
Ch. 17 Maximum Likelihood Estimation
(July 1, 2022)

1 Introduction

The identi�cation process having led to a tentative formulation for the model, we

then need to obtain e�cient estimates of the parameters. After the parameters have

been estimated, the �tted model will be subjected to diagnostic checks. This chapter

contains a general account of likelihood method for estimation of the parameters in the

stochastic model.

Consider an ARMA (from model identi�cation) model of the form

Yt = c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt + θ1εt−1

+θ2εt−2 + ...+ θqεt−q,

with εt white noise:

E(εt) = 0

E(εtετ ) =

{
σ2 for t = τ
0 otherwise

.

This chapter explores how to estimate the value of (c, φ1, ..., φp, θ1, ..., θq, σ
2) on the

basis of observations on Y . The primary principle on which estimation will be based

is maximum likelihood estimation.

Let θ = (c, φ1, ..., φp, θ1, ..., θq, σ
2)′ denote the vector of population parameters. Sup-

pose we have observed a sample of size T , i.e. {y1, y2, ..., yT}. The approach will be

to calculate the joint probability density

fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ), (17-1)

which might loosely be viewed as the probability of having observed this particular sam-

ple. The maximum likelihood estimate (MLE) of θ is the value for which this sample
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is most likely to have been observed; that is, it is the value of θ that maximizes (17-1).

This approach requires specifying a particular distribution for the white noise process

εt. Typically we will assume that εt is Gaussian white noise: εt ∼ i.i.d. N(0, σ2).
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Ch.17 MLE 2 MLE OF A GAUSSIAN AR(1) PROCESS

2 MLE of a Gaussian AR(1) Process

The most important step to study the MLE is to evaluate the sample joint distribution

which are also called the likelihood function. In the case of identical and independent

sample, the likelihood function is just the product of marginal density of individual

sample. However, in the study of time series analysis, the dependence structure of

observation is speci�ed and it is not correct to use the product of marginal density to

evaluate the likelihood function.1 To evaluate the sample likelihood, the use of condi-

tional density is needed as seen in the following.

2.1 Evaluating the Likelihood Function Using (Scalar) Conditional Density

A stationary Gaussian AR(1) process takes the form

Yt = c+ φYt−1 + εt, (17-2)

with εt ∼ i.i.d. N(0, σ2) and |φ| < 1 (How do you know at this stage ?). For this case,

θ = (c, φ, σ2)′.

Consider the p.d.f of Y1, the �rst observations in the sample. This is a random

variable with mean and variance

E(Y1) = µ =
c

1− φ
, and

V ar(Y1) =
σ2

1− φ2
.

Since {εt}∞t=−∞ is Gaussian, Y1 is also Gaussian. That is, Y1 ∼ N(c/(1−φ), σ2/(1−φ2)).

Hence,

fY1(y1;θ) = fY1(y1; c, φ, σ
2)

=
1√

2π
√
σ2/(1− φ2)

exp

[
−1

2
· {y1 − [c/(1− φ)]}2

σ2/(1− φ2)

]
.

Next consider the distribution of the second observation Y2 conditional on the ob-

serving Y1 = y1. From (17-2),

Y2 = c+ φY1 + ε2. (17-3)

1It is to be noticed that while εt is independently and identically distributed, Yt is not independent,
however.
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Conditional on Y1 = y1 means treating the random variable Y1 as if it were the deter-

ministic constant y1. For this case, (17-3) gives Y2 as the constant (c + φy1) plus the

N(0, σ2) variable ε2. Hence,

(Y2|Y1 = y1) ∼ N((c+ φy1), σ
2),

meaning that

fY2|Y1(y2|y1;θ) =
1√

2πσ2
exp

[
−1

2
· (y2 − c− φy1)2

σ2

]
.

The joint density of observations 1 and 2 is then just

fY2,Y1(y2, y1;θ) = fY2|Y1(y2|y1;θ)fY1(y1;θ).

Similarly, the distribution of the third observation conditional on the �rst two is

fY3|Y2,Y1(y3|y2, y1;θ) =
1√

2πσ2
exp

[
−1

2
· (y3 − c− φy2)2

σ2

]
form which

fY3,Y2,Y1(y3, y2, y1;θ) = fY3|Y2,Y1(y3|y2, y1;θ)fY2,Y1(y2, y1;θ)

= fY3|Y2,Y1(y3|y2, y1;θ)fY2|Y1(y2|y1;θ)fY1(y1;θ).

In general, the value of Y1, Y2, ..., Yt−1 matter for Yt only through the value Yt−1,

and the density of observation t conditional on the preceding t−1 observations is given

by

fYt|Yt−1,Yt−2,...,Y1(yt|yt−1, yt−2, ..., y1;θ)

= fYt|Yt−1(yt|yt−1;θ)

=
1√

2πσ2
exp

[
−1

2
· (yt − c− φyt−1)2

σ2

]
.

