-stationary fractionally-integrated process

yt, defined by

yt = βyt−1+ ut, (6)

β = 1, (7)

wherey0 = 0, andut is the I(d) process satisfying the assumption in Lemma 1.

We consider the three least square regressions

yt = β̆yt−1+ ŭt, (8)

yt = α̂+ β̂yt−1+ ût, (9)

and

yt = α̃+ δ̃t+ β̃yt−1+ ũt, (10)

where β̆, (α̂, β̂), and (α̃, δ̃, β̃) are the conventional least-squares regression coeffi-

cients. Following Sowell (1990), we are concerned with the limiting distribution of

the regression in (8), (9), and (10) under thenull hypothesis that the data are generated

by (6) and (7). The limiting distribution of̆β, (α̂, β̂), and(α̃, δ̃, β̃) is described in the

following Theorem.

Theorem 1� Let yt satisfy (6) and (7); then asT →∞,

for the regression model (8),

(a) T (β̆ − 1)⇒ (1/2)[Bd(1)]2∫ 1
0 [Bd(r)]

2dr
, whend > 0;

(b) T 1+2d(β̆ − 1)⇒ − (1/2)σ2
u

σ2
εVd
∫ 1

0 [Bd(r)]
2dr

, whend < 0; and
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(c) T (β̆ − 1)⇒ (1/2)[B(1)2− σ2
u/σ

2
ε ]∫ 1

0 B(r)
2dr

, whend = 0;6

for the regression model (9),

(d) T (β̂ − 1)⇒ (1/2)[Bd(1)]2−Bd(1)
∫ 1

0 Bd(r)dr

W1
, whend > 0;

(e) T 1+2d(β̂ − 1)⇒ − 1
2

σ2
u

Vdσ2
εW1

, whend < 0; and

(f) T (β̂ − 1)⇒ (1/2){[B(1)]2− (σ2
u/σ

2
ε)} −B(1)

∫ 1
0 B(r)dr∫ 1

0 [B(r)]
2dr − [∫ 1

0 B(r)dr]
2

, whend = 0;

for the regression model (10),

(g) T (β̃ − 1)⇒ W2

W3
, whend > 0;

(h) T 1+2d(β̃ − 1)⇒ − 1
2

σ2
u

Vdσ2
εW3

, whend < 0,

(i) T (β̃ − 1)

⇒ (1/2){[B(1)−2
∫ 1

0 B(r)dr][B(1)+6
∫ 1

0 B(r)dr−12
∫ 1

0 rB(r)dr]−σ2
u/σ

2
ε}∫ 1

0 [B(r)]
2dr−4[

∫ 1
0 B(r)dr]

2+12
∫ 1

0 B(r)dr
∫ 1

0 rB(r)dr−12[
∫ 1

0 rB(r)dr]
2

,

� whend = 0;

where

� σ2
u = E(u

2
t ),

� W1 =
∫ 1

0 [Bd(r)]
2dr − [∫ 1

0 Bd(r)dr]
2,

� W2 = (1/2)[Bd(1)− 2
∫ 1

0 Bd(r)dr][Bd(1) + 6
∫ 1

0 Bd(r)dr − 12
∫ 1

0 rBd(r)dr]

and

W3 =
∫ 1

0 [Bd(r)]
2dr − 4[

∫ 1
0 Bd(r)dr]

2+ 12
∫ 1

0 Bd(r)dr
∫ 1

0 rBd(r)dr

−12[
∫ 1

0 rBd(r)dr]
2.

6 The limit distribution of the regression coefficientT (β̆−1) under the unit root hypothesis thatd = 0
andβ = 1 depends on unknown nuisance parameters,σ2

u andσ2
ε; thus, the statisticsT (β̆ − 1) cannot be

used directly for unit root testing. However,σ2
u andσ2

ε can be consistently estimated, and there exists a
simple transformation of the statisticsT (β̆−1)which eliminates the nuisance parameters asymptotically.
See Phillips (1987) and Xiao and Phillips (1998).
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The convergence rates of(β̆ − 1) ( and also(β̂ − 1) and(β̃ − 1)) depend intrin-

sically on the degree of the fractional integration in theut process. The distribution

of Tmin[1,1+2d](β̆−1) is therefore called a generalizedfractional unit root distribution.

Fractional unit root distribution was first derived by Sowell (1990) whereεt in (2) is

assumed to bei.i.d. (0, σ2). Tanaka (1999) and Wang et al. (2003) extend the re-

sults of Sowell (1990) parametrically by assuming thatεt is an infinite-order moving

average process.7

Theorem 1 is a non-parametric extension of Sowell (1990) by assuming thatεt
satisfies Assumption 1. Under quite weak conditions, these results provide a unified

treatment of most of the previously-cited results. For example, when the innovation

processεt is i.i.d. (0, σ2), we haveσ2
u = [C(1 − 2d)/C2(1− d)]σ2, leading to the

following simplification of parts (b) and (c) of Theorem 1 as the results of Sowell

(1990): T 1+2d(β̆ − 1) ⇒ −{[1/2 + d][C(1 + d)/C(1 − d)]}/{∫ 1
0 [Bd(r)]

2dr}, for

d < 0 andT (β̆ − 1)⇒ {(1/2)[B(1)2− 1]}/{∫ 1
0 B(r)

2dr}, for d = 0.

It is interesting to note that whend > 0, the assumption onεt does not play any

role in determining the order of magnitude of the test statistic. The limit distribution

of T (β̆ − 1) is free of the nuisance parameters ofεt in (2). It converges to the same

distribution as that of Sowell (1990), Tanaka (1999), and Wang et al. (2003). When

d < 0, the distribution ofT 1+2d(β̆−1) has the same general form for a very wide class

of the innovation processεt. It reduces to the distribution of Phillips (1987, Theorem

3.1, (c)) whend = 0.

��� ASYMPTOTICS OF PHILLIPS�PERRON TEST WHEN

ut IS I�d�

���� Phillips and Perron test

Phillips (1987) proposes a test for theunit root hypothesis of the processyt defined in

(6) and (7) whend = 0. Denoting ¨σ2
u=limT→∞T−1E(STt=1u

2
t ) andσ̈2=limT→∞T−1

E(STt=1ut)
2, Phillips’s two statistics for testing the null ofβ = 1 can be expressed as

follows:

7 In particular, Tanaka (1999) assumes thatεt = S
∞
j=0ϕjηt−j as in (5), but with the condition that

S∞j=0 j|ϕj | <∞.
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Zβ̆ = T (β̆ − 1)− 1
2
(s2− s2u)

T−2STt=1 y
2
t−1

, (11)

and

Zt̆ =

(
T
S
t=1
y2
t−1

) 1
2 β̆ − 1
s
− 1

2

(
s2− s2u

)s(T−2
T
S
t=1
y2
t−1

) 1
2



−1

, (12)

whereβ̆ is the OLS estimator ofβ in (8), ands2u ands2 are consistent estimates of ¨σ2
u

andσ̈2, respectively.

Under the null hypothesis of the unit root, Phillips (1987) proves that these test

statistics are distributed as{(1/2)[B(1)2−1]}/{∫ 1
0 B(r)

2dr} and{(1/2)[B(1)2−1]}/
{∫ 1

0 B(r)
2dr}1/2, respectively. Phillips and Perron (1988) accommodate the regres-

sion model (8) with a drift as in (9) and a drift and time trend as in (10) and propose

test statisticsZβ̂ , Zβ̃, Zt̂, andZt̃ corresponding toZβ̆ andZt̆, respectively.

Among statistics in this class of unit roottests, the ADF and the PP are perhaps the

most popular, as they are implemented in many statistical software packages. However,

it is also a well documented fact that the PP test, as originally defined, suffers from

severe size distortions when there are negative moving-average errors.8 Perron and

Ng (1996) suggest a modification of the PPtests to correct this problem. They use

methods suggested by Stock (1990) to derive a modification of theZβ andZt statistics.

