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ABSTRACT

This paper derives the asymptotic distribution of the Phillips-Perron unit root tests
statistics and some of their variants under a general non-stationary fractionally-integrated
I(1+ d) process, for d € (—0.5,0.5). By using the Newey-West estimator of long-run
variance, we show that both the Phillips-Perron’s t statistics and standardized coefficients
estimator are consistent against a non-stationary but mean-reverting alternative, such as
the (1 + d) process for d € (—0.5,0). However, only the t statistic from a no-drift
and no-time trend regression is consistent against a non-stationary and non-mean-reverting
alternative, such as the |(1+ d) process for d € (0,0.5). Simulation results also confirm
that the power of these test statistics in large samples will decrease as the lag number

increases in the construction of a Newey-West estimator of the long-run variance.
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1. INTRODUCTION

It is very important that a statistical test be able to fully discriminate the null and the
alternative hypothesis in large sampleshisTpaper is concerned with this issue in
testing the hypothesis of a unit root in the following simple autoregressive model:

Y = BYp—1 + g, (1)

where the disturbance, is a stationary but fractionally-integratedi)(process with
—-05<d<05.

Sowell (1990) analyzes the asymptotioperties of the standard Dickey-Fuller
(DF, Dickey and Fuller (1979)) unit root testatistics from the ordinary least square
estimator (OLS) ofs for the case in (1), wherg = 1,50 = 0, and(1 — L)%u; = &,
¢; is independently and identically-diguted with mean zero and variane (i.i.d.
(0,02)) and E(|e;|™) < oo for m > max4, —8d/(1 + 2d)]. Diebold and Rudebusch
(1991) show via a Monte-Carlo simulation ttitaese tests, althougionsistent, have
little power in finite samples.

The results of Sowell (1990) are of liredl value for real world applications,
where one almost always has to allow under the null hypothdsis, 0, for auto-
correlation among; in (1). Therefore, the standard Dickey-Fuller test is rarely appro-
priate, and there is automatically some implied interest in the power of the Augmented
Dickey-Fuller test (ADF, Dickey and Helr (1979)) or the Phillips-Perron test (PP,
Phillips (1987), Phillips and Perron4&8), and Perron and Ng (1996)), which allow
for a more general processqn than as in Sowell (1990).

Under Monte Carlo results, HasslerchWolters (1994) conclude that the ADF
test is not consistent against a fractional alternative. They also say that the power
of the PP {-statistics) test is not very muchfinenced by the choice of the number
of included residual autocovariances. However, the first conclusion of Hassler and
Wolters (1994) is shown to be misleading byaikmer (1998), who shows that the ADF
testis indeed consistent against a fractiottakaative if the order of the autoregression
does not tend to go to infinite too fast. This paper is concerned with the theoretical
background underpinning the power of PP test statistics.

The objectives of our paper are twofold. The first extends the weak convergence

275



Academia Economic Papers 32:2 (2004)

results in characterizing tHeactional unit root distribtion given by Sowell (1990) to
general fractionally-integrated processes. Instead of assuming that the innouations
in model (1) are a fractionals.d. process, we allow for it after differencinbtimes to
be a weakly dependent process as that in Phillips (1987) where the functional central
limit theorem of Davidson and de Jong (2000) can apply.

Our second objective is to derive the asymptotic distribution of the PP test statis-
tics under a non-stationaryafttionally-integrated I(% d) processd € (—0.5,0.5).
Our results show that both the Phillips-Perroti'statisticsZ; and standardized co-
efficients’ estimatorZg are consistent against a non-stationary but mean-reverting
alternative, such as the I{dd) process forl € (—0.5,0). However, only theZ; statis-
tic from a no-drift and no-time trend regréss is consistent against a non-stationary
and non-mean-reverting alternative, such as theH(d) process ford € (0,0.5).
The statisticsZ; from a regression with a drift, and with a drift and a time trend, and
the Z test statistics are unable to distinguistnsistently between the unit root and
a non-stationary and non-mean-rdirgy fractionally-integrated (% d) process, for
d € (0,0.5). We also show that in the cases when the test statistics are consistent, the
power of these test statistics is in fact affected by the choice of the number included in
the residual autocovariance in the couastion of the Newey and West (1987) estima-
tor of the long-run variance. Thereforegthesults of Hassler and Wolters (1994) are
again misleading in their conclusion on the power of the PP test against a fractionally-
integrated process. According to our simulation, we find that the results of Hassler and
Wolters (1994) may be due to the problemacgmall sample size in their simulation.

This paper is organized as follows. Rracing a stronger condition with David-
son and De Jong’s (2000), a functional centnali theory for a general fractionally-
integrated process is given in section 2, whikeegeneralized fractional unit root dis-
tribution is also presented. Section 3 analyzes the asymptotic properties of the Phillips-
Perron test statistics under this general non-stationary fractionally-integrated process.
Section 4 provides the simulation eviderafeéhe power of the Phillips-Perron test. A
conclusion completes the analysis. Thain proofs are contained in the Appendix.

Throughout this paper, we uses”” to denote weak convergence of associated
probability measures-£~” denotes convergence in probability, [z] means the largest
integer that is smaller than or equal to z, and we:Jet- f; denote thae;/f; — 1 as

7 — 00.

! For a mean-reverting process, the impact of a unit innovatiat timet on the process, . is zero
ask — oo.
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2. ASYMPTOTICS OF A GENERAL FRACTIONALLY-
INTEGRATED PROCESS

2.1 Functional central limit theory for a fractionally-integrated process

A general fractionally-integratedd) processay; is customarily written in the form
(1— L)%uy =&, (2)

where the innovation process, the fractional difference ofi;, is assumed to be a
stationary and weakly dependent processpesified below. By the obvious binomial
expansion, they have the moving average (MA) representation:

up = Eo bjet—j, (3)

where

y _ _TG+d)
T rdrG+1)’

Stirling’s approximation formulation fothe gamma function yields the well-known
property that the MA coefficients decline hyperbolically to zero. We can now write

1
b ~ .d—1
77 1r(d)’

The termg; are therefore square summable fox: 0.5, which is the condition nec-
essary for the process to be stationary with a finite variance, whéreas-0.5 is
necessary for the process to have an invertible AR representation. Moréowet,
implies thatu, is mean-reverting. Tdautocorrelations af;, p; can be shown to be

:2d—1
pj~ € )
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wherec is constant and has the same sigi aghene; is i.i.d..

For 0<d < 0.5, the process is long memory in the sense that lim, Z]T:_T |pjl
is non-finite. Its autocorrelations are all positive and decay at a hyperbolic rate. For
—0.5 < d < 0, the sum of the absolute values of the processes autocorrelation tends to
a constant, and all its autocorrelations, excluding the lag zero, are negative and decay
hyperbolically to zero. Helson and Sarason (1967) show that@nptpcess with
d > —0.5 and an autocorrelation given by violate the strong mixing condition and
hence is along memory. Beran (1994) and Baillie (1996) are standard references to an
I(d) process.

To begin we must be precise about the sequepnad# allowable innovations in
(2) for the present paper. Following Phillips (1987), we assumesthiata sequence
of random variables that satysthe following Assumption.

Assumption 1 The sequence;, —oco < t < o0,

(a) has zero mean,;

(b) satisfies supF'|e:|? < oo for somey > 2;

(c) is stationary, and 0< o2 < co, wheres? = limr_,oo T2 3L | ST | E(eies);

(d) is strong mixing with mixing coefficients,,, that satisfy> ~_; a}n_z/” < 00.

Define the variance of the partial sums of thé ifrocess:; by a% = E(EtT:l ug)?.
Davidson and De Jong (2000) have the faliog functional central limit theorem
(FCLT) for this broad class dl) process whose underlying shock variables may them-
selves exhibit quite general weak dependehce.