The likelihood of the complete sample can thus be calculated as

fYT ,YT−1,YT−2,...,Y1(yT , yT−1, yT−2, ..., y1;θ) = fY1(y1;θ) ·
T∏
t=2

fYt|Yt−1(yt|yt−1;θ).

(17-4)

The log likelihood function (denoted L(θ)) is therefore

L(θ) = log fY1(y1;θ) +
T∑
t=2

log fYt|Yt−1(yt|yt−1;θ). (17-5)
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The log likelihood for a sample of size T from a Gaussian AR(1) process is seen to

be

L(θ) = −1

2
log(2π)− 1

2
log[σ2/(1− φ2)]− {y1 − [c/(1− φ)]}2

2σ2/(1− φ2)

−[(T − 1)/2] log(2π)− [(T − 1)/2] log(σ2)−
T∑
t=2

[
(yt − c− φyt−1)2

2σ2

]
.

(17-6)

2.2 Evaluating the Likelihood Function Using (Vector) Joint Density

A di�erent description of the likelihood function for a sample of size T from a Gaussian

AR(1) process is some time useful. Collect the full set of observations in a (T × 1)

vector, y ≡ (Y1, Y2, ..., YT )′. The mean of this (T × 1) vector is

E(y) =


E(Y1)
E(Y2)
.
.
.

E(YT )

 =


µ
µ
.
.
.
µ

 = µ,

where µ = c/(1− φ). The variance-covariance of y is

Ω = E[(y − µ)(y − µ)′] = σ2 1

(1− φ2)


1 φ . . . φT−1

φ 1 φ . . φT−2

. . . . . .

. . . . . .

. . . . . .
φT−1 . . . . 1

 = σ2V

where

V =
1

(1− φ2)


1 φ . . . φT−1

φ 1 φ . . φT−2

. . . . . .

. . . . . .

. . . . . .
φT−1 . . . . 1

 .
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The sample likelihood function is therefore the multivariate Gaussian density:

fY(y;θ) = (2π)−T/2|Ω−1|1/2 exp

[
−1

2
(y − µ)′Ω−1(y − µ)

]
,

with log likelihood

L(θ) = (−T/2) log(2π) +
1

2
log |Ω−1| − 1

2
(y − µ)′Ω−1(y − µ). (17-7)

It should be noted that (17-6) and (17-7) must represent the identical likelihood

function. It is easy to verify by direct multiplication that L′L = V−1, with

L =



√
1− φ2 0 . . . 0
−φ 1 0 . . 0
0 −φ 1 0 . 0
. . . . . .
. . . . . .
0 0 . . −φ 1

 .

Then (17-7) becomes

L(θ) = (−T/2) log(2π) +
1

2
log |σ−2L′L| − 1

2
(y − µ)′σ−2L′L(y − µ). (17-8)

De�ne the (T × 1) vector ỹ to be

ỹ ≡ L(y − µ)

=



√
1− φ2 0 . . . 0
−φ 1 0 . . 0
0 −φ 1 0 . 0
. . . . . .
. . . . . .
0 0 . . −φ 1




Y1 − µ
Y2 − µ
Y3 − µ
.
.

YT − µ



=



√
1− φ2(Y1 − µ)

(Y2 − µ)− φ(Y1 − µ)
(Y3 − µ)− φ(Y2 − µ)

.

.
(YT − µ)− φ(YT−1 − µ)



=



√
1− φ2[Y1 − c/(1− φ)]

Y2 − c− φY1
Y3 − c− φY2

.

.
YT − c− φYT−1

 .
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The last term in (17-8) can thus be written

1

2
(y − µ)′σ−2L′L(y − µ) =

[
1

2σ2

]
ỹ′ỹ

=

[
1

2σ2

]
(1− φ2)[Y1 − c/(1− φ)]2

+

[
1

2σ2

] T∑
t=2

(Yt − c− φYt−1)2.

The middle term in (17-8) is similarly

1

2
log |σ−2L′L| =

1

2
log{σ−2T · |L′L|}

= −1

2
log σ2T +

1

2
log |L′L|

= −T
2

log σ2 +
1

2
log{|L′||L|} (since L is triangular)

= −T
2

log σ2 + log |L|

= −T
2

log σ2 +
1

2
log(1− φ2).

Thus equation (17-6) and (17-7) are just two di�erent expressions for the same magni-

tude. Either expression accurately describes the log likelihood function.