The modifiedZβ andZt statistics, for example, in regression model (8) are

MZβ̆ = Zβ̆ +
T

2
(β̆ − 1)2, (13)

and

MZt̆ =MSB ·MZβ̆, (14)

whereMSB = (T−2STt=1 y
2
t−1/s

2)1/2. Convergence of̆β at rateT when trueβ = 1

andut is I(0) ensures thatMZβ andZβ are asymptotically equivalent. It is also true

thatMZt andZt are asymptotically equivalent.

8 See Phillips and Perron (1988) and Schwert (1989), among others.
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Phillips and Perron (1988) and Perron and Ng (1996) analyze the asymptotic

properties of PP test statistics under a near-integrated process. In this paper we are

concerned with the alternative thatyt is a fractionally-integrated I(1+ d) process.

Granger and Joyeux (1980), Geweke and Porter-Hudak (1983), and Baillie (1996) all

conclude that some economic time series mayposses unit roots, but with a fractionally-

integrated error. The distinction of a series being I(1) or I(1+ d), for example,d < 0,

is also important whenyt is the OLS residual from a set of I(1) variables. The test of

the order of the integration in the residual is called a residual-based test for fractional

cointegration.9

���� Consistency of the Phillips�Perron test against I�1+ d� alternatives

In this section we derive the asymptotic distribution ofZβ , Zt, MZβ, andMZt test

statistics under the alternative hypothesis ofyt being I(1+ d) as in (6) and (7) for

−0.5 < d < 0.5. In deriving Theorem 2 below, we considers2u (s̆2u = T
−1STt=1 ŭ

2
t ,

ŝ2u = T
−1STt=1 û

2
t , ands̃2u = T

−1STt=1 ũ
2
t ) as the estimator of ¨σ2

u for the regression

models in (8), (9), and (10), respectively.10 We use the Newey-West (1987) estimator

s2T l ( s̆2T l = T
−1STt=1 ŭ

2
t + 2T−1Slτ=1wτlS

T
t=τ+1 ŭtŭt−τ , ŝ2T l = T

−1STt=1 û
2
t +

2T−1Slτ=1wτlS
T
t=τ+1 ûtût−τ , ands̃2T l = T

−1STt=1 ũ
2
t + 2T−1Slτ=1wτlS

T
t=τ+1 ũt

ũt−τ ) 11 as an estimator of the long-run variance ¨σ2, wherewτl = 1− τ/(l + 1).

Phillips (1987) shows the consistency ofs2u ands2T l whenut is a I(0) and strong

mixing process. The following results establish the asymptotics ofs2u ands2T l whenut
is an I(d) process as in (2).

Lemma 2� Let yt satisfy (6) and (7); but part (b) of Assumption 1 is replaced by the

9 See, for example, Dittmann (2000).
10 Phillips (1987) also recommends using the first difference ofyt, ut = yt − yt−1, rather than the

residualŭ, û, andũt. However, it is noted by Phillips and Ouliaris (1990) that it would make the PP
statistics inconsistent against theI(0) process by using the first difference ofyt in the construction of the
nuisance parameters estimator. Since we allow for anon-zero drift in the regression such as (10), the use
of the first difference ofyt, is not preferred. See Phillips and Perron (1988).

11 Instead of using the Newly-West estimators2Tl as in this paper, Perron and Ng (1996) suggest al-
ternatively an autoregressive spectral density estimator defined as (for regression model (8))s2AR =

s2el/[(1− b̆(1))2], wheres2el = T
−1STt=l+1 ĕ

2
tl, b̆(1) = S

l
j=1 b̆j , with b̆j and{ĕtl} obtained from the

autoregression:�yt = b̆0yt−1+S
l
j=1 b̆j�yt−j + ĕtl. We find from simulation results that when using

s2AR as a long-run variance estimator, the power ofMZ will decrease with an increase ofl. In particular,
theMZ turns out to perform very poorly as like any inconsistent test if the number of lagged differences
l included in the regression increase too much. Overall, for a fixedT the power ofMZ usings2Tl clearly
dominates the same tests statistics usings2AR under an I(1+ d) alternative.
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stronger moment condition: suptE|εt|4 < ∞; then providing thatl → ∞ asT → ∞
such thatl = o(T 1/4),

(a) s2u
p−→ σ2

u, and

(b) l−2ds2T l
p−→ σ2

εVd.

Lemma 2(a) is the results of consistency in the OLS estimator and ergodic theo-

rem. Lemma 2(b) shows that the exact order of magnitude ofs2T l is equal toO(l2d).

That is, it has to multiplyl−2d on s2T l to achieve a “consistent” estimator of the long-

run variance ofut, as corresponding to the results of Lemma 1(a). We next give the

asymptotics of the PP statistics under the alternative ofyt being I(1+ d) in the follow-

ing Theorem.

Theorem 2� If the conditions of Lemma 2 are satisfied, then asT →∞,

for the regression model (8):

(a) whend < 0,
(
T

l

)2d

Zβ̆ ⇒ −
1
2

1∫ 1
0 [Bd(r)]

2dr
, and

(b) whend < 0,
(
T

l

)d
Zt̆ ⇒ −

1
2

1

{∫ 1
0 [Bd(r)]

2dr}1/2 ;

(a’) whend > 0, Zβ̆ ⇒
1
2
[Bd(1)]2∫ 1

0 [Bd(r)]
2dr

, and

(b’) whend > 0,
(
T

l

)−d
Zt̆ ⇒

1
2

[Bd(1)]2

{∫ 1
0 [Bd(r)]

2dr}1/2 ;

for the regression model (9):

(c) whend < 0,
(
T

l

)2d

Zβ̂ ⇒ −
1
2

1
W1

, and

(d) whend < 0,
(
T

l

)d
Zt̂ ⇒ −

1
2

1

W
1/2
1

;

(c’) whend > 0, Zβ̂ ⇒
(1/2)[Bd(1)]2−Bd(1)

∫ 1
0 Bd(r)dr

W1
, and
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(d’) whend > 0,
(
T

l

)−d
Zt̂ ⇒

(1/2)[Bd(1)]2−Bd(1)
∫ 1

0 Bd(r)dr

W
1/2
1

;

for the regression model (10):

(e) whend < 0,
(
T

l

)2d

Zβ̃ ⇒ −
1
2

1
W3

, and

(f) whend < 0,
(
T

l

)d
Zt̃ ⇒ −

1
2

1

W
1/2
3

;

(e’) whend > 0, Zβ̃ ⇒
W2

W3
, and

(f’) when d > 0,
(
T

l

)−d
Zt̃ ⇒

W2

W
1/2
3

;

where

� W1 =
∫ 1

0 [Bd(r)]
2dr − [∫ 1

0 Bd(r)dr]
2,

� W2 = (1/2)[Bd(1)− 2
∫ 1

0 Bd(r)dr][Bd(1) + 6
∫ 1

0 Bd(r)dr − 12
∫ 1

0 rBd(r)dr]

and

W3 =
∫ 1

0 [Bd(r)]
2dr − 4[

∫ 1
0 Bd(r)dr]

2+ 12
∫ 1

0 Bd(r)dr
∫ 1

0 rBd(r)dr

−12[
∫ 1

0 rBd(r)dr]
2.

Whend < 0, since the limit of(T/l)2dZβ and(T/l)dZt has a negative support,

thenZβ andZt are unbounded and diverge to−∞ as(T/l) → ∞. Therefore, PP’s

lower tail Zβ andZt test statistics are consistent against a non-stationary but mean-

reverting fractionally-integrated alternative.