Lemmal Supposdl— L)%u; = ¢, —0.5 < d < 0.5 ande; satisfy Assumption 1;
then asl” — oo,

(@) 02 ~ o2V,T+2, and

®) o7t 3wy = By(r), forr € [0, 1]

Here, B4(r) is the normalized fractional Brownian motion that is defined by the fol-

2 This is a stronger condition than Phillips (1987)’s. This condition excludes any possible heteroge-
neous innovation.

3 This is a stronger assumption than as in Assumption 1 of Davidson and De Jong (2000). We impose
the stationary condition in Assumption 1(c) that makesutthprocess be a linear function of a stationary
processg:. Because the stationary linear processes are ergedimder our assumption can apply the
stationary ergodic Theorem (see Stout (1974), p.181)
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lowing stochastic integrd:

1 T 0
Ba(r) = o ( = 2yaB@) +[ " [r-o)'~(-o)] dB(:n)) L@

with Vy = T(1 + d)"2{(1 + 2d)" + [5°[(L + 7)¢ — 79)d7} = T(1 — 2d)/[(1 +
2d)T(1+ d)r(1 — d)] andB(r) is the standard Brownian motidn.

Lemma 1(a) shows that the variance of the partial sum of dnfdfocess is
O(T*+24). Sowell (1990) obtains the same result under the assumptios tisati.d..
Lemma 1(b) is an FCLT for a general fractidigaintegrated process that could apply
to a large class of fractionally-integrated processes including the well-known Gaus-
sian ARFIMA (p,d,q) process. These conditions allow for a wide variety of possibly
weakly dependent generating mechanisms in the innovations prece3he main
novel feature of these results is that the innovation variables (fractional difference) are
permitted to be a mixing process, a very general form of weak dependence allowing
for various forms of non-linear dynamics.

Davydov (1970), Avram and Taqqu (1987)iéhiczuk (1997), and Chung (2002)
give results on FCLT for a long memory process directly from @ pfocess written
in a linear process as in (3) with square summable weights. Wang et al. (2003) derive
the FCLT for a fractionally-integratl process from (2) by assuming thais a linear
process of an.i.d. random variable, say;,

o0
g = Eogojnt_j, t=12,.. (5)
]:

with 3224 j%54)p;| < 00, 320¢p; # 0, andE|n,|M22/(1+24)} < o0,

When our mixing processes are specified to be a summable linear process as in
(5), itis interesting to compare the regularity conditions of Lemma 1 to those in Wang
et al. First, the moment condition ef in Assumption 1(b) is stronger than Wang et
al’s where only second moment is needed to exist. Second, the coefficient condition

# The original definition of a fractional Brownian motion shown in Sowell (199G}j$r) = 1/T'(1+
d) for (r — z)?dB(z). However, Marinucci and Robinson (1999) show that it requires a correction by
replacing it with the definition of the fractional Brownian motion as in (4).

5 This type of fractional Brownian motion is so defined as to mﬂdéd(l)z = 1. A fractional

Brownian motion differs from a standard Brownian motiBfr) by having correlated increments. Please
refer to Marinucci and Robinson (1999) for additional details on the fractional Brownian motion.
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on ¢, is weaker in our assumption due to mixing in a linear process, as we only need
¢, to be absolute summable (See Davidson (1994), p. 215)
2.2 Generalized fractional unit root distribution

From here on, we discuss the following non-&taary fractionally-integrated process
yt, defined by

Y = BYys—1 + ug, (6)
B =1, (7)

whereyo = 0, andu, is the I(d) process satisfying the assumption in Lemma 1.
We consider the three least square regressions

Yt = Byt—l + Uy, (8)

Y = o+ Byt—l + Uy, 9
and

Yp =0+ ot + Byt—l + g, (10)

whereB, (&,B), and (&,S,B) are the conventional least-squares regression coeffi-
cients. Following Sowell (1990), we are camned with the limithg distribution of

the regression in (8), (9), and (10) under thél hypothesis that the data are generated
by (6) and (7). The limiting distribution q@, (d,B), and(a, S,B) is described in the
following Theorem.

Theorem 1 Lety; satisfy (6) and (7); then &6 — oo,
for the regression model (8),

(1/2)[Ba(1)?
JoBa(r))2dr

- 0'2
O TG0 >~

,  whend > 0;

@ T(3—1) =

whend < 0; and
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5 2_ ;27,2
() T(B-1) = (1/2)[559127’)%:/ el , whend = 0°

for the regression model (9),

(1/2)[B4(1)] — B4(1) [ Ba(r)dr

, hend > 0O;
W W

d) T(6-1) =

T4

Vo2 Wy’

(1/2{[BQ)? — (05/02)} — B(1) Jg B(r)dr
Jo[B(r)2dr — [fg B(r)dr]?

,\ 1
(e) TH(3-1) = - whend < 0; and

f) TG -1) = . whend = O:

for the regression model (10),

@ T(B-1) = &, whend > 0;
W3
(h) T3 - 1) = Lo whend < 0
2 WUZWQ, '

() T(B-1)

_, W2H{[BQ)~2J; Br)dr][BX)+6 Jo B(r)dr—12Jg rB(r)dr]—of/o?}

Jo[B(r)[2dr—4(fy B(r)dr]>+12 [§ B(r)dr fg rB(r)dr—12[fg rB(r)dr]?"
whend = 0;

where
oy = E(uf),
W1 = Jg[Ba(r)Pdr — [fg Ba(r)dr]?
Wa = (1/2)[Ba(2) — 2 fg Ba(r)dr][Ba(1) + 6 fy Ba(r)dr — 12 [y rBa(r)dr]
and
W3 = [o[Ba(r)|2dr — 4] [y Ba(r)dr)? + 12 [3 By(r)dr [§ rBa(r)dr
—12[f3 rBa(r)dr]?.

6 The limit distribution of the regression coefficiéﬁ(ﬁ — 1) under the unit root hypothesis that= 0
andg = 1 depends on unknown nuisance parametefsindos?; thus, the statistic”f(é — 1) cannot be
used directly for unit root testing. HoweverZ ando? can be consistently estimated, and there exists a
simple transformation of the statistiﬁﬁ— 1) which eliminates the nuisance parameters asymptotically.
See Phillips (1987) and Xiao and Phillips (1998).
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The convergence rates 8 — 1) (and also3 — 1) and(3 — 1)) depend intrin-
sically on the degree of the fractional integration in theprocess. The distribution
of TMinL1+2d](3 _ 1) is therefore called a generaliz&dctional unit root distribution.
Fractional unit root distribution wafirst derived by Sowell (1990) wheeg in (2) is
assumed to beéi.d. (0,02). Tanaka (1999) and Wang et al. (2003) extend the re-
sults of Sowell (1990) parametrically by assuming thaits an infinite-order moving
average process.

Theorem 1 is a non-parametric extemsof Sowell (1990) by assuming that
satisfies Assumption 1. Under quite weaknditions, these results provide a unified
treatment of most of the previously-cited results. For example, when the innovation
process:; is i.i.d. (0,02), we haves? = [I'(1 — 2d)/T?(1 — d)]o?, leading to the
following simplification of parts (b) and (c) of Theorem 1 as the results of Sowell
(1990): TH24(5 — 1) = —{[1/2 + d)[F(1 + d)/T(1 — d)}}/{fg[Ba(r)|?dr}, for
d<0 andT(B -1) = {(1/2)[B(1)? - 1]}/{[01B(r)2dr}, ford = 0.

It is interesting to note that wheh > 0, the assumption oy does not play any
role in determining the order of magnitude of the test statistic. The limit distribution
of T(B — 1) is free of the nuisance parameters=pin (2). It converges to the same
distribution as that of Sowell (1990)amaka (1999), and Wang et al. (2003). When
d < 0, the distribution of+2¢(3— 1) has the same general form for a very wide class
of the innovation process. It reduces to the distribution of Phillips (1987, Theorem
3.1, (c)) wheni = 0.