2.3 Exact Maximum Likelihood Estimators for the Gaussian AR(1) Process

The MLE θ̂ is the value for which (17-6) is maximized. In principle, this requires

di�erentiating (17-6) with respect to c, φ and σ2 and setting the derivatives equal to

zero, we obtain

c = [2 + (T − 2)(1− φ)]−1

[
Y1 + (1− φ)

T−1∑
t=2

Yt + YT

]
,

[(Y1 − c)2 − (1− φ2)−1σ2]φ+
T∑
t=2

[(Yt − c)− φ(Yt−1 − c)](Yt−1 − c) = 0,

σ2 = T−1

{
(Y1 − c)2(1− φ2) +

T∑
t=1

[(Yt − c)− φ(Yt−1 − c)]2
}
.

In practice, when an attempt is made to carry this out, the result is a system of

nonlinear equation in θ and (Y1, Y2, ..., YT ) for which there is no simple solution for θ
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in terms of (Y1, Y2, ..., YT ). Maximization of (17-6) thus requires iterative or numerical

procedure described in p.21 of Chapter 3.

2.4 Conditional Maximum Likelihood Estimation

An alternative to numerical maximization of the exact likelihood function is to regard

the value of y1 as deterministic (that is, fY1(y1) = 1) and maximize the likelihood

conditioned on the �rst observation

fYT ,YT−1,YT−2,..,Y2|Y1(yT , yT−1, yT−2, ..., y2|y1;θ) =
T∏
t=2

fYt|Yt−1(yt|yt−1;θ),

the objective then being to maximize

L∗(θ) = −[(T − 1)/2] log(2π)− [(T − 1)/2] log(σ2)−
T∑
t=2

[
(yt − c− φyt−1)2

2σ2

]

= −[(T − 1)/2] log(2π)− [(T − 1)/2] log(σ2)−
T∑
t=2

[
ε2t

2σ2

]
. (17-9)

Maximization of (17-9) with respect to c and φ is equivalent to minimization of

T∑
t=2

(yt − c− φyt−1)2 = (y −Xβ)′(y −Xβ), (17-10)

which is achieved by an ordinary least square (OLS) regression of yt on a constant and

its own lagged value, where

y =


y2
y3
.
.
.
yT

 , X =


1 y1
1 y2
. .
. .
. .
1 yT−1

 , and β =

[
c
φ

]
.

The conditional maximum likelihood estimates of c and φ are therefore given by[
ĉ

φ̂

]
=

[
T − 1

∑T
t=2 yt−1∑T

t=2 yt−1
∑T

t=2 y
2
t−1

]−1 [ ∑T
t=2 yt−1∑T
t=2 yt−1yt

]
.

The conditional maximum likelihood estimator of σ2 is found by setting

∂L∗

∂σ2
=
−(T − 1)

2σ2
+

T∑
t=2

[
(yt − c− φyt−1)2

2σ4

]
= 0 (17-11)
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or

σ̂2 =
T∑
t=2

[
(yt − ĉ− φ̂yt−1)2

T − 1

]
=

∑T
t=2 ε̂

2
t

T − 1
.

It is important to note if you have a sample of size T to estimate an AR(1) process by

conditional MLE, you will only use T − 1 observation of this sample.

2.5 An Example of R code for Conditional Maximum Likelihood AR(1)
Estimation

The followings are the R code for estimation of AR(1) process provided by Huo, Wen
Wei at NSYSU.

1 # Simulat the AR(1) without mean process dataset

2 data <- arima.sim(list(order = c(1,0,0), ar = 0.3), n = 1500)

3 # Set y_lag as independent variable ; y as dependent variable

4 y_lag <- data [1: length(data)-1] ; y <- data [2: length(data)]

5 # Set the initial value for parameters

6 params <- matrix(c(NA,NA),2,1) ; params [1,1] <- 0.2 ; params [2,1] <- 0.2

7 # Set a condition to stop the program if it equal maximum number of iterations

8 iteration <- 1 ; max_iter <- 100

9 # Using loop to approximate conditional maximum likelihood of AR(1) without mean process

10 repeat{

11 phi_1 <- params [1,1] ; sigma_sq <- abs(params [2 ,1])

12 res <- y-phi_1*y_lag # residuals form

13 A <- sum((res)*y_lag)/sigma_sq

14 B <- -0.5*(length(data)-1)/sigma_sq+0.5*sum((res )^2)/sigma_sq^2

15 C <- -sum(y_lag ^2)/sigma_sq

16 D <- E <- -sum((res)*y_lag)/sigma_sq^2

17 F <- 0.5*(length(data)-1)/sigma_sq^2-sum((res )^2)/sigma_sq^3

18 # The Newton -Raphson Method

19 # Some idea about newton method 's code learn from statistics textbook ISBN :9789571188454