Whend > 0, theZβ statistics have the same orders in probability under both the

null of unit root and alternative of I(1+ d), d > 0. In fact, ford ∈ (0, 0.5), the orders

in probability of theZβ statistics are independent of the value ofd, even though the

form of their asymptotic distribution is affected by the value ofd. This is in contrast to

the cases whenZt statistics ford ∈ (−0.5, 0.5) andZβ for d ∈ (−0.5, 0), where both

the order in probability and the form of the asymptotic distribution depend ond. Fur-

thermore, although theZt test statistics have a different order in probability with the
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null hypothesis of the unit root, only the limit of(T/l)−dZt̆ has a positive support. The

supports of the limit of(T/l)−dZt̂ and(T/l)−dZt̃ are both possibly positive and nega-

tive. Therefore, only PP’s upperZt̆ test statistic is consistent against a non-stationary

and non mean-reverting fractionally-integrated alternative.

As a consequence of Theorems 1 and 2, we have the following corollary that

shows the asymptotic equivalence ofMZβ andZβ,MZt andZt.

Corollary 1� If the conditions of Lemma 2 are satisfied, then asT → ∞,MZβ ⇒
Zβ andMZt ⇒ Zt.

��� POWER IN FINITE SAMPLES

In this section we provide simulation evidence on the power of theMZβ andMZt
tests statistics against the I(1+ d) alternative. Following Schwert (1987), the number

of lags l used in theMZ test statistics is chosen asl0 = 0, l4 = int[4(T/100)1/4],

andl12 = int[12(T/100)1/4]. We consider samples sizesT=100, 250, 500, and 1000

and the number of iterations is 5000. All ofour tests are based on the 5% significance

level. Observations on a fractional white noise I(d) process are generated using the

Durbin-Levinson algorithm.

Tables 1, 3, and 5 give the percentage power of the 5% lower tailMZβ andMZt
unit root test against the alternatives I(1+d), d = −0.1,−0.2, . . . ,−0.49. Some results

are quite clear and in accordance with our expectations. With other things being held

constant: (i) Power increases asT increases. This is a reflection of the consistency

of the test. (ii) WhenT = 1000, the power of both theMZβ andMZt tests is lower

whenl is higher, which is in accordance with the asymptotics of theMZβ andMZt test

statistics under the I(1+ d), d < 0, alternative in the last section, which indicate that

the power depends on(T/l) even asymptotically. However, whenT is less than 1000,

for exampleT = 250 is the sample size used by Hassler and Wolters (1994), then the

conclusion that power will decrease as with an increase inl is ambiguous. Therefore,

the results of Hassler and Wolters (1994) that the power of the PP test is not very much

influenced by the choice of the number of included residual autocovariances may be

due to small sample size results. (iii) Power is higher whend is larger in absolute

value for a fixedT . This result is not surprising, as it is transparent from the relevant

asymptotics for−0.5< d < 0.

Tables 2, 4 and 6 provide the percentage power of the 5% upper tails of theMZβ
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Table 1� Percentage Power ofMZβ̆ andMZt̆ Tests Against I(1+d) Alternatives, d < 0

Value ofd
Test T l 0.0 −0.1 −0.2 −0.3 −0.4 −0.45 −0.49

MZβ̆ 100 0 5.10 14.36 34.80 59.50 78.44 85.36 90.84
1 5.40 12.50 25.76 47.44 67.30 74.76 82.06
4 4.82 12.64 24.26 43.94 63.38 70.32 77.20

12 5.92 12.94 27.96 49.48 69.64 77.44 85.04
250 0 5.16 20.36 49.92 78.90 94.82 97.66 99.38

1 4.80 18.58 41.80 70.06 88.40 94.22 96.58
5 5.16 15.48 33.42 58.20 79.64 86.92 92.58

15 5.88 14.38 35.78 62.28 84.26 91.10 95.00
500 0 4.98 24.08 60.58 88.96 98.98 99.90 99.94

1 4.84 22.58 53.02 82.02 96.92 98.88 99.76
5 4.68 17.02 42.68 70.64 90.50 95.38 98.18

17 5.76 15.94 40.26 69.92 90.94 96.02 98.66
1000 0 5.02 30.24 71.26 95.12 99.94 100.00 100.00

1 4.88 26.58 64.88 92.42 99.52 99.90 100.00
7 4.52 20.06 49.32 80.22 96.36 98.72 99.79

21 4.78 17.46 45.04 77.62 95.90 98.50 99.76

MZt̆ 100 0 5.08 14.58 34.88 59.14 78.36 85.32 90.84
1 5.08 12.02 25.22 46.44 66.60 74.02 81.54
4 4.70 12.06 23.68 43.02 62.98 69.84 76.80

12 5.60 12.34 27.10 48.58 69.28 77.14 84.76
250 0 5.30 20.06 49.38 78.32 94.68 97.72 99.30

1 4.84 17.84 41.24 69.06 87.92 94.10 96.36
5 5.00 14.84 32.76 57.60 79.62 86.72 92.50

15 5.50 14.08 35.26 61.80 84.06 90.86 94.80
500 0 4.84 23.70 59.28 88.28 98.92 99.88 99.92

1 4.86 21.76 51.64 81.08 96.76 98.84 99.78
5 4.48 16.40 41.62 69.74 90.02 95.18 98.00

17 5.68 15.58 39.60 69.34 90.54 95.92 98.64
1000 0 4.74 29.70 70.70 95.00 99.92 100.00 100.00

1 4.88 26.10 63.96 91.88 99.50 99.90 100.00
7 4.38 19.52 48.84 79.76 96.28 98.70 99.78

21 4.68 17.38 44.38 77.36 95.84 98.42 99.74

Note:� MZβ̆ andMZt̆ are Perron and Ng’s (1996) modified Phillips and Perron (1988)
unit root test statistics.

� DGP is(1− L)1+dyt = εt, εt i.i.d.∼ N(0, 1).
� The number of lagl other than 1 is chosen asl0 = 0, l4 = int[4(T/100)1/4] and
l12 = int[12(T/100)1/4].

� Number of iterations is 5000. Power of the tests is based on the 5% lower-tailed
significance level.
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Table 2� Percentage Power ofMZβ̆ andMZt̆ Tests Against I(1+d) Alternatives, d > 0

Value ofd
Test T l 0.0 0.1 0.2 0.3 0.4 0.45 0.49

MZβ̆ 100 0 5.44 12.76 24.74 35.22 47.72 54.80 73.20
1 4.92 11.54 21.94 33.04 44.72 54.10 73.02
4 5.14 11.60 19.64 28.88 41.84 52.36 69.58

12 5.66 11.78 17.74 26.54 38.88 46.76 65.86
250 0 5.46 16.08 27.68 39.32 51.00 59.82 76.98

1 5.22 14.10 27.08 38.84 50.06 59.42 76.86
5 5.60 12.66 22.16 33.50 47.16 57.90 74.98

15 6.04 10.90 20.20 29.98 42.50 52.54 72.20
500 0 5.20 16.34 31.54 40.60 51.94 60.50 77.18

1 4.98 16.14 28.48 39.00 52.16 60.84 77.60
5 5.28 13.72 26.10 36.58 49.14 57.42 76.76

17 5.88 13.52 21.84 32.58 44.50 55.38 74.42
1000 0 4.82 16.84 31.98 41.84 52.64 61.40 78.04

1 4.84 17.52 30.38 40.52 52.28 59.98 78.90
7 4.76 15.36 26.52 38.36 49.94 59.52 77.12

21 5.38 13.34 23.46 33.90 46.72 56.52 75.54

MZt̆ 100 0 5.58 18.82 41.18 60.40 77.88 84.90 93.90
1 4.94 16.80 35.56 55.64 72.94 82.98 92.92
4 5.90 16.42 30.86 47.76 66.90 78.36 91.02