3. ASYMPTOTICS OF PHILLIPS-PERRON TEST WHEN
ug IS I(d)

3.1 Phillips and Perron test

Phillips (1987) proposes a test for thait root hypothesis of the procegsdefined in
(6) and (7) whenl = 0. Denotingo2=limr_,,, T E(3L | u?) ands?=lim7_,,, T1
E(}‘,tT:l uy)?, Phillips’s two statistics for testing the null gf= 1 can be expressed as
follows:

" In particular, Tanaka (1999) assumes that= E‘;’;O @;n¢—; asin (5), but with the condition that
E?ioﬂ%"ﬂ < oo.
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gl -5

Z=TB-1)- 272 Zle Z/tz—l7 )

B

and

1 v 1 -1
T z23-1 1 2 L 2
Z; = <2 yf_l) g | (T 2 ytz‘l) ] -0
=1 s t=1

whereg is the OLS estimator o8 in (8), ands2 ands? are consistent estimates®f ~
ands?, respectively.

Under the null hypothesis of the unit root, Phillips (1987) proves that these test
statistics are distributed 4§1/2) [B(l)z—l]}/{fol B(r)%dr} and{(1/2)[B(1)?>-1]}/
{ /3 B(r)2dr}/2, respectively. Phillips and Perron (1988) accommodate the regres-
sion model (8) with a drift as in (9) and a drift and time trend as in (10) and propose
test statisticsZ 4 L5 2, andZ; corresponding t& 3 andZ;, respectively.

Among statistics in this class of unit raeists, the ADF and the PP are perhaps the
most popular, as they are implemented in gnstatistical software packages. However,
it is also a well documented fact that the PP test, as originally defined, suffers from
severe size distortions when there are negative moving-average &riesion and
Ng (1996) suggest a modification of the R#3ts to correct this problem. They use
methods suggested by Stock (1990) to derive a modification df jrend Z; statistics.
The modifiedZg and Z; statistics, for example, in regression model (8) are

T -
MZg=Z5+ (8- 1)?, (13)

and
MZ; = MSB - MZj, (14)

whereMSB = (T-23T 42 ,/s?)Y/2. Convergence of at rateT’ when trueg = 1
andu; is 1(0) ensures that/Z3 and Zz are asymptotically equivalent. It is also true
that M Z; andZ; are asymptotically equivalent.

8 See Phillips and Perron (1988) and Schwert (1989), among others.
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Phillips and Perron (1988) and Perron and Ng (1996) analyze the asymptotic
properties of PP test statistics under a Aatggrated process. In this paper we are
concerned with the alternative thagt is a fractionally-integrated I(% d) process.
Granger and Joyeux (1980), Geweke andéteHudak (1983), and Baillie (1996) all
conclude that some economic time series p@agses unit roots, but with a fractionally-
integrated error. The distinction of a series being I(1) oHkd), for exampled < 0,
is also important whep, is the OLS residual from a set of I(1) variables. The test of
the order of the integration in the residual is called a residual-based test for fractional
cointegratior?

3.2 Consistency of the Phillips-Perron test against I(1 + d) alternatives

In this section we derive the asymptotic distribution®yf, Z;, MZg, and MZ; test
statistics under the alteative hypothesis of; being I(1+ d) as in (6) and (7) for
—0.5 < d < 0.5. In deriving Theorem 2 below, we considér (52 = T 37, @2,
82 =T71yL 42, ands? = T-13L | 42) as the estimator af2 for the regression
models in (8), (9), and (10), respectivéfy.We use the Newey-West (1987) estimator
sy (35 = TU3 0 + 2T 3Ly wn S gty ey 85y = TP 3147 +
2r 3y wa Sy Gl andsh, = T30 07 + 2T 3w 3, 1
;)11 as an estimator of the long-run variancg Wwherew,; = 1 — 7/(1 + 1).

Phillips (1987) shows the consistencyaﬁfandszﬂ whenu, is a I(0) and strong
mixing process. The following results establish the asymptotied ahdsZ, whenu,

is an I{) process as in (2).

Lemma?2 Lety; satisfy (6) and (7); but part (b) of Assumption 1 is replaced by the

9 See, for example, Dittmann (2000).

10 phjllips (1987) also recommends using the first differencg.0fu; = y¢ — y:_1, rather than the
residualu, 4, and«;. However, it is noted by Phillips and Ouliaris (1990) that it would make the PP
statistics inconsistent against th@) process by using the first differencewgfin the construction of the
nuisance parameters estimator. Since we allow fusrazero drift in the regression such as (10), the use
of the first difference ofy, is not preferred. See Phillips and Perron (1988).

L Instead of using the Newly-West estimatsﬁsl as in this paper, Perron and Ng (1996) suggest al-
ternatively an autoregressive spectral density estimator defined as (for regression modﬁh(&-)
s2,/[(1 - b(1))?], wheres?, = T3, 1 & b(1) = 3\ _; b;, with b; and{&,;} obtained from the
autoregressionAy; = Eoyt,l +E§.:1 Bj Ay + €. We find from simulation results that when using
si R as along-run variance estimator, the powedbE will decrease with an increase bfln particular,
the MZ turns out to perform very poorly as like any inc@sient test if the numbef lagged differences
l included in the regression increase too much. Overall, for a fikéte power ofMZ usings%l clearly
dominates the same tests statistics usfyg under an I(1+ d) alternative.
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stronger moment condition: sup|e;|* < oo; then providing that — oo asT — oo
such that = o(T4),
(a) s2 2 62, and

(b) 172452, 2 52V,

Lemma 2(a) is the results of consistency in the OLS estimator and ergodic theo-
rem. Lemma 2(b) shows that the exact order of magnitud&.pis equal toO(1?%).
That is, it has to multiply =2 on s%l to achieve a “consistent” estimator of the long-
run variance ofu;, as corresponding to the results of Lemma 1(a). We next give the
asymptotics of the PP statistics under the alternativg being I(1+ d) in the follow-
ing Theorem.

Theorem 2  If the conditions of Lemma 2 are satisfied, therfas» oo,
for the regression model (8):
1 1

T 2d
a) whend < 0, (—) Js = —————— and
@ 1) 5T 2 B par

T\ 1 1 .
(b) whend < 0, (T) Zy = _E{fol[Bd(T)]zdr}l/Z'

, 1 (B
(&) whend > 0, Zﬁ = > 7fol[Bd(r)]2dr’ and

: TN, 1 [Ba(1)]?
(b’) whend > 0, (T) ¥ E{fol[Bd(dT)]zd’r‘}l/z,

for the regression model (9):

T 2d
(c) whend < 0, <) Zy= and

l pT 2wy

(d) whend < 0, (%)dZtA = —%#;

1

(1/2)[Ba(1)]2 = Ba(1) Jg Ba(r)dr
W1

(c) whend > 0, ZB = , and
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(d) whend >0, <T)_d Z; = (1/2)[Ba(1)]? = Ba(1) Jo Ba(r)dr

[ Wi :

for the regression model (10):
T\ 11
(e) whend < 0, <7) ZB = _§W3’ and

1 1

1/2°

T d
() whend <0, | — ) Zj=——=
! K 2
Wy

W

(e) whend >0, Z5 = Wy and

W>

T —d
(f) whend >0, (l> Zi = W;
3

where

Wi = J3 [Ba(r)]2dr — [f3 Ba(r)dr]?,

W2 = (1/2)[Ba(1) — 2 J3 Ba(r)dr][Ba(1) + 6 3 Ba(r)dr — 12 [ rBa(r)dr]
and

Ws = [g[Ba(r)|2dr — 4] fg Ba(r)dr)? + 12 [§ By(r)dr [3 rBa(r)dr
—12[[3 rBy(r)dr]2.

Whend < 0, since the limit of(T/1)?¢Z5 and (T/1)¢Z; has a negative support,
then Zg and Z; are unbounded and diverge tax as(7/l) — oo. Therefore, PP’s
lower tail Z3 and Z; test statistics areomsistent against a non-stationary but mean-
reverting fractionally-integrated alternative.