20 params <- (-solve(matrix(c(C,D,E,F),2,2))%*%matrix(c(A,B),2,1))+ params

21 # Set a condition to restrict the iterations times

22 iteration <- iteration + 1

23 if(iteration == max_iter)

24 { break }

25 # Compute the log -liklihood

26 p <- length(params) - 1

27 L <- -(length(data)-1)/2*log(2*pi)-(length(data)-1)/2*log(params [2 ,1])

28 -1/(2*params [2 ,1])*sum((res )^2)

29 # Save the output from the program

30 coefficients <- (list("AR(1)" <- round(params [1], digits = 3) ,

31 "sigma_sq" <- round(params [2], digits = 3) ,

32 "total_iter" <- iteration ,

33 "log -liklihood" <- L))

34 }

35 coefficients
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3 MLE of a Gaussian AR(p) Process

This section discusses the estimation of a Gaussian AR(p) process,

Yt = c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt,

where all the roots of 1− φ1L− φ2L
2 − · · · − φpLp = 0 lie outside the unit circle and

εt ∼ i.i.d. N(0, σ2). In this case, the vector of population parameters to be estimated

is θ = (c, φ1, φ2, ..., φp, σ
2)′.

3.1 Evaluating the Likelihood Function

We �rst collect the �rst p observation in the sample (Y1, Y2, ..., Yp) in a (p× 1) vector

yp, which has mean vector µp with each element

µ =
c

1− φ1 − φ2 − ...− φp

and variance-covariance matrix is given by

σ2Vp =



γ0 γ1 γ2 . . . γp−1
γ1 γ0 γ1 . . . γp−2
γ2 γ1 γ0 . . . γp−3
. . . . . . .
. . . . . . .
. . . . . . .

γp−1 γp−2 γp−3 . . . γ0


.

The density of the �rst p observations is then

fYp,Yp−1,...,Y1(yp, yp−1, ..., y1;θ)

= (2π)−p/2|σ−2V−1p |1/2 exp

[
− 1

2σ2
(yp − µp)′V−1p (yp − µp)

]
= (2π)−p/2(σ−2)p/2|V−1p |1/2 exp

[
− 1

2σ2
(yp − µp)′V−1p (y − µp)

]
.

For the remaining observations in the sample (Yp+1, Yp+2, ..., YT ), conditional on the

�rst t− 1 observations, the tth observations is Gaussian with mean

c+ φ1yt−1 + φ2yt−2 + ...+ φpyt−p,
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and variance σ2. Only the p most recent observations matter for this distribution.

Hence for t > p

fYt|Yt−1,...,Y1(yt|yt−1, ..., y1;θ)

= fYt|Yt−1,..,Yt−p(yt|yt−1, .., yt−p;θ)

=
1√

2πσ2
exp

[
−(yt − c− φ1yt−1 − φ2yt−2 − ...− φpyt−p)2

2σ2

]
.

The likelihood function for the complete sample is then

fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ) = fYp,Yp−1,...,Y1(yp, yp−1, ..., y1;θ)

×
T∏

t=p+1

fYt|Yt−1,..,Yt−p(yt|yt−1, .., yt−p;θ),

and the loglikelihood is therefore

L(θ) = log fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ)

= −p
2

log(2π)− p

2
log(σ2) +

1

2
log |V−1p | −

1

2σ2
(yp − µp)′V−1p (y − µp)

−T − p
2

log(2π)− T − p
2

log(σ2)

−
T∑

t=p+1

(yt − c− φ1yt−1 − φ2yt−2 − ...− φpyt−p)2

2σ2
.

Maximization of this exact log likelihood of an AR(p) process must be accomplished

numerically.

3.2 Conditional Maximum Likelihood Estimates

The log of the likelihood conditional on the �rst p observation assume the simple form

L∗(θ) = log fYT ,YT−1,..,Yp+1|Yp,...,Y1(yT , yT−1, ..yp+1|yp, ..., y1;θ)

= −T − p
2

log(2π)− T − p
2

log(σ2)

−
T∑

t=p+1

(yt − c− φ1yt−1 − φ2yt−2 − ...− φpyt−p)2

2σ2

= −T − p
2

log(2π)− T − p
2

log(σ2)−
T∑

t=p+1

ε2t
2σ2

. (17-12)
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The value of c, φ1, ..., φp that maximizes (17-11) are the same as those that minimize

T∑
t=p+1

(yt − c− φ1yt−1 − φ2yt−2 − ...− φpyt−p)2.