12 6.66 15.34 26.36 41.34 59.80 71.50 87.20
250 0 5.02 23.94 47.12 66.92 81.96 89.00 94.78

1 5.20 20.00 42.76 62.90 79.94 86.30 93.88
5 5.32 17.02 35.22 54.52 72.48 82.76 92.46

15 6.00 14.94 30.02 46.12 65.28 76.76 89.72
500 0 5.28 25.84 52.38 71.22 85.42 90.38 96.08

1 4.92 23.82 48.32 68.16 81.60 88.88 95.66
5 5.34 19.48 40.38 60.98 76.96 85.58 93.86

17 5.92 17.24 33.48 51.24 69.98 79.16 92.10
1000 0 5.16 28.32 55.74 74.90 87.22 92.78 97.30

1 5.12 26.60 53.46 71.38 85.16 91.06 96.58
7 4.66 22.50 44.00 63.30 79.10 86.34 94.58

21 5.40 17.52 36.02 55.22 73.36 82.24 92.40

For notation see footnote of Table 1.
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Table 3� Percentage Power ofMZβ̂ andMZt̂ Tests Against I(1+d) Alternatives, d < 0

Value ofd
Test T l 0.0 −0.1 −0.2 −0.3 −0.4 −0.45 −0.49

MZβ̂ 100 0 4.56 16.24 43.76 77.22 96.58 99.16 99.98
1 4.14 13.10 32.78 60.82 88.40 95.60 99.08
4 4.62 13.10 32.18 59.88 87.10 95.32 98.60

12 3.80 13.80 38.12 70.00 94.32 98.54 99.82
250 0 4.76 25.52 65.18 95.74 99.96 100.00 100.00

1 4.06 20.34 56.12 89.28 99.44 99.98 100.00
5 5.52 17.84 45.64 82.24 98.50 99.94 100.00

15 5.26 20.00 51.72 88.48 99.74 99.98 100.00
500 0 4.86 32.12 79.86 99.38 100.00 100.00 100.00

1 4.90 27.16 72.18 97.58 100.00 100.00 100.00
5 5.32 21.30 59.44 92.22 99.98 100.00 100.00

17 5.66 22.18 61.06 94.46 100.00 100.00 100.00
1000 0 5.32 39.88 89.66 99.96 100.00 100.00 100.00

1 4.68 36.12 85.08 99.78 100.00 100.00 100.00
7 5.14 24.82 68.78 97.72 100.00 100.00 100.00

21 5.34 24.22 67.04 97.68 100.00 100.00 100.00

MZt̂ 100 0 4.92 12.80 35.28 68.02 93.46 97.94 99.74
1 3.20 7.90 21.26 45.98 76.94 89.16 96.16
4 3.44 7.92 21.86 46.54 76.92 90.00 96.24

12 3.18 8.84 26.50 58.42 88.78 96.76 99.36
250 0 5.02 19.98 56.44 92.56 99.76 100.00 100.00

1 4.04 14.76 44.94 82.14 98.62 99.90 99.98
5 5.06 13.22 36.94 74.38 96.88 99.70 99.98

15 4.96 15.18 44.12 83.84 99.12 99.94 100.00
500 0 5.32 26.36 72.56 98.58 100.00 100.00 100.00

1 5.08 21.38 62.40 95.06 100.00 100.00 100.00
5 5.14 16.76 50.18 87.80 99.76 99.98 100.00

17 5.02 17.88 53.28 91.76 99.94 100.00 100.00
1000 0 4.62 33.00 84.74 99.86 100.00 100.00 100.00

1 5.16 29.68 78.54 99.38 100.00 100.00 100.00
7 5.36 19.96 60.88 96.32 100.00 100.00 100.00

21 5.08 19.72 60.72 96.20 100.00 100.00 100.00

For notation see footnote of Table 1.
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Table 4� Percentage Power ofMZβ̂ andMZt̂ Tests Against I(1+d) Alternatives, d > 0

Value ofd
Test T l 0.0 0.1 0.2 0.3 0.4 0.45 0.49

MZβ̂ 100 0 5.18 14.70 25.04 36.04 44.96 48.18 54.72
1 4.30 12.32 23.60 31.42 41.96 46.92 54.60
4 5.42 12.48 20.02 28.68 38.50 42.92 52.24

12 5.42 10.78 19.02 25.40 34.04 39.86 51.28
250 0 5.22 16.96 32.04 42.74 48.54 53.28 57.26

1 4.74 16.08 28.50 38.80 46.04 49.48 56.62
5 4.98 13.56 23.18 33.24 40.76 46.44 55.16

15 5.72 11.88 20.66 28.56 38.32 43.72 53.60
500 0 5.14 19.66 34.84 45.38 50.40 52.48 58.20

1 5.02 17.30 32.70 41.26 48.12 53.16 57.86
5 5.42 14.90 27.06 37.26 46.78 49.08 57.62

17 5.22 13.04 21.60 31.86 41.78 46.26 56.02
1000 0 4.94 21.46 37.72 46.76 51.42 52.80 60.88

1 4.94 20.30 35.60 45.40 51.08 53.08 59.30
7 5.12 16.60 28.64 39.38 46.28 50.98 56.10

21 5.46 14.06 24.56 34.88 42.42 48.22 56.88

MZt̂ 100 0 5.16 14.40 24.10 34.70 43.02 45.00 48.20
1 4.20 11.92 22.82 30.22 39.90 44.12 47.70
4 5.38 12.28 19.28 27.58 36.48 40.44 45.84

12 5.30 10.54 18.36 24.80 32.20 36.94 44.44
250 0 5.08 16.46 30.82 40.98 45.42 49.42 48.26

1 4.68 15.60 27.52 37.10 43.22 45.74 47.88
5 4.82 13.26 22.52 31.92 38.62 42.78 46.84

15 5.66 11.50 20.04 27.34 36.24 40.18 45.40
500 0 5.04 19.20 33.42 43.20 46.82 48.42 48.84

1 5.02 16.90 31.44 39.56 44.78 48.68 49.34
5 5.38 14.72 26.28 35.38 43.92 44.82 48.46

17 5.16 12.76 21.08 30.50 39.44 42.68 47.60
1000 0 5.00 20.82 36.26 44.16 47.78 48.28 51.88

1 5.02 20.04 34.36 43.32 47.88 48.72 49.18
7 5.18 16.08 27.46 37.36 43.00 46.96 47.86

21 5.50 13.78 23.84 33.68 40.20 44.42 48.36

For notation see footnote of Table 1.
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Table 5� Percentage Power ofMZβ̃ andMZt̃ Tests Against I(1+d) Alternatives, d < 0

Value ofd
Test T l 0.0 −0.1 −0.2 −0.3 −0.4 −0.45 −0.49

MZβ̃ 100 0 5.16 28.94 72.32 97.28 100.00 100.00 100.00
1 4.06 19.82 55.40 90.48 99.60 99.98 100.00
4 5.18 19.08 49.88 86.22 99.32 99.92 100.00

12 5.48 24.46 63.62 94.32 99.88 100.00 100.00
250 0 5.42 36.86 87.04 99.84 100.00 100.00 100.00

1 4.18 30.66 76.86 98.92 100.00 100.00 100.00
5 5.16 23.98 65.60 96.04 99.98 100.00 100.00

15 6.14 28.02 73.90 98.34 100.00 100.00 100.00
500 0 4.36 45.54 95.46 100.00 100.00 100.00 100.00

1 4.88 38.22 90.18 99.94 100.00 100.00 100.00
5 4.48 29.22 76.24 98.98 100.00 100.00 100.00

17 5.64 30.98 79.42 99.36 100.00 100.00 100.00
1000 0 4.88 56.78 98.90 100.00 100.00 100.00 100.00

1 4.82 50.48 97.14 100.00 100.00 100.00 100.00
7 4.82 34.64 86.68 99.89 100.00 100.00 100.00