Whend > 0, theZ3 statistics have the same orders in probability under both the
null of unit root and alternative of I(3- d), d > 0. In fact, ford € (0, 0.5), the orders
in probability of theZz statistics are independent of the valuedp®ven though the
form of their asymptotic distribution is affected by the valueloT his is in contrast to
the cases whef; statistics ford € (—0.5,0.5) andZg for d € (—0.5,0), where both
the order in probability and the form of the asymptotic distribution depend ¢tur-
thermore, although th&; test statistics have a different order in probability with the
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null hypothesis of the unit root, only the limit ¢T/1)~¢Z; has a positive support. The
supports of the limit of 7/1)~¢Z; and(T/1)~?Z; are both possibly positive and nega-
tive. Therefore, only PP’s uppéf; test statistic is consiste against a non-stationary
and non mean-reverting fractidhaintegrated alternative.

As a consequence of Theorems 1 and 2, we have the following corollary that
shows the asymptotic equivalenced¥ 3 andZ3, MZ; and Z;.

Corollary 1  If the conditions of Lemma 2 are satisfied, therfas+ oo, MZz =
Zg andMZ; = Z;.

4. POWER IN FINITE SAMPLES

In this section we provide simulation evidence on the power of/th&; and MZ;
tests statistics against the Hld) alternative. Following Schwert (1987), the number
of lags! used in theMZ test statistics is chosen &s= 0, l4 = int[4(7/100)/4],
andly, = int[12(T/100)Y/4]. We consider samples siz&s100, 250, 500, and 1000
and the number of iterations is 5000. All odir tests are based on the 5% significance
level. Observations on a fractional white noisé)lprocess are generated using the
Durbin-Levinson algorithm.

Tables 1, 3, and 5 give the percentage power of the 5% lowekA&j and M/ Z,
unit root test againshe alternatives I(3d), d = —0.1, —0.2,..., —0.49. Some results
are quite clear and in accordance with oxgpectations. With other things being held
constant: (i) Power increases Asincreases. This is a reflection of the consistency
of the test. (ii) Wheril" = 1000, the power of both th&/Z; and MZ; tests is lower
whenl is higher, which is in accordance with the asymptotics ofthé; and M Z; test
statistics under the I(% d), d < 0, alternative in the lastestion, which indicate that
the power depends gff/l) even asymptotically. However, whéhis less than 1000,
for exampl€l’ = 250 is the sample size used by Hassler and Wolters (1994), then the
conclusion that power will decrease as with an increagesrambiguous. Therefore,
the results of Hassler and Wolters (1994) that the power of the PP test is not very much
influenced by the choice of the number of included residual autocovariances may be
due to small sample size results. (iii) Power is higher wkhies larger in absolute
value for a fixedI'. This result is not surprising, as it is transparent from the relevant
asymptotics for-0.5 < d < 0.

Tables 2, 4 and 6 provide the percentage power of the 5% upper tails bf e
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Tablel PercentagePower of M Zj; and M Z; TestsAgainst | (1+d) Alternatives, d < 0

Value ofd

Test T l 0.0 -0.1 -0.2 -0.3 -0.4 —0.45 -0.49
MZj 100 0 510 1436 3480 59.50 78.44 85.36 90.84
1 540 1250 25.76 47.44 67.30 74.76 82.06
4 482 1264 2426 4394 63.38 70.32 77.20
12 592 1294 2796 49.48 69.64 77.44 85.04
250 0 516 20.36 4992 78.90 94.82 97.66 99.38
1 480 1858 4180 70.06 88.40 94.22 96.58
5 516 1548 3342 5820 79.64 86.92 92.58
15 588 1438 3578 62.28 84.26 91.10 95.00
500 0 498 2408 6058 88.96 98.98 99.90 99.94
1 484 2258 53.02 82.02 96.92 98.88 99.76
5 468 17.02 42.68 70.64 90.50 95.38 98.18
17 5.76 1594 40.26 69.92 90.94 96.02 98.66
1000 0 502 3024 7126 9512 99.94 100.00 100.00
1 488 2658 64.88 9242 99.52 99.90 100.00
7 452 20.06 49.32 80.22 96.36 98.72 99.79
21 478 17.46 4504 77.62 95.90 98.50 99.76
MZ; 100 0 508 1458 3488 59.14 78.36 85.32 90.84
1 5.08 12.02 2522 46.44 66.60 74.02 81.54
4 470 12.06 23.68 43.02 62.98 69.84 76.80
12 560 1234 27.10 4858 69.28 77.14 84.76
250 0 530 20.06 49.38 78.32 94.68 97.72 99.30
1 484 17.84 4124 69.06 87.92 94.10 96.36
5 500 1484 3276 5760 79.62 86.72 92.50
15 550 14.08 3526 61.80 84.06 90.86 94.80
500 0 484 2370 59.28 88.28 98.92 99.88 99.92
1 486 21.76 5164 81.08 96.76 98.84 99.78
5 448 16.40 4162 69.74 90.02 95.18 98.00
17 568 1558 3960 69.34 90.54 95.92 98.64
1000 0 474 2970 70.70 95.00 99.92 100.00 100.00
1 488 26.10 6396 91.88 99.50 99.90 100.00
7 438 1952 4884 79.76 96.28 98.70 99.78

21 468 17.38 4438 77.36 95.84 98.42 99.74

Note:1. M Z; and M Z; are Perron and Ng's (1996) modified Phillips and Perron (1988)
unit root test statistics.

9.DGPis(1— L)*dy, = ¢, &, "~ N(0, 1).

3. The number of lag other than 1 is chosen &s = 0, 5 = int[4(T/100)*/4] and
l1p = int[12(T/100)Y/4).

4. Number of iterations is 5000. Power of the tests is based on the 5% lower-tailed
significance level.
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Table2 Percentage Power of M Z; and M Z; TestsAgainst | (1+d) Alternatives, d > 0

Value ofd

Test T l 0.0 0.1 0.2 0.3 0.4 0.45 0.49
MZzj 100 0 544 1276 2474 3522 47.72 54.80 73.20
1 492 1154 2194 33.04 4472 54.10 73.02
4 514 1160 19.64 2888 41.84 52.36 69.58
12 566 11.78 17.74 26.54 38.88 46.76 65.86
250 0O 546 16.08 27.68 39.32 51.00 59.82 76.98
1 522 1410 27.08 38.84 50.06 59.42 76.86
5 560 1266 22.16 33,50 47.16 57.90 74.98
15 6.04 10.90 20.20 2998 4250 52.54 72.20
500 0 520 16.34 3154 40.60 51.94 60.50 77.18
1 498 16.14 2848 39.00 52.16 60.84 77.60
5 528 13.72 26.10 36.58 49.14 57.42 76.76
17 588 1352 2184 3258 4450 55.38 74.42
1000 0O 482 16.84 3198 4184 52.64 61.40 78.04
1 484 1752 30.38 4052 52.28 59.98 78.90
7 476 1536 26,52 3836 49.94 59.52 77.12
21 538 13.34 2346 3390 46.72 56.52 75.54
MZ; 100 0 558 1882 41.18 60.40 77.88 84.90 93.90
1 494 1680 3556 55.64 7294 8298 92.92
4 590 1642 30.86 47.76 66.90 78.36 91.02
12 6.66 1534 26.36 41.34 59.80 71.50 87.20
250 0 502 2394 4712 66.92 8196 89.00 94.78
1 520 20.00 4276 6290 79.94 86.30 93.88
5 532 17.02 3522 5452 7248 82.76 92.46
15 6.00 1494 30.02 46.12 65.28 76.76 89.72
500 0 528 2584 5238 71.22 8542 90.38 96.08
1 492 23.82 4832 68.16 81.60 88.88 95.66
5 534 1948 40.38 60.98 76.96 85.58 93.86
17 592 1724 33.48 51.24 69.98 79.16 92.10
1000 0O 516 2832 5574 7490 87.22 92.78 97.30
1 512 26.60 5346 71.38 85.16 91.06 96.58
7 466 2250 4400 63.30 79.10 86.34 94.58
21 540 1752 36.02 5522 73.36 82.24 92.40