Thus, the conditional MLE of these parameters can be obtained from anOLS regression

of yt on a constant and p of its own lagged values. The conditional MLE estimator of

σ2 turns out to be the average squared residual from this regression:

σ̂2 =
1

T − p

T∑
t=p+1

(yt − ĉ− φ̂1yt−1 − φ̂2yt−2 − ...− φ̂pyt−p)2.

It is important to note if you have a sample of size T to estimate an AR(p) process

by conditional MLE, you will only use T − p observation of this sample.
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4 MLE of a Gaussian MA(1) Process

This section discusses the estimation of a Gaussian MA(1) process,

Yt = µ+ εt + θεt−1 (17-13)

where |θ| < 1 and εt ∼ i.i.d. N(0, σ2). In this case, the vector of population parameters

to be estimated is θ = (µ, θ, σ2)′.

4.1 Evaluating the Likelihood Function Using (Vector) Joint Density

We collect the observations in the sample (Y1, Y2, ..., YT ) in a (T × 1) vector y which

has mean vector µ with each element µ and variance-covariance matrix given by

Ω = E(y − µ)(y − µ)′ = σ2



(1 + θ2) θ 0 . . . 0
θ (1 + θ2) θ . . . 0
0 θ (1 + θ2) . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 . . . (1 + θ2)


.

The likelihood function is then

fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ) = (2π)−T/2|Ω|−1/2 exp

[
−1

2
(y − µ)′Ω−1(y − µ)

]
.

Using triangular factorization of the variances covariance matrix, the likelihood

function can be written

fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ) = (2π)−T/2

[
T∏
t=1

dtt

]−1/2
exp

[
−1

2

T∑
t=1

ỹ2t
dtt

]
and the loglikelihood is therefore

L(θ) = log fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ)

= −T
2

log(2π)− 1

2

T∑
t=1

log(dtt)−
1

2

T∑
t=1

ỹ2t
dtt
,

where

dtt = σ2 1 + θ2 + θ4 + ...+ θ2t

1 + θ2 + θ4 + ...+ θ2(t−1)
,
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and

ỹt = yt − µ−
θ[1 + θ2 + θ4 + ...+ θ2t]

1 + θ2 + θ4 + ...+ θ2(t−1)
ỹt−1.

Maximization of this exact log likelihood of an MA(1) process must be accom-

plished numerically.

4.2 Evaluating the Likelihood Function Using (Scalar) Conditional Density

Consider the p.d.f of Y1, Y1 = µ+ ε1 + θε0, the �rst observations in the sample. This

is a random variable with mean and variance

E(Y1) = µ

V ar(Y1) = σ2(1 + θ2).

Since {εt}∞t=−∞ is Gaussian, Y1 is also Gaussian. Hence,

Y1 ∼ N(µ, (1 + θ2)σ2)

or

fY1(y1;θ) = fY1(y1;µ, θ, σ
2)

=
1√

2π
√
σ2(1 + θ2)

exp

[
−1

2
· (y1 − µ)2

σ2(1 + θ2)

]
.

Next consider the distribution of the second observation Y2 conditional on the "ob-

serving" Y1 = y1. From (17-12),

Y2 = µ+ ε2 + θε1. (17-14)

Following the method in calculating the joint density of the complete sample of AR

process. Conditional on Y1 = y1 means treating the random variable Y1 as if it were

the deterministic constant y1. For this case, (17-13) gives Y2 as the constant (µ+ θε1)

plus the N(0, σ2) variable ε2. However, it is not the case since observing Y1 = y1

give no information on the realization of ε1 because you can not distinguish ε1 from

ε0 even after the �rst observation on y1.
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4.2.1 Conditional Maximum Likelihood Estimation

To make the conditional density fY2|Y1(y2|y1;θ) feasible,2 we must impose an additional

assumption such as that we know with certainty that ε0 = 0.

Suppose that we know for certain that ε0 = 0. Then

(Y1|ε0 = 0) ∼ N(µ, σ2)

or

fY1|ε0=0(y1|ε0 = 0;θ) =
1√

2πσ2
exp

[
−1

2
· (y1 − µ)2

σ2

]
=

1√
2πσ2

exp

[
− ε21

2σ2

]
.

Moreover, given observation of y1, the value of ε1 is then known with certainty as well:

ε1 = y1 − µ.

Hence

(Y2|Y1 = y1, ε0 = 0) ∼ N((µ+ θε1), σ
2),

meaning that

fY2|Y1,ε0=0(y2|y1, ε0 = 0;θ) =
1√

2πσ2
exp

[
−1

2
· (y2 − µ− θε1)2

σ2

]
=

1√
2πσ2

exp

[
− ε22

2σ2

]
.

Since ε1 is know with certainty, ε2 can be calculated from

ε2 = y2 − µ− θε1.