21 5.70 32.78 86.40 99.85 100.00 100.00 100.00

MZt̃ 100 0 5.34 26.06 67.72 96.00 99.94 100.00 100.00
1 3.60 15.54 47.16 85.62 99.34 99.94 100.00
4 4.26 15.02 42.34 81.40 98.54 99.88 100.00

12 4.42 19.46 56.46 91.74 99.84 99.98 100.00
250 0 5.18 33.04 83.42 99.76 100.00 100.00 100.00

1 4.18 25.74 71.50 97.80 100.00 100.00 100.00
5 4.66 20.10 59.12 94.20 99.96 100.00 100.00

15 5.60 23.88 69.08 97.56 100.00 100.00 100.00
500 0 4.54 42.00 93.94 100.00 100.00 100.00 100.00

1 5.02 34.24 87.30 99.92 100.00 100.00 100.00
5 4.32 26.30 72.36 98.52 100.00 100.00 100.00

17 5.52 28.38 75.94 99.20 100.00 100.00 100.00
1000 0 5.00 52.46 98.36 100.00 100.00 100.00 100.00

1 4.94 46.02 95.94 100.00 100.00 100.00 100.00
7 4.90 31.44 84.24 99.96 100.00 100.00 100.00

21 5.10 30.02 84.02 99.84 100.00 100.00 100.00

For notation see footnote of Table 1.
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Table 6� Percentage Power ofMZβ̃ andMZt̃ Tests Against I(1+d) Alternatives, d > 0

Value ofd
Test T l 0.0 0.1 0.2 0.3 0.4 0.45 0.49

MZβ̃ 100 0 5.10 16.32 31.48 48.36 61.66 65.38 69.04
1 5.46 13.96 25.58 37.80 50.56 55.36 59.56
4 4.42 11.34 18.90 26.78 36.10 40.60 42.62

12 4.66 9.50 15.96 22.74 29.08 32.02 34.46
250 0 5.42 20.96 44.74 64.54 75.84 78.76 80.12

1 5.60 18.00 37.00 54.64 66.68 71.96 75.08
5 5.24 13.14 25.14 36.30 49.80 53.62 56.06

15 4.84 10.16 18.90 26.02 33.12 37.58 40.02
500 0 4.80 26.26 56.10 74.44 83.00 83.28 83.66

1 4.90 22.18 47.98 66.22 76.56 80.04 81.46
5 5.36 18.30 33.38 50.46 61.92 66.66 68.98

17 4.84 12.80 22.68 32.40 41.82 45.56 49.82
1000 0 4.84 32.14 65.14 80.72 86.00 85.10 86.90

1 4.80 27.62 58.72 76.02 83.40 84.32 84.88
7 4.86 19.22 39.02 56.62 70.20 72.68 75.12

21 5.30 14.86 27.30 39.18 51.70 55.76 59.00

MZt̃ 100 0 4.82 13.78 23.98 35.52 44.54 46.48 48.62
1 5.32 11.94 20.34 28.98 38.04 40.86 43.48
4 4.24 9.80 16.48 22.50 28.44 31.34 32.58

12 4.52 8.32 14.00 19.54 23.64 25.50 28.38
250 0 5.16 17.28 33.20 45.74 54.26 56.42 56.16

1 5.16 15.48 27.46 40.30 47.26 51.18 53.24
5 5.04 11.42 20.62 29.00 38.10 40.24 41.42

15 4.50 9.62 16.58 21.76 27.88 30.50 32.32
500 0 4.74 20.76 41.46 53.10 57.86 57.92 58.12

1 4.58 17.88 35.54 47.42 54.36 55.60 56.94
5 5.06 15.62 26.52 37.28 44.40 47.66 48.16

17 4.84 11.56 19.38 25.98 33.02 34.90 38.84
1000 0 4.80 25.48 45.82 57.66 60.74 57.38 58.72

1 4.72 21.46 42.38 54.94 58.96 58.38 59.08
7 4.90 16.60 30.86 40.88 49.98 51.66 53.42

21 5.66 13.52 21.58 30.66 38.38 41.16 43.16

For notation see footnote of Table 1.
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Table 7� Percentage Power of MZβ̆ and MZt̆ Tests Against I(1+ d)-GARCH(1, 1)
Alternatives, d < 0

Value ofd
Test T l 0.0 −0.1 −0.2 −0.3 −0.4 −0.45 −0.49

MZβ̆ 100 0 4.44 15.40 34.70 58.60 78.22 86.48 90.52
1 4.32 12.46 28.24 47.32 69.56 76.66 82.20
4 4.80 12.32 24.12 42.88 62.90 71.06 76.88

12 5.58 12.84 28.20 48.70 70.82 77.10 85.30
250 0 4.66 20.36 49.84 78.78 94.46 97.64 99.14

1 4.78 17.76 41.24 69.28 88.64 93.22 96.64
5 4.84 14.76 33.60 58.82 80.86 88.08 92.00

15 5.86 15.72 34.86 64.18 83.76 90.56 94.98
500 0 5.32 24.00 59.34 89.26 98.92 99.84 99.94

1 4.78 21.96 53.46 82.58 96.64 98.90 99.62
5 5.20 17.54 42.14 71.26 90.12 95.36 97.84

17 5.50 15.30 38.58 70.94 90.50 96.00 98.60
1000 0 5.24 28.76 70.56 95.62 99.90 100.00 100.00

1 5.02 24.56 64.74 91.92 99.44 99.94 99.98
7 4.74 19.30 49.44 79.94 96.16 98.90 99.48

21 5.70 17.66 45.06 77.28 95.78 98.52 99.74

MZt̆ 100 0 4.64 15.36 34.40 58.82 78.02 86.34 90.74
1 4.18 12.10 27.56 46.38 68.72 76.10 82.10
4 4.64 11.96 23.78 42.26 62.28 70.90 76.44

12 5.34 12.14 27.34 47.84 70.16 76.82 85.22
250 0 4.76 20.34 49.22 78.50 94.26 97.60 99.18

1 4.62 17.38 40.44 68.24 88.24 93.10 96.54
5 4.84 14.42 33.14 58.40 80.40 87.78 92.02

15 5.76 15.44 34.36 63.66 83.56 90.32 94.82
500 0 5.18 23.66 58.24 88.70 98.76 99.80 99.96

1 4.52 21.28 52.42 82.44 96.46 98.82 99.60
5 5.22 17.18 41.72 70.68 89.72 95.12 97.82

17 5.28 15.00 38.02 70.62 90.40 95.86 98.62
1000 0 5.14 28.40 69.96 95.32 99.90 100.00 100.00

1 4.94 24.34 63.86 91.40 99.40 99.96 99.98
7 4.68 19.26 48.92 79.48 96.06 98.90 99.50

21 5.74 17.48 44.80 76.80 95.86 98.50 99.74

Note:� MZβ̆ andMZt̆ are Perron and Ng’s (1996) modified Phillips and Perron (1988)
unit root test statistics.

� DGP is (1 − L)1+dyt = εt, εt =
√
htvt, ht = 0.6 + 0.2ht−1 + 0.2ε2t−1,

vt
i.i.d.∼ N(0, 1).

� The number of lagl other than 1 is chosen asl0 = 0, l4 = int[4(T/100)1/4] and
l12 = int[12(T/100)1/4].