For notation see footnote of Table 1.
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Table3 Percentage Power of M Z; and M Z; Tests Against | (1+d) Alternatives, d < 0

Value ofd
Test T l 0.0 -0.1 -0.2 -0.3 -0.4 -0.45 —-0.49
MZzj 100 0 456 16.24 4376 77.22 96.58 99.16 99.98
1 414 1310 32.78 60.82 88.40 95.60 99.08
4 462 13.10 32.18 59.88 87.10 95.32 98.60
12 3.80 13.80 3812 70.00 94.32 98.54 99.82
250 0 476 2552 65.18 95.74 99.96 100.00 100.00
1 406 20.34 56.12 89.28 99.44 99.98  100.00
5 552 17.84 4564 8224 98.50 99.94  100.00
15 5.26 20.00 51.72 88.48 99.74 99.98  100.00
500 0O 486 3212 79.86 99.38 100.00 100.00 100.00
1 490 2716 7218 97.58 100.00 100.00 100.00
5 532 21.30 59.44 92.22 99.98 100.00 100.00
17 566 2218 61.06 9446 100.00 100.00 100.00
1000 0O 532 3988 89.66 99.96 100.00 100.00 100.00
1 468 36.12 8508 99.78 100.00 100.00 100.00
7 514 2482 68.78 97.72 100.00 100.00 100.00
21 534 2422 67.04 97.68 100.00 100.00 100.00
MZ; 100 0 492 1280 3528 68.02 93.46 97.94 99.74
1 3.20 7.90 21.26  45.98 76.94 89.16 96.16
4 344 7.92 21.86 46.54 76.92 90.00 96.24
12 3.18 8.84 26.50 58.42 88.78 96.76 99.36
250 0 502 1998 56.44 92.56 99.76  100.00 100.00
1 404 1476 4494 82.14 98.62 99.90 99.98
5 506 1322 36.94 74.38 96.88 99.70 99.98
15 496 15.18 4412 83.84 99.12 99.94  100.00
500 0 532 2636 7256 98,58 100.00 100.00 100.00
1 508 2138 6240 95.06 100.00 100.00 100.00
5 514 16.76 50.18 87.80 99.76 99.98  100.00
17 5.02 17.88 53.28 91.76 99.94 100.00 100.00
1000 0O 462 33.00 84.74 99.86 100.00 100.00 100.00
1 516 29.68 7854 99.38 100.00 100.00 100.00
7 536 1996 60.88 96.32 100.00 100.00 100.00
21 508 19.72 60.72 96.20 100.00 100.00 100.00

For notation see footnote of Table 1.

290



Fractional Integration and the Phillips-Perron Test (Chingnun Lee and Fu-Shuen Shie)

Table4  Percentage Power of M Z; and M Z; TestsAgainst | (1+d) Alternatives, d > 0

Value ofd

Test T l 0.0 0.1 0.2 0.3 0.4 0.45 0.49
M2z 100 0 518 1470 25.04 36.04 4496 48.18 54.72
1 430 1232 2360 3142 4196 46.92 54.60
4 542 12.48 20.02 28.68 38.50 42.92 52.24
12 542 1078 19.02 2540 34.04 39.86 51.28
250 0 522 1696 32.04 42.74 4854 53.28 57.26
1 474 16.08 2850 38.80 46.04 49.48 56.62
5 498 1356 23.18 33.24 40.76 46.44 55.16
15 572 11.88 20.66 2856 38.32 43.72 53.60
500 0 514 1966 34.84 4538 5040 52.48 58.20
1 502 1730 3270 4126 4812 53.16 57.86
5 542 1490 27.06 37.26 46.78 49.08 57.62
17 522 13.04 2160 31.86 41.78 46.26 56.02
1000 0O 494 2146 37.72 46.76 51.42 52.80 60.88
1 494 2030 3560 4540 51.08 53.08 59.30
7 512 16.60 28.64 39.38 46.28 50.98 56.10
21 546 14.06 2456 34.88 42.42 48.22 56.88
MZ; 100 0 516 1440 2410 3470 43.02 45.00 48.20
1 420 1192 2282 30.22 3990 44.12 47.70
4 538 1228 19.28 27.58 36.48 40.44 45.84
12 530 1054 1836 2480 32.20 36.94 44.44
250 0O 508 16.46 30.82 4098 4542 49.42 48.26
1 468 1560 2752 37.10 4322 4574 47.88
5 482 1326 2252 3192 3862 42.78 46.84
15 566 1150 20.04 27.34 36.24 40.18 45.40
500 0 504 1920 3342 43.20 46.82 48.42 48.84
1 5.02 1690 3144 3956 44.78 48.68 49.34
5 538 1472 26.28 35.38 43.92 44.82 48.46
17 5.16 12.76 21.08 30.50 39.44 42.68 47.60
1000 0O 500 2082 36.26 44.16 47.78 48.28 51.88
1 5.02 20.04 3436 43.32 47.88 48.72 49.18
7 5.18 16.08 27.46 37.36 43.00 46.96 47.86
21 550 13.78 23.84 3368 40.20 44.42 48.36

For notation see footnote of Table 1.
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Table5 Percentage Power of M Z; and M Z; TestsAgainst I (1+d) Alternatives, d < 0

Value ofd
Test T l 0.0 -0.1 -0.2 -0.3 -0.4 —-0.45 -0.49

MZj 100 0 516 2894 7232 97.28 100.00 100.00 100.00
1 406 19.82 5540 90.48 99.60 99.98  100.00

4 518 19.08 49.88 86.22 99.32 99.92  100.00

12 5.48 2446 63.62 94.32 99.88 100.00 100.00

250 0 542 36.86 87.04 99.84 100.00 100.00 100.00
1 418 30.66 76.86 98.92 100.00 100.00 100.00

5 516 2398 65.60 96.04 99.98 100.00 100.00

15 6.14 28.02 73.90 98.34 100.00 100.00 100.00

500 0O 436 4554 9546 100.00 100.00 100.00 100.00
1 488 38.22 90.18 99.94 100.00 100.00 100.00

5 448 29.22 76.24 98.98 100.00 100.00 100.00

17 564 30.98 79.42 99.36 100.00 100.00 100.00
1000 0O 488 56.78 98.90 100.00 100.00 100.00 100.00
1 482 5048 97.14 100.00 100.00 100.00 100.00

7 482 3464 86.68 99.89 100.00 100.00 100.00

21 570 32.78 86.40 99.85 100.00 100.00 100.00

MZ; 100 0 534 26.06 67.72 96.00 99.94 100.00 100.00
1 360 1554 47.16 85.62 99.34 99.94  100.00

4 426 15.02 4234 81.40 98.54 99.88  100.00

12 442 19.46 56.46 91.74 99.84 99.98 100.00

250 0 518 33.04 8342 99.76 100.00 100.00 100.00
1 418 2574 71.50 97.80 100.00 100.00 100.00

5 466 20.10 59.12 94.20 99.96 100.00 100.00

15 560 23.88 69.08 97.56 100.00 100.00 100.00
500 0O 454 4200 9394 100.00 100.00 100.00 100.00
1 502 3424 87.30 99.92 100.00 100.00 100.00

5 432 2630 72.36 98.52 100.00 100.00 100.00

17 552 28.38 75.94 99.20 100.00 100.00 100.00
1000 0 500 5246 98.36 100.00 100.00 100.00 100.00
1 494 46.02 9594 100.00 100.00 100.00 100.00

7 490 3144 84.24 99.96 100.00 100.00 100.00

21 510 30.02 84.02 99.84 100.00 100.00 100.00

For notation see footnote of Table 1.
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Table6 Percentage Power of M Z; and M Z; TestsAgainst | (1+d) Alternatives, d > 0