Proceeding in this fashion, it is clear that given knowledge that ε0 = 0, the full sequence

{ε1, ε2, ..., εT} can be calculated from {y1, y2, ..., yT} by iterating on

εt = yt − µ− θεt−1

for t = 1, 2, ..., T , starting from ε0 = 0. The condition density of the tth observation

can then be calculated as

fYt|Yt−1,Yt−2,...,Y1,ε0=0(yt|yt−1, yt−2, ..., y1, ε0 = 0;θ) = fYt|εt−1(yt|εt−1;θ)

=
1√

2πσ2
exp

[
− ε2t

2σ2

]
.

2It means to make the information of observation on Y1 = y1 useful.
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The likelihood (conditional on ε0 = 0) of the complete sample can thus be calculated

as the product of these individual densities:

fYT ,YT−1,YT−2,...,Y1|ε0=0(yT , yT−1, yT−2, ..., y1|ε0 = 0;θ)

= fY1|ε0=0(y1|ε0 = 0;θ) ·
T∏
t=2

fYt|Yt−1,Yt−2,...,Y1,ε0=0(yt|yt−1, yt−2, ..., y1, ε0 = 0;θ).

The conditional log likelihood function (denoted L∗(θ)) is therefore

L∗(θ) = log fYT ,YT−1,YT−2,...,Y1|ε0=0(yT , yT−1, yT−2, ..., y1|ε0 = 0;θ)

= −T
2

log(2π)− T

2
log(σ2)−

T∑
t=1

ε2t
2σ2

. (17-15)

In practice, the data implied in the log likelihood function can be calculated from

the iteration:

(Yt − µ) = (1 + θL)εt

and then we obtain (the reason why invertibility is needed) for t = 1, 2, . . . , T,

εt = (1 + θL)−1(Yt − µ)

= (Yt − µ)− θ(Yt−1 − µ) + θ2(Yt−2 − µ)− ...+ (−1)t−1θt−1(Y1 − µ) + (−1)tθtε0,

and setting εi = 0 for i ≤ 0, i.e.

ε0 = 0;

ε1 = (Y1 − µ);

ε2 = (Y2 − µ)− θ(Y1 − µ) = (Y2 − µ)− θε1;

.

.

.

εT = (YT − µ)− θ(YT−1 − µ) + θ2(YT−2 − µ)− ...+ (−1)T−1θT−1(Y1 − µ).

Although it is simple to program this iteration by computer, the log likelihood

function is a fairly complicated nonlinear function of µ and θ, so that an analytical

expression for the MLE of µ and θ is not readily calculated. Hence even the conditional

MLE for an MA(1) process must be found by numerical optimization.

It is important to note if you have a sample of size T to estimate an MA(1) pro-

cess by conditional MLE, you will use all the T observation of this sample since it is

conditional on ε0 = 0 and not on �rst observation Y1.
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4.3 An Example of R code for Conditional Maximum Likelihood MA(1)
Estimation

The followings are the R code for estimation of MA(1) process provided by Huo, Wen
Wei at NSYSU.

1 # Simulat the MA(1) without mean process dataset

2 data <- arima.sim(list(order = c(0,0,1), ma = 0.3), n = 1500)

3 # Set the initial value for parameters

4 params <- matrix(c(NA,NA),2,1) ; params [1,1] <- 0.2 ; params [2,1] <- 0.2

5 # Set a condition to stop the program if it equal maximum number of iterations

6 breakout <- FALSE ; iteration <- 1 ; max_iter <- 100

7 # Using loop to approximate conditional maximum likelihood of MA(1) without mean process

8 repeat{

9 rs <- vector ()

10 l <- length(data)

11 theta <- params [1,1] ; sigma_sq <- abs(params [2,1])

12

13 for(n in (2:l)) # Using initial valus to get first set of residuals

14 {

15 rs[1] <- data [1]

16 rs[n] <- (data[n]) - theta*rs[n-1]

17 output <- list("res" = rs)

18 res <- as.matrix(output$res)

19 }

20 A <- (sum(res*c(0,res [1:c(length(data ) -1)])))/sigma_sq

21 B <- (-length(data)/sigma_sq)/2 + 0.5*sum(res^2)/sigma_sq^2

22 C <- sum((-c(0,res[1:c(length(data )-1)])*c(0,res [1:c(length(data ) -1)])))/sigma_sq

23 D <- E <- -sum((res)*c(0,res[1:c(length(data ) -1)]))/sigma_sq^2

24 F <- (length(data)/sigma_sq^2)/2 - sum((res )^2)/sigma_sq^3

25 # The Newton -Raphson Method

26 # Some idea about newton method 's code learn from statistics textbook ISBN :9789571188454