� Number of iterations is 5000. Power of the tests is based on the 5% lower-tailed
significance level.
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Table 8� Percentage Power of MZβ̆ and MZt̆ Tests Against I(1+ d)-GARCH(1, 1)
Alternatives, d > 0

Value ofd
Test T l 0.0 0.1 0.2 0.3 0.4 0.45 0.49

MZβ̆ 100 0 4.64 12.38 23.76 34.22 46.26 55.66 73.60
1 5.02 12.90 22.60 33.26 46.14 55.06 73.54
4 5.46 11.04 19.64 30.54 41.96 53.18 68.68

12 5.88 11.62 18.32 26.68 38.36 46.60 66.60
250 0 5.08 15.84 28.92 39.60 50.92 59.78 76.74

1 5.52 15.22 26.52 38.04 48.98 59.08 76.78
5 5.50 12.50 22.76 34.66 47.20 57.82 74.84

15 5.68 12.14 20.96 30.34 43.84 52.94 72.72
500 0 5.30 17.08 31.44 40.38 51.86 60.74 77.80

1 4.88 16.66 27.30 39.56 51.24 60.58 77.82
5 4.78 13.66 26.40 37.52 48.42 58.32 76.92

17 5.98 12.46 22.06 32.40 45.16 55.38 74.80
1000 0 4.88 19.04 31.28 43.12 51.72 61.18 78.78

1 4.94 17.88 31.34 41.86 52.74 61.24 78.78
7 4.76 14.96 26.18 38.32 49.32 58.04 77.86

21 5.36 13.48 23.48 34.26 48.58 57.26 75.70

MZt̆ 100 0 4.70 19.18 38.96 59.08 76.66 84.90 93.96
1 5.80 18.18 36.04 55.28 72.66 82.74 92.86
4 5.70 15.68 31.34 47.60 66.82 78.46 91.94

12 7.06 15.18 27.08 42.12 60.56 72.14 87.92
250 0 5.22 23.82 47.94 67.28 82.12 88.68 94.94

1 4.86 20.24 42.28 63.24 78.74 86.60 93.96
5 5.32 17.72 35.80 55.96 72.08 81.56 92.94

15 5.84 15.90 29.84 46.30 65.26 76.12 89.92
500 0 4.96 26.92 51.74 71.46 84.84 90.20 96.96

1 5.22 25.02 46.92 67.66 82.46 89.08 95.96
5 4.56 19.94 41.74 60.92 76.22 85.14 93.98

17 5.66 16.46 32.82 52.08 70.26 79.70 92.94
1000 0 5.32 28.74 55.12 76.00 86.58 92.22 97.98

1 5.12 27.16 53.56 72.06 86.02 90.32 96.96
7 5.16 22.28 43.08 63.70 79.50 87.08 94.00

21 5.68 18.44 37.16 55.44 73.98 81.58 92.90

For notation see footnote of Table 7.

295



DIVH: 2004/06/16 08:19AM page:296

Academia Economic Papers 32:2 (2004 )

andMZt unit root tests against the alternatives I(1+ d), d = 0.1, 0.2, . . . ,0.49. The

most important result is that, except forMZt̆ in Table 2, withd fixed, the power does

not approach 100% asT increases. For example, ford = 0.3 andl = l4, the power

of MZt̂ grows from 27.58% withT = 100 to only 37.36% withT = 1000. This is

a reflection of the inconsistency of theMZβ̆ , MZβ̂ , MZt̂, MZβ̃, andMZt̃ unit root

tests against non-stationary and non-mean-reverting fractionally-integrated processes;

the power is not expected to approach 100% even for an arbitrarily large value ofT .

The power ofMZt̆ in Table 2 confirms thatMZt̆ is consistent, but even with a rather

large sample such asT = 1000, the power has not approached to 100%. We finally

see that, for a fixedT , the power increases asd increases. This is not surprising, but

not transparent from the relevant asymptotics for 0< d < 0.5.

Finally, to find the robustness of our results from the assumption of strong sta-

tionarity, we consider the shock variableεt to be a GARCH(1,1) process. In particular

we assume thatεt =
√
htvt, ht = 0.6+ 0.2ht−1 + 0.2ε2t−1,12 vt

i.i.d.∼ N(0, 1). Tables

7 and 8 provide the percentage power of 5% lower and upper tail ofMZβ̆ andMZt̆,

respectively, and they are not much different from their counterparts as in Tables 1

and 2.13 Therefore, the simulation shows that our results are robust to autoregressive

conditional heteroskedasticity.

	�� CONCLUSION

In this paper we have generalized the fractional unit root distribution of Sowell (1990)

to a general fractionally-integrated process. Our characterization of this generalized

fractional unit root distribution also extends those parametric representation in Tanaka

(1999) and Wang et al. (2003) to a general semiparametric fractionally-integrated

process. We also show that the Phillips and Perron’s unit root test statisticsZβ and

Zt can be used to distinguish a unit root non-stationary process from a non-stationary

but mean-reverting I(1+ d), d < 0 process, although it has low power. Only the

t statistic from a regression without drift and the time trend modelZt̆, is consistent

against the non-stationary and non-mean-reverting I(1+ d), d > 0 process. Moreover,

we have provided Monte-Carlo evidence on their power in finite samples and show the

robustness of our results to autoregressive conditional heteroskedasticity.

12 This assumption would satisfy the requirement of nonnegativity and stationarity.
13 We also performMZβ̂ , MZt̂, MZβ̃ andMZt̃ under this assumption. This conclusion does not

change.
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Appendix
 Proofs of the Theorems

We first provide the following asymptotic results of the sample moments which are

useful to derive the asymptotics of the OLS estimator.

Lemma A.1� Let (1− L)dut = εt, where−0.5 < d < 0.5 andεt satisfies Assump-

tion 1. Define

γj = E(utut−j) for j = 0,1, 2, ...,

and

yt = u1+ u2+ · · ·+ ut for t = 1, 2, ..., T, (A1)

with y0 = 0. Therefore,

(a) T−
1
2 −d

T
S
t=1
ut ⇒ V

1
2
d σεBd(1),

(b) T−2−2d
T
S
t=1
y2
t−1⇒ Vdσ2

ε

∫ 1

0
[Bd(r)]

2dr,

(c) T−1−2dy2
T ⇒ Vdσ2

ε [Bd(1)]
2,

(d) T−
3
2 −d

T
S
t=1
yt−1⇒ V

1
2
d σε

∫ 1

0
Bd(r)dr,

(e) T−1
T
S
t=1
utut−j

p−→ γj ,

(f) If d > 0,

T−1−2d
T
S
t=j+1

yt−1ut−j ⇒ 1
2
Vdσ

2
ε [Bd(1)]

2 for j = 0,1, 2, ...,

(g) If d < 0,

T−1
T
S
t=j+1

yt−1ut−j
p−→



− 1
2
σ2
u for j = 0;

− 1
2
σ2
u + γ0+ γ1+ γ2+ · · ·+ γj−1 for j = 1,2, ...,

(h) If d > 0,
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T−1−2d
T
S
t=j+1

utyt−1−j ⇒ 1
2
Vdσ

2
ε [Bd(1)]

2 for j = 0,1, 2, ...,

(i) If d < 0,

T−1
T
S
t=j+1

utyt−1−j
p−→



− 1
2
σ2
u for j = 0;

− 1
2
σ2
u − γ1− γ2− γ3− ....− γj for j = 1, 2, ...,

(j) T−
3
2 −d

T
S
t=1
tut ⇒ V

1
2
d σε[Bd(1)−

∫ 1

0
Bd(r)dr],

(k) T−
5
2 −d

T
S
t=1
tyt−1⇒ V

1
2
d σε

∫ 1

0
rBd(r)dr,

(l) T−3−2d
T
S
t=1
ty2
t−1⇒ Vdσ2

ε

∫ 1

0
r[Bd(r)]

2dr,

(m) T−2−2d
T
S
t=j+1

yt−1yt−1−j ⇒ Vdσ2
ε

∫ 1

0
[Bd(r)]

2dr.

A joint weak convergence for the sample moments given above to their respective

limits is easily established and will be used below.

Proof of Lemma A.1

The proofs of items (a) to (d) are a straightforward application of the continuous map-

ping theorem from Lemma 1(b)’s results. Item (e) is due to ergodicity of the stationary

linear processut.