Value ofd

Test T l 0.0 0.1 0.2 0.3 0.4 0.45 0.49
MZj 100 0 510 16.32 3148 48.36 61.66 65.38 69.04
1 546 1396 2558 37.80 5056 55.36 59.56
4 442 11.34 1890 26.78 36.10 40.60 42.62
12 4.66 9.50 15.96 22.74 29.08 32.02 34.46
250 0 542 2096 4474 6454 7584 78.76 80.12
1 560 1800 3700 5464 66.68 71.96 75.08
5 524 1314 2514 36.30 49.80 53.62 56.06
15 484 1016 1890 26.02 33.12 37.58 40.02
500 0O 480 26.26 56.10 74.44 83.00 83.28 83.66
1 490 2218 4798 66.22 76.56 80.04 81.46
5 536 1830 33.38 5046 6192 66.66 68.98
17 484 1280 2268 3240 41.82 4556 49.82
1000 0 484 3214 65.14 80.72 86.00 85.10 86.90
1 480 2762 5872 76.02 8340 84.32 84.88
7 486 19.22 39.02 56.62 70.20 72.68 75.12
21 530 1486 2730 39.18 51.70 55.76 59.00
MZ; 100 0 482 13.78 23.98 3552 4454 46.48 48.62
1 532 1194 2034 28.98 38.04 40.86 43.48
4 424 9.80 16.48 2250 28.44 31.34 32.58
12 452 8.32 14.00 1954 2364 25.50 28.38
250 0 516 1728 3320 4574 5426 56.42 56.16
1 5.16 15.48 27.46 40.30 47.26 51.18 53.24
5 504 1142 20.62 29.00 38.10 40.24 41.42
15 4.50 9.62 16.58 21.76 27.88 30.50 32.32
500 0 4.74 20.76 41.46 53.10 57.86 57.92 58.12
1 458 17.88 3554 4742 5436 55.60 56.94
5 506 15.62 26,52 37.28 4440 47.66 48.16
17 484 1156 19.38 2598 33.02 34.90 38.84
1000 0O 480 2548 4582 57.66 60.74 57.38 58.72
1 472 2146 4238 5494 58.96 58.38 59.08
7 490 16.60 30.86 40.88 49.98 51.66 53.42
21 566 1352 2158 3066 38.38 41.16 43.16

For notation see footnote of Table 1.
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Table7 Percentage Power of MZ; and M Z; Tests Against I(1 + d)-GARCH(L, 1)
Alternatives, d < 0

Value ofd

Test T l 0.0 -0.1 -0.2 -0.3 -0.4 —0.45 -0.49
MZj 100 0 444 1540 3470 58.60 78.22 86.48 90.52
1 432 1246 2824 47.32 69.56 76.66 82.20
4 480 12.32 2412 4288 62.90 71.06 76.88
12 558 12.84 2820 48.70 70.82 77.10 85.30
250 0 466 20.36 49.84 78.78 94.46 97.64 99.14
1 478 17.76 4124 69.28 88.64 93.22 96.64
5 484 1476 33.60 5882 80.86 88.08 92.00
15 586 1572 34.86 64.18 83.76 90.56 94.98
500 0 532 2400 59.34 89.26 98.92 99.84 99.94
1 478 2196 5346 8258 96.64 98.90 99.62
5 520 1754 4214 71.26 90.12 95.36 97.84
17 550 1530 3858 70.94 90.50 96.00 98.60
1000 0O 524 2876 7056 9562 99.90 100.00 100.00
1 502 2456 64.74 9192 99.44 99.94 99.98
7 474 1930 49.44 7994 96.16 98.90 99.48
21 570 17.66 4506 77.28 95.78 98.52 99.74
MZ; 100 0 464 1536 3440 58.82 78.02 86.34 90.74
1 418 1210 2756 46.38 68.72 76.10 82.10
4 464 1196 23.78 4226 62.28 70.90 76.44
12 534 1214 2734 47.84 70.16 76.82 85.22
250 0 476 20.34 4922 7850 94.26 97.60 99.18
1 462 17.38 4044 68.24 88.24 93.10 96.54
5 484 1442 33.14 58.40 80.40 87.78 92.02
15 576 1544 3436 63.66 83.56 90.32 94.82
500 0 518 2366 5824 88.70 98.76 99.80 99.96
1 452 2128 5242 8244 96.46 98.82 99.60
5 522 17.18 4172 70.68 89.72 95.12 97.82
17 528 15.00 38.02 70.62 90.40 95.86 98.62
1000 0 514 2840 69.96 9532 9990 100.00 100.00
1 494 2434 6386 91.40 99.40 99.96 99.98
7 468 1926 4892 79.48 96.06 98.90 99.50

21 574 1748 4480 76.80 95.86 98.50 99.74

Note:1. M Z; and M Z; are Perron and Ng's (1996) modified Phillips and Perron (1988)
unit root test statistics.
2.DGP is (1 — L)l+dyt = &, &t = \/h_t’Ut, ht = 0.6 + O.th_]_ + 0.25%_1,
v "REN(0,1).
3. The number of lag other than 1 is chosen &s = 0, I4 = int[4(T/100)*/4] and
l12 = int[12(T/100)Y/4).
4. Number of iterations is 5000. Power of the tests is based on the 5% lower-tailed
significance level.

w
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Table8 Percentage Power of MZ; and M Z; Tests Against I(1 + d)-GARCH(L, 1)
Alternatives, d > 0

Value ofd

Test T l 0.0 0.1 0.2 0.3 0.4 0.45 0.49
MZj 100 0 464 1238 2376 34.22 46.26 55.66 73.60
1 5.02 1290 2260 33.26 46.14 55.06 73.54
4 546 11.04 19.64 3054 4196 53.18 68.68
12 588 11.62 1832 26.68 38.36 46.60 66.60
250 0 508 1584 2892 39.60 50.92 59.78 76.74
1 552 1522 2652 38.04 48.98 59.08 76.78
5 550 1250 2276 34.66 47.20 57.82 74.84
15 568 1214 2096 30.34 43.84 5294 72.72
500 0 530 17.08 3144 40.38 51.86 60.74 77.80
1 488 16.66 2730 3956 51.24 60.58 77.82
5 478 13.66 26.40 3752 4842 58.32 76.92
17 598 1246 22.06 3240 45.16 55.38 74.80
1000 0O 488 19.04 31.28 43.12 51.72 61.18 78.78
1 494 17.88 31.34 4186 5274 61.24 78.78
7 476 1496 26.18 38.32 49.32 58.04 77.86
21 536 1348 2348 3426 48,58 57.26 75.70
MZ; 100 0 470 19.18 3896 59.08 76.66 84.90 93.96
1 580 1818 36.04 5528 72.66 8274 92.86
4 570 1568 31.34 47.60 66.82 78.46 91.94
12 7.06 15.18 27.08 42.12 6056 72.14 87.92
250 0 522 2382 4794 67.28 82.12 88.68 94.94
1 486 2024 4228 63.24 78.74 86.60 93.96
5 532 1772 3580 5596 72.08 81.56 92.94
15 584 1590 29.84 46.30 65.26 76.12 89.92
500 0 496 2692 51.74 71.46 84.84 90.20 96.96
1 522 25.02 46.92 67.66 82.46 89.08 95.96
5 456 1994 4174 6092 76.22 85.14 93.98
17 566 16.46 3282 5208 70.26 79.70 92.94
1000 0O 532 2874 5512 76.00 8658 92.22 97.98
1 512 2716 5356 72.06 86.02 90.32 96.96
7 5.16 2228 43.08 63.70 7950 87.08 94.00
21 568 1844 37.16 5544 7398 81.58 92.90

For notation see footnote of Table 7.
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and M Z; unit root tests against the alternatives X)), d = 0.1,0.2,...,0.49. The
most important result is that, except fofZ; in Table 2, withd fixed, the power does
not approach 100% &5 increases. For example, fdr= 0.3 andl = l4, the power
of MZ; grows from 27.58% witl{” = 100 to only 37.36% witl¥" = 1000. This is

a reflection of the inconsistency of tidZ, MZ, MZ;, MZz, and MZ; unit root
tests against non-stationary and non-meaetey fractionally-iiegrated processes;
the power is not expected to approach 100% even for an arbitrarily large valle of
The power ofMZ; in Table 2 confirms thad/Z; is consistent, but even with a rather
large sample such & = 1000, the power has not approached to 100%. We finally
see that, for a fixed", the power increases dsncreases. This is not surprising, but
not transparent from the relevant asymptotics fer @ < 0.5.