27 params <- (-solve(matrix(c(C,D,E,F),2,2))%*%matrix(c(A,B),2,1))+ params

28 # Set a condition to restrict the iterations times

29 iteration <- iteration + 1

30 if(iteration == max_iter)

31 { break }

32 # Compute the log -liklihood

33 L <- -length(data)/2*log(2*pi)-length(data)/2*log(params [2,1])-1/(2*params [2,1])*sum(res^2)

34 # Save the output from the program

35 coefficients <- (list("MA(1)" <- round(params [1] , digits = 3) ,

36 "sigma_sq" <- round(params [2] , digits = 3) ,

37 "total_iter" <- iteration ,

38 "log -liklihood" <- L))

39 }

40 coefficients
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5 MLE of a Gaussian MA(q) Process

This section discusses the estimation of a Gaussian MA(q) process,

Yt = µ+ εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q (17-16)

where all the roots of 1 + θ1L + · · · + θqL
q = 0 lie outside the unit circle and εt ∼

i.i.d. N(0, σ2). In this case, the vector of population parameters to be estimated is

θ = (µ, θ1, θ2, .., θq, σ
2)′.

5.1 Evaluating the Likelihood Function

The observations in the sample (Y1, Y2, ..., YT ) in a (T×1) vector y which has mean vec-

tor µ with each element µ and variance-covariance matrix given by Ω. The likelihood

function is then

fYT ,YT−1,...,Y1(yT , yT−1, ..., y1;θ) = (2π)−T/2|Ω|−1/2 exp

[
−1

2
(y − µ)′Ω−1(y − µ)

]
.

Maximization of this exact log likelihood of an MA(q) process must be accomplished

numerically.

5.2 Evaluating the Likelihood Function Using (Scalar) Conditional Density

Consider the p.d.f of Y1,

Y1 = µ+ ε1 + θ1ε0 + θ2ε−1 + ...+ θqε−q+1.

A simple approach is to condition on the assumption that the �rst q value of ε were

all zero:

ε0 = ε−1 = ... = ε−q+1 = 0.

Let ε0 denote the (q × 1) vector (ε1, ε−1, ..., ε−q+1)
′ . Then

(Y1|ε0 = 0) ∼ N(µ, σ2)
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or

fY1|ε0=0(y1|ε0 = 0;θ) =
1√

2πσ2
exp

[
−1

2
· (y1 − µ)2

σ2

]
=

1√
2πσ2

exp

[
− ε21

2σ2

]
. (Because ε0 = ε−1 = ... = ε−q+1 = 0)

Next consider the distribution of the second observation Y2 conditional on the "ob-

serving" Y1 = y1. From (15),

Y2 = µ+ ε2 + θ1ε1 + θ2ε0 + ...+ θqε−q+1. (17-17)

Moreover, given observation of y1, the value of ε1 is then known with certainty as well:

ε1 = y1 − µ and ε0 = ε−1 = ... = ε−q+2 = 0.

Hence

(Y2|Y1 = y1, ε0 = 0) ∼ N((µ+ θ1ε1), σ
2),

meaning that

fY2|Y1, ε0=0(y2|y1, ε0 = 0;θ) =
1√

2πσ2
exp

[
−1

2
· (y2 − µ− θ1ε1)2

σ2

]
=

1√
2πσ2

exp

[
− ε22

2σ2

]
.

Since ε1 is know with certainty, ε2 can be calculated from

ε2 = y2 − µ− θ1ε1.

Proceeding in this fashion, it is clear that given knowledge that ε0 = 0, the full

sequence {ε1, ε2, ..., εT} can be calculated from {y1, y2, ..., yT} by iterating on

εt = yt − µ− θ1εt−1 − θ2εt−2 − ...− θqεt−q

for t = 1, 2, ..., T , starting from ε0 = 0. The likelihood (conditional on ε0 = 0) of the

complete sample can thus be calculated as the product of these individual densities:

fYT ,YT−1,YT−2,...,Y1|ε0=0(yT , yT−1, yT−2, ..., y1|ε0 = 0;θ)

= fY1|ε0=0(y1|ε0 = 0;θ) ·
T∏
t=2

fYt|Yt−1,Yt−2,...,Y1,ε0=0(yt|yt−1, yt−2, ..., y1, ε0 = 0;θ).
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The conditional log likelihood function (denoted L∗(θ)) is therefore

L∗(θ) = log fYT ,YT−1,YT−2,...,Y1|ε0=0(yT , yT−1, yT−2, ..., y1|ε0 = 0;θ)

= −T
2

log(2π)− T

2
log(σ2)−

T∑
t=1

ε2t
2σ2

. (17-18)

It is important to note if you have a sample of size T to estimate an MA(q) process

by conditional MLE, you will also use all the T observation of this sample.
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6 MLE of a Gaussian ARMA(p, q) Process

This section discusses a Gaussian ARMA(p, q) process,

Yt = c+ φ1Yt−1 + φ2Yt−2 + ...+ φpYt−p + εt + θ1εt−1 + θ2εt−2 + ...+ θqεt−q,

where all the roots of 1−φ1L− · · ·−φpLp = 0 and 1 + θ1L+ · · ·+ θqL
q = 0 lie outside

unit circle and εt ∼ i.i.d. N(0, σ2). In this case, the vector of population parameters

to be estimated is θ = (c, φ1, φ2, ..., φp, θ1, θ2, ..., θq, σ
2)′.