To prove items (f) and (g) forj = 0, recall thaty0 = 0, and thus it is convenient

to writeSTt=1 yt−1ut = 1/2y2
T − 1/2STt=1u

2
t . From items (c) and (e), we know that

y2
T is Op(T 1+2d) andSTt=1u

2
t is Op(T ); then,STt=1 yt−1ut would beOp(T κ), where

κ = max(1+ 2d, 1). Therefore, ford > 0,

T−1−2d
T
S
t=1
yt−1ut ⇒ T−1−2d 1

2
y2
T ⇒

1
2
Vdσ

2
ε [Bd(1)]

2, (A2)

and ford < 0,

T−1
T
S
t=1
yt−1ut ⇒ − 1

2

T
S
t=1
u2
t
p−→ − 1

2
σ2
u, (A3)

which establish results (f) and (g) forj = 0.
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For j > 0, observe that

yt−1 = yt−j−1+ ut−j + ut−j+1+ · · ·+ ut−1,

which implies that

T
S
t=j+1

yt−1ut−j =
T
S
t=j+1

(yt−j−1+ ut−j + ut−j+1+ · · ·+ ut−1)ut−j

=
T
S
t=j+1

yt−j−1ut−j +
T
S
t=j+1

(ut−j + ut−j+1+ · · ·+ ut−1)ut−j .

If d > 0, then

T−1−2d
T
S
t=j+1

yt−j−1ut−j =
(
T − j
T

)1+2d

(T − j)−1−2d
T−j
S
t=1
yt−1ut

⇒ 1
2
Vdσ

2
ε [Bd(1)]

2

as in (A2). Moreover,

T−1−2d
T
S
t=j+1

(ut−j + ut−j+1+ · · ·+ ut−1)ut−j
p−→ 0

from result (e). Thus,

T−1−2d
T
S
t=j+1

yt−1ut−j ⇒ 1
2
Vdσ

2
ε [Bd(1)]

2.

The proof ford < 0 in item (g) is analogous.

The proof of items (h) and (i) is analogous with items (f) and (g).

To prove item (j), we first observe thatSTt=1 yt−1 = STt=1Tut − STt=1 tut, or

STt=1 tut = T S
T
t=1ut−STt=1 yt−1. Therefore,T−3/2−dSTt=1 tut = T

−1/2−dSTt=1ut−
T−3/2−dSTt=1 yt−1. By applying the continuous mapping theorem to the joint conver-

gence of items (a) and (d), we have
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T−
3
2 −d

T
S
t=1
tut ⇒ V

1
2
d σεBd(1)− V

1
2
d σε

∫ 1

0
Bd(r)dr.

To prove items (k) and (l), recall the notation thatXT (r) = S
[Tr]
t=1ut, for r ∈ [0, 1].

As T →∞, the following results then hold.

T−1
T
S
t=1

t

T
yt−1 =

∫ 1

0
rXT (r)dr, (A4)

and

T−1
T
S
t=1

t

T
y2
t−1 =

∫ 1

0
rX2
T (r)dr. (A5)

The result of item (k) follows immediately from (A4) and item (d). Similarly, the result

of item (l) follows immediately from (A5) and item (b).

For item (m), we finally observe that

T−2−2d
T
S
t=j+1

yt−1yt−1−j

= T−2−2d
T
S
t=j+1

(yt−1−j + ut−j + ut−j+1+ · · ·+ ut−1)yt−1−j

= T−2−2d
T
S
t=j+1

(y2
t−1−j + ut−jyt−1−j + ut−j+1yt−1−j + · · ·+ ut−1yt−1−j),

which converge toVdσ2
ε

∫ 1
0 [Bd(r)]

2dr by virtue of items (b), (f), and (g). This com-

pletes the proofs of Lemma A.1.

Proof of Theorem 1

We prove items (g) and (h) from regression model (10). The proof of models (8) and

(9) is analogous. Let the data generating process be

yt = α+ yt−1+ ut,

and the regression model be
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yt = α+ βyt−1+ δt+ ut. (A6)

Note that the regression model of (A6) can be equivalently rewritten as

yt = (1− β)α+ β(yt−1− α(t− 1)) + (δ + βα)t+ ut,

≡ α∗ + β∗ξt−1+ δ
∗t+ ut, (A7)

whereα∗ = (1− β)α, β∗ = β, δ∗ = δ + βα, andξt−1 = yt−1− α(t− 1). Moreover,

under the null hypothesis thatβ = 1 andδ = 0,

ξt = y0+ u1+ u2+ · · ·+ ut;

that is,ξt is the random walk as described in (A1). Under the maintained hypothesis,

α = α0, β = 1, andδ = 0, which in (A7) means thatα∗ = 0, β∗ = 1 andδ∗ = α0.

The deviation of the OLS estimate from these true values is given by



α̃∗

β̃ − 1

δ̃∗ − α0


 =




T
T
S
t=1
ξt−1

T
S
t=1
t

T
S
t=1
ξt−1

T
S
t=1
ξ2t−1

T
S
t=1
tξt−1

T
S
t=1
t

T
S
t=1
tξt−1

T
S
t=1
t2




−1


T
S
t=1
ut

T
S
t=1
ξt−1ut

T
S
t=1
tut



, (A8)

or in shorthand as

C = A−1f.

From Lemma A.1, the order of probability of the individual terms in (A8) is as follows,


 α̃∗
β̃ − 1
δ̃∗ − α0


 =



Op(T ) Op(T

3
2 +d) Op(T

2)

Op(T
3
2 +d) Op(T

2+2d) Op(T
5
2 +d)

Op(T
2) Op(T

5
2 +d) Op(T

3)



−1
 Op(T

1
2 +d)

Op(T
max[1+2d,1])

Op(T
3
2 +d)


 .
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To prove item (g), we note that whend > 0,STt=1 yt−1ut isOp(T 1+2d) as in item

(f) of Lemma A1. We define two rescaling matrices,

ΥT =


 T

1
2 0 0

0 T 1+d 0

0 0 T
3
2


 and ℵT =


 T

− 1
2 −d 0 0
0 T−1−2d 0

0 0 T−
3
2 −d


 .

Multiplying the rescaling matrices on (A8), we get

ΥTC = ΥTA−1ΥTΥ
−1
T ℵ−1

T ℵT f. (A9)

Substituting the results of Lemma A.1 to (A9), we establish that

b̃1 ⇒ Q−1h1, (A10)

where

b̃1 ≡




T
1
2 −dα̃∗

T (β̃ − 1)

T
3
2 −d(δ̃∗ − α0)


 ,

Q ≡




1 V
1
2
d σε

∫ 1
0 Bd(r)dr

1
2

V
1
2
d σε

∫ 1
0 Bd(r)dr Vdσ

2
ε

∫ 1
0 [Bd(r)]

2dr V
1
2
d σε

∫ 1
0 rBd(r)dr

1
2

V
1
2
d σε

∫ 1
0 rBd(r)dr

1
3



,

h1 ≡




V
1
2
d σεBd(1)

1
2 Vdσ

2
ε [Bd(1)]

2

V
1
2
d σε[Bd(1)−

∫ 1
0 Bd(r)dr]


 .

Thus, the asymptotic distribution ofT (β̃ − 1) is given by the middle row of (A10),

which is
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T (β̃ − 1)⇒ W2

W3
.

Note that this distribution does not depend onα.

To prove item (k), we notice that whend < 0,STt=1 yt−1ut isOp(T ). We define

another rescaling matrix

�T =

 T

− 1
2 +d 0 0
0 T−1 0

0 0 T−
3
2 +d


 .