Finally, to find the robustness of our results from the assumption of strong sta-
tionarity, we consider the shock varialaleto be a GARCH(1,1) process. In particular
we assume that, = \/hyvy, hy = 0.6 + 0.2h; 1 + 0.2¢2 | 12 vti‘f‘vd'N(O, 1). Tables
7 and 8 provide the percentage power of 5% lower and upper tam/g and MZy,
respectively, and they are not much di#fat from their counterparts as in Tables 1
and 213 Therefore, the simulation shows that our results are robust to autoregressive
conditional heteroskedasticity.

S. CONCLUSION

In this paper we have generalized the frawdl unit root distribution of Sowell (1990)
to a general fractionally-integrated prese Our characterization of this generalized
fractional unit root distribution also extesthose parametric representation in Tanaka
(1999) and Wang et al. (2003) to a general ggrametric fractionally-integrated
process. We also show that the Phillips and Perron’s unit root test staistiasd

Z can be used to distinguish a unit root noatistnary process from a non-stationary
but mean-reverting I1(% d), d < 0 process, although it has low power. Only the
t statistic from a regression vkiibut drift and the time trend modéel;, is consistent
against the non-stationary and non-mean-reverting-I{, d > O process. Moreover,
we have provided Monte-Carlo evidence on their power in finite samples and show the
robustness of our results to autoregressive conditional heteroskedasticity.

2 This assumption would satisfy the requirement of nonnegativity and stationarity.

B We also performMZé, Mz, MZB and MZ; under this assumption. This conclusion does not
change.
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Appendix: Proofs of the Theorems

We first provide the following asymptatiresults of the sample moments which are
useful to derive the asymptotics of the OLS estimator.

LemmaA.l Let(1— L)%y = &, where—0.5 < d < 0.5 andg; satisfies Assump-
tion 1. Define

Y= E(utut_j) for 7=0212 ..,
and
ye=ur+upg+---+u for t =212,...T, (A1)

with yg = 0. Therefore,

T Y
(a) T_%_d Zlut = de UsBd(1)7
t—

T 1
(0) 7272 3 37 1 = Vao? /0 [Ba(r)|?dr,
(©) T~ 22 = Vyo?[By(1)%,

T i 1
d) T3 Zlyt_l =V/7o. /O By(r)dr,
t=

T
(e) 771 Z UpUg—j 2, Yi>

=1
f Ifd>0,
12 & 1., 2 2 :
T > y—rw—j = 5 Vaol[Ba(1)]” for j=0,1,2,..,
t=j+1 2
(9) Ifd <0,
1
. T ) —chﬁ for j = O;
T Y yr-1u—j —> 1
t=j+1 ot 2 ' .
! SOttty fori =12,

(h) Ifd >0,
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T 1
T—l—2d Z UYp—1—j = —Vdgg[Bd(l)]z for ] = 0, 17 27 ceey

t=j+1 2
(i) Ifd<0,
1
T » S for j = 0,
Ty wy1j— 1 2
t=j+1 —505—71—72—73—....—%- forj=1,2, ...,
. 3 r e 1
G) 772723 tuy = V20 [Ba(l) — | Balr)dr],
t=1 0
5 4 & 7 !
(k) T2 tgltyt_l =V, O'E/O rBq(r)dr,

T 1
(I) T—3—2d Eltytzfl = Vdgg/o T‘[Bd(T')]ZdT‘,

T l
(m) T7—2-2 2 Y115 = Vdof/ [Ba(r)]?dr.
t=j+1 0

A joint weak convergence for the sample moments given above to their respective
limits is easily established and will be used below.

Proof of LemmaA.1

The proofs of items (a) to (d) are a straifyimtvard application of the continuous map-
ping theorem from Lemma 1(b)’s resultsettn (e) is due to ergodicity of the stationary
linear process;.

To prove items (f) and (g) foy = O, recall thatyo = O, and thus it is convenient
to write 7, yr_1us = 1/2y% — 1/23L w2, From items (c) and (e), we know that
Y2 is O, (TY24) and 31, u? is O,(T); then,>L | y; 1u; would beO,(T*), where
k= max(1+ 2d,1). Therefore, fod > 0,

104 & 1091 1
Tt nglytflut = T~ Syp = SVao?[Ba(D), (A2)
and ford < 0,
T 1T 1
T3 gy = ——= 3 uf 2, ——05, (A3)
=1 24 2

which establish results (f) and (g) fgr= 0.
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Forj > 0, observe that
Yt—1 = Yt—j—1+ Up—j + Up—jy1+ -+ + U1,

which implies that

T T
> Y—at—j = X (Yr—jo1F W F U1+ w—1) U
=gl t—j1

T T
= 2 Y+ X (W—jtujr1tc+up1)up g
t=j+1 t=j+1

If d > 0, then

L T T — 4 1+2d N T—j
T2 %y jaue = ( Tj> (T—5) 77 S yeaw
t=j+1 t=1

1
= S VaoZ[Ba(D)?

as in (A2). Moreover,

7-1-2d L ] ] AN
> (wj + w1+ FUp) U —
t=j+1

from result (e). Thus,

1 I 1
T Zdt Z+lyt—1ut—j = EVdaf[Bd(l)]z-
=J

The proof ford < 0 in item (g) is analogous.

The proof of items (h) and (i) is analogous with items (f) and (g).

To prove item (j), we first observe th&~ , y; 1 = DL Tuy — S, tug, or
ST tuy =T3S us—3ST  yi 1. Thereforel =324 3T ity = T-Y274 3T 4y —
T-3/2-43T 4, 1. By applying the continuous mapping theorem to the joint conver-
gence of items (a) and (d), we have
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T 1 1 1
73— thut = V2 0.By(1) — V2o, /O By(r)dr.
t=

To prove items (k) and (I), recall the notation tét (r) = z?j{ ug, forr € [0, 1].
AsT — oo, the following results then hold.

T ¢ 1
T_lg,lfyt—lzfo r Xp(r)dr, (A4)
and
a Lt oo
T Elfyt_lz/o r X4(r)dr. (A5)

The result of item (k) follows immediately from (A4) and item (d). Similarly, the result
of item (I) follows immediately from (A5) and item (b).
For item (m), we finally observe that

T
—2-24
T > YY1
=1

— 72— g: ( b Up i Up_ iU ) ;
= e Yt—1—j t—j t—j+1 t—1)Yt—1—j
=J

_T—2-2d § (2 +up R et )
= - Yt—1—j t—iYt—1—j t—j+1Yt—1—j t—1Yt—1—3),
=Jj

which converge td/;o2 fol[Bd(r)]zdr by virtue of items (b), (f), and (g). This com-
pletes the proofs of Lemma A.1.

Proof of Theorem 1
We prove items (g) and (h) from regression model (10). The proof of models (8) and
(9) is analogous. Let the data generating process be

Yt =+ Y1+ uy,

and the regression model be
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Yt = o+ Byr-1+ 6t + uy. (AB)

Note that the regression model of (A6) can be equivalently rewritten as

yr = (1— B)a+ B(y—1 — at — 1)) + (6 + Ba)t + uy,
=o'+ 0% 1+ 0"t + uy, (A7)

wherea* = (1— B)a, 5* = 3,0 = § + PBa, and&;—1 = ys—1 — ot — 1). Moreover,
under the null hypothesis thgt= 1 andd = 0,

S =yo+ur+ur+ -+ ug

that is,&; is the random walk as described in (Al). Under the maintained hypothesis,
a = ap, § =1, andé = 0, which in (A7) means that* = 0, 5* = 1 andé*™ = ap.
The deviation of the OLS estimate from these true values is given by

r T T 171r 1 7
. T > &1 >t > ug
« t=1 t=1 t=1
. T r o, T T
B-1|=| 2&1 X&1 X t&a > &aug | (A8)
5 =1 =1 =1, =1
@0 St Xthy St > tuy
L =1 t=1 t=1 I | i

or in shorthand as

C=A"1%.