Multiplying ΥT and�T on (A8) to get

ΥTC = ΥTA−1ΥTΥ
−1
T �−1

T �T f. (A11)

Substitute the results of lemma A.1 to (A11), we establish that

b̃2 ⇒ Q−1h2, (A12)

where

b̃2 ≡




T
1
2 +dα̃∗

T 1+2d(β̃ − 1)

T
3
2 +d(δ̃∗ − α0)


andh2 ≡




0

− 1
2
σ2
u

0


 .

Thus, the asymptotic distribution ofT 1+2d(β̃ − 1) is given by the middle row of

(A12), which is

T 1+2d(β̃ − 1)⇒ − 1
2

σ2
u

Vdσ2
εW3
.

This completes the proofs of Theorem 1.
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Proof of Lemma 2

We prove the case wheres2u = s̆
2
u ands2T l = s̆

2
T l from regression model (8). The

proofs of models (9) and (10) are analogous.

To prove item (a), sincĕβ is consistent as shown in Theorem 1 andut is ergodic,

then applying Theorem 4 from Sowell (1990), we have

s2u = T
−1

T
S
t=1
ŭ2
t
p−→ σ2

u.

To prove item (b), we start by defining the population counterpart of ˘s2T l, i.e.,

σ2(l) as

σ2(l) = T−1
T
S
t=1
E(u2

t ) + 2T−1
l
S
τ=1
wτl

T
S

t=τ+1
E(utut−τ ).

Following Lee and Schmidt (1996) we have

l−2dσ2(l)
p−→ σ2

εVd.

Givenl = o(T 1/4), Tsay (2001, Lemma 1 and Theorem 1) has shown that

s̆2T l − σ2(l)
p−→ 0,

that is, the difference betweenσ2(l) ands̆2T l will converge in probability to zero. The

desired result then is obtained. This completes the proofs of Lemma 2.

Proof of Theorem 2

To prove item (a), we first rewriteZβ̆ as

Zβ̆ = T (β̆ − 1)− 1
2

T 2σ2
β̆

s̆2u
(s̆2T l − s̆2u), (A13)

where as a matter of notation,σ2
β̆
= s̆2u/S

T
t=1 y

2
t−1.

By item (b) of Lemma A.1, we have
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T 2+2dσ2
β̆

s̆2u
⇒ 1

Vdσ2
ε

∫ 1
0 [Bd(r)]

2dr
. (A14)

Multiplying T 2d onZβ̆ , and collecting the results of Theorem 1(b), (A14), and Lemma

2, we obtain

T 2dZβ̆ = T
1+2d(β̆ − 1)− 1

2


 T 2+2dσ2

β̆

s̆2u


 (s̆2T l − s̆2u)

⇒ − 1
2

Vdσ
2
ε l

2d

Vdσ2
ε

∫ 1
0 [Bd(r)]

2dr
;

therefore,

(
T

l

)2d

Zβ̆ ⇒ −
1
2

1∫ 1
0 [Bd(r)]

2dr
.

To prove item (b), we note that

Zt̆ =
(β̆ − 1)(STt=1 y

2
t−1)

1
2

s̆T l
− 1

2
s̆2T l − s̆2u

s̆T l(T−2STt=1 y
2
t−1)

1/2

=
(T−2STt=1 y

2
t−1)

1
2

s̆T l

[
T (β̆ − 1)− 1

2
s̆2T l − s̆2u

(T−2STt=1 y
2
t−1)

]

=
1
s̆T l

(
Tσβ̆
s̆u

)−1

Zβ̆

⇒ 1

(Vdσ2
ε l

2d)
1
2

×
{
T 2dVdσ

2
ε

∫ 1

0
[Bd(r)]

2dr

} 1
2 ×

[
− 1

2

(
T

l

)−2d 1∫ 1
0 [Bd(r)]

2dr

]

= − 1
2

(
T

l

)−d 1

(
∫ 1

0 [Bd(r)]
2dr)

1
2

. (A15)

Therefore,
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(
T

l

)d
Zt̆ ⇒ −

1
2

1

{∫ 1
0 [Bd(r)]

2dr} 1
2

.

To prove items (a’) and (b’), just use theresults of Theorem 1(a) to replace all

steps in the proofs of items (a) and (b). For example, Theorem 1(a) implies that

the first term of (A13) isOp(1) and (A14) implies that the second term of (A13) is

op(T
−2d). Therefore, we have the results thatZβ̆ = Op(1) − op(T−2d) = Op(1) ⇒

(1/2)([Bd(1)]2/
∫ 1

0 [Bd(r)]
2dr).

To prove item (c), using the fact as in (A14), we have

T 2+2dσ2
β̂

ŝ2u
⇒ 1
Vdσ2

εW1
,

whereσ2
β̂
= ŝ2ue′1A−1

1 e1, e1 = [0, 1]′, andA1=




T
T
S
t=1
yt−1

T
S
t=1
yt−1

T
S
t=1
y2
t−1


 .

Multiplying T 2d onZβ̂, we have

T 2dZβ̂ = T
1+2d(β̂ − 1)− 1

2


 T 2+2dσ2

β̂

ŝ2u


 (ŝ2T l − ŝ2u)

⇒ − 1
2
Vdσ

2
ε l

2d

Vdσ2
εW1
;

therefore,

(
T

l

)2d

Zβ̂ ⇒ −
1
2

1
W1
. (A16)

To prove item (d) of Theorem 2, we note that
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Zt̂ =
1
ŝT l

(
Tσβ̂
ŝu

)−1

Zβ̂

⇒ 1

(Vdσ2
ε l

2d)
1
2

× (T 2dVdσ
2
εW1)

1
2 ×
[
− 1

2

(
T

l

)−2d 1
W1

]

= − 1
2

(
T

l

)−d 1

W
1
2

1

;

thus,

(
T

l

)d
Zt̂ ⇒ −

1
2

1

W
1
2

1

. (A17)

Similarly, to prove items (c’) and (d’), just use the results of Theorem 1(d) to

replace all the steps in the proofs of items (c) and (d).

To prove items (e) and (f), using the fact as in (A14), we have

T 2+2dσ2
β̃

s̃2u
⇒ 1
Vdσ2

εW3
,

whereσ2
β̃
= s̃2ue′2A−1

2 e2, e2 = [0, 1, 0]′, andA2=




T
T
S
t=1
yt−1

T
S
t=1
t

T
S
t=1
yt−1

T
S
t=1
y2
t−1

T
S
t=1
tyt−1

T
S
t=1
t

T
S
t=1
tyt−1

T
S
t=1
t2



.

We obtain results of items (e) and (f) that simply replaceW1 in (A16) and (A17) by

W3.

Similarly, to prove items (e’) and (f’), just use the result of Theorem 1(g). This

completes the proofs of Theorem 2.
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Proof of Corollary 1

By definition,

MZβ̆ = Zβ̆ +
T

2
(β̆ − 1)2. (A18)

For d < 0, the first term in the right hand-side of (A18) isOp(T−2d) and the sec-

ond term isOp(T−1−3d) from Theorem 2(a) and Theorem 1(b), respectively. Given

−0.5 < d < 0, −2d is never to be less than−1− 3d. Therefore, we have the re-

sults thatMZβ̆ andZβ̆ are asymptotically equivalent. Consequently, ford > 0, the

first term in the right-hand side of (A18) isOp(1) and the second term isOp(T−1)

from Theorem 2(b) and Theorem 1(a), respectively. It follows thatMZβ̆ andZβ̆ are

asymptotically equivalent.

We next note that

MZt̆ =MSB ·MZβ̆ .

It is easy to show that

MSB ⇒
(
T

l

)d (∫ 1

0
[Bd(r)]

2dr

) 1
2

as in (A15). Therefore,MZt̆ has the asymptotics as inZt̆. The proofs forMZβ̂ ,MZβ̃,

MZt̂, andMZt̃ are analogous. This completes the proofs of Corollary 1.
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