From Lemma A.1, the order ofpbability of the individual terms in (A8) is as follows,

3.4 2 -1 1
ar Op(T Op(T21%)  0,(T?) 0,(T2*+)
-1 | = OP(T%+d) 0, (T2+2) Op(T%J’d) O, (TMaXL+2d.1])
5 — ao Op(T?)  Op(TZH)  0p(T%) 0p(T 2+
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To prove item (g), we note that wheh> 0, 37 | y; 1w, is O,(T*+2) as in item

(f) of Lemma Al. We define two rescaling matrices,

T 0 0 T7-7-¢ 0 0
Yr=| 0 TW%e 0 | andRp— 0o T2 g
0 0 T3 0 0o T ¢

Multiplying the rescaling matrices on (A8), we get

T7C = TrA 1T L INGIR . (A9)
Substituting the results of Lemma A.1 to (A9), we establish that
by = Q thy, (A10)
where
[ Tz g
b, = T(6—1) ,
| T29(5* — ag)
_ N . 1
1 V2o [§ Ba(r)dr >
1 1
Q= | V0. fo Ba(r)dr Vio? [§[Ba(r)2dr Vj?o. JgrBa(r)dr |,
1 - 1
> V.2 oe g rBa(r)dr 3
- 1
Vy? 0eBa(1)
hy = 3 Vao?[Ba(1)]?
1
| V7 0[Ba(L) — J5 Ba(r)dr]

Thus, the asymptotic distribution @f(G — 1) is given by the middle row of (A10),

which is
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~ Wo
TG -1 = 5=

Note that this distribution does not dependaan
To prove item (k), we notice that wheh< 0, 37, y; _1uy is O, (T). We define
another rescaling matrix

7-3+ 0 0
Rp = T-1 0
0 0 T3t
Multiplying Y7 andR7 on (A8) to get
T7C = YA T YR IR A (Al1)

Substitute the results of lemma A.1 to (A11), we establish that
by = Q thy, (A12)

where
T%-&-d(;* 0
52 = Tl+2d(5 — 1) andhz = _%0-5
T2+4(3* — ag) 0

Thus, the asymptotic distribution @f-+2¢(3 — 1) is given by the middle row of
(A12), which is

2
Oy

Vao2Ws'

Tl+2d(5 o 1) = _%

This completes the proofs of Theorem 1.
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Proof of Lemma 2

We prove the case whegé = 52 ands?, = 52, from regression model (8). The
proofs of models (9) and (10) are analogous.

To prove item (a), sincé is consistent as shown in Theorem 1 aRds ergodic,
then applying Theorem 4 from Sowell (1990), we have

T
E-T 3ok

To prove item (b), we start by defining the population counterpaﬁ%@,f ie.,
o?(l) as

2 1 & 2 14 A
W) =T 3 B@d)+2T 1 S w3 Bl ).
t=1 =1 t=7+1
Following Lee and Schmidt (1996) we have
172452(1) 25 02V,
Givenl = o(T%%), Tsay (2001, Lemma 1 and Theorem 1) has shown that
2, — 02(l) L0,

that is, the difference betweer?(l) ands“%l will converge in probability to zero. The
desired result then is obtained. This completes the proofs of Lemma 2.

Proof of Theorem 2
To prove item (a), we first rewrit& 5 as

Zy=T(B-1) - 5—5" (% - 52), (A13)

where as a matter of notatiom% =5/3F 42 ..
By item (b) of Lemma A.1, we have
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2+2d 2
T‘Jr O'B 1

. = .
5% Vyo2 [§[Ba(r)|2dr

(A14)

Multiplying 7% on Z3, and collecting the results of Theorem 1(b), (A14), and Lemma
2, we obtain

2d 1+2d, 1 T2+2d0£2§ 2 2
%25 =T (5—1)—5 —= (871 — 53)

B i VdUEZZZd '
2 Vo2 [3Ba(r))2dr’

therefore,

T\ 1 1
<l> 77 T2 B

To prove item (b), we note that

< 1 . .
(B - 1)(2?:1 ytzfl) 2 3%1 - 55

1
ST 2 5 (T23 1 y? 1)Y?

1 . .
_ (T 2390 [T(B 1) - 1 5 — 5% ]
STI 2(T23 1 v7 1)

-1
1 [ Tox
STI Su

! X{TZdvdaf /O l[Bd(r)]zdr} X

(Vao2124)%
1 /7\ & 1
[_5 <7> f&[Bder]

. (A15)

Z; =

N[

Therefore,
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T\ 1 1
(7) 7=z UgBa(r)Par}

To prove items (a’) and (b"), just use thmesults of Theorem 1(a) to replace all
steps in the proofs of items (a) and (b). For example, Theorem 1(a) implies that
the first term of (A13) isO,(1) and (A14) implies that the second term of (A13) is
op(T~2%). Therefore, we have the results thaf = 0,(1) — 0,(T"2%) = O,(1) =
(1/2)(1Ba(1)?/ Jg [Ba(r)dr).

To prove item (c), using the fact as in (A14), we have

T2+ 2d 0.[2§ 1

= =
52 Vyo2Wh'’

whereo? = s2¢/AT e, e = [0,1]', andA=

T
T Yy
=1

T T o,
> Y1 X Yiq
t=1 t=1

Multiplying 7% on Z 3, we have

2d 1+2d 5 1 T2+2daé 2 2
T2, =T770 D=5 | — | B —5)

2 52
L Vao?
2Vd0'62W1’
therefore,
T\% 11
— To=> ———. Al6
(l) 8772w (A16)

To prove item (d) of Theorem 2, we note that
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—1
1 Tox
Z; = = ( B ﬁ) ZB

thus,
T\4 1 1
(z) Zr= —— 1. (A17)

Similarly, to prove items (c’) and (d’), just use the results of Theorem 1(d) to
replace all the steps in the proofs of items (c) and (d).
To prove items (e) and (f), using the fact as in (A14), we have

T2+2d 0‘% 1

p =
52 Vyo2Ws’

whereo? = &A%, e =[0,1,0, andA,=

_ T T _
T > Yi-1 >t
=1 =1
T T, T
D Yt-1 X Y1 2ty
=1 =1 =1
T T T,
St Yty Xt
-] =1 =

We obtain results of items (e) and (f) that simply repl&Zein (A16) and (A17) by

Ws.
Similarly, to prove items (e’) and (f’), just use the result of Theorem 1(g). This
completes the proofs of Theorem 2.
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Proof of Corollary 1
By definition,

=Z5+ - (B—1)>2 (A18)

Ford < 0, the first term in the right hand-side of (A18)@,(T~2?) and the sec-
ond term isO,(7~1~3%) from Theorem 2(a) and Theorem 1(b), respectively. Given
—05 < d < 0, —2d is never to be less thanl — 3d. Therefore, we have the re-
sults thatMZ[; and Zy are asymptotically equivalent. Consequently, dox 0, the
first term in the right-hand side of (A18) i9,(1) and the second term 8, (7 1)
from Theorem 2(b) and Theorem 1(a), respectively. It follows MéiB and Zjy are
asymptotically equivalent.

We next note that

MZ; = MSB - MZ;.

It is easy to show that

wse =~ (1) ([maorar)

as in (A15). Therefore)/Z; has the asymptotics as #fy. The proofs forMZB, M2z,
MZ;, andMZ; are analogous. This completes the proofs of Corollary 1.
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