6.1 Conditional maximum Likelihood estimates

The approximation to the likelihood function for an autoregrssion conditional on initial

value of the y′s. The approximation to the likelihood function for a moving average pro-

cess conditioned on initial value of the ε's. A common approximation to the likelihood

function for an ARMA(p, q) process conditions on both y's and ε's.

The (p+ 1)th observation is

Yp+1 = c+ φ1Yp + φ2Yp−1 + ...+ φpY1 + εp+1 + θ1εp + ...+ θqεp−q+1.

Conditional on Y1 = y1, Y2 = y2, ..., Yp = yp and setting εp = εp−1 = ... = εp−q+1 = 0

we have

Yp+1 ∼ N((c+ φ1Yp + φ2Yp−1 + ...+ φpY1), σ
2).

Then the conditional likelihood calculated from t = p+ 1, ..., T is

L∗(θ) = log f(yT , yT−1, ..yp+1|yp, ..., y1, εp = εp−1 = ... = εp−q+1 = 0;θ)

= −T − p
2

log(2π)− T − p
2

log(σ2)−
T∑

t=p+1

ε2t
2σ2

, (17-19)

where the sequence {εp+1, εp+2, ..., εT} can be calculated from {y1, y2, ..., yT} by iterat-

ing on

εt = Yt − c− φ1Yt−1 − φ2Yt−2 − ...− φpYt−p − θ1εt−1 − θ2εt−2 − ...− θqεt−q,

t = p+ 1, p+ 2, ..., T.

It is important to note if you have a sample of size T to estimate an ARMA(p, q)

process by conditional MLE, you will only use the T − p observation of this sample.
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From (17-9),(17-11),(17-14),(17-17), and (17-18) we see that all the conditional log-

likelihood function take a concise form

−T
∗

2
log(2π)− T ∗

2
log(σ2)−

T∑
t=t∗

[
ε2t

2σ2

]
,

where T ∗ and t∗ is the appropriate total and �rst observations used, respectively. The

solution to the conditional log-likelihood function θ̂ is also called the conditional

sums of squared estimator, CSS, denoted as θ̂CSS.
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7 A Short Tour to Numerical Optimization

We consider the general problem of maximizing a function of several variables:

maximizeθ F (θ),

where F (θ) may be log-likelihood or some other function. An e�cient means of solving

most nonlinear maximization problem is by an iterative algorithm:

�Beginning from initial value θ0, at entry to iteration t, if θt, is not the

optimal value for θ, compute direction vector ∆t, and step size λt, then

θt+1 = θt + λt∆t.
′′

The most commonly used algorithm are gradient method and template for most gra-

dient method in common use is the Newton's method.

The basis for Newton's method is a linear Taylor series approximation. Expanding

the �rst-order conditions,

∂F (θ)

∂θ
(which may have nonlinear solution)

in a linear Taylor series around an arbitrary θ0 yield

∂F (θ)

∂θ
' g0 + H0(θ − θ0),

where the superscript indicates that the term is evaluated at θ0 and g and H are the

gradient vector and Hessian matrix, respectively. If F (θ) attains a local maximum at

θ1, then we must necessarily have ∂F (θ)
∂θ
|θ1 = 0. Solving for θ1, we obtain

θ1 = θ0 −H−10 g0.

If now we approximate ∂F (θ)
∂θ

with another linear function, by again applying Taylor's

expansion in a neighborhood of θ1,
3 and then repeat the same process as before with

θ1 used instead of θ0, we obtain

θ2 = θ1 −H−11 g1.

Further repetitions of this process lead to the iteration,

θi+1 = θi −H−1i gi, i = 0, 1, 2, ...

3It is noted that here, for a given initial θ0, we can obtain the value of θ1.
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The iterations stop at the value of θ∗ such that g∗ ≡ ∂F (θ)
∂θ
|θ∗ = 0. Under this

circumstance, θi = θi+1 = θ∗ and therefore gi+1 = gi = 0. In this case, λt = 1 and

∆t = −H−1t gt.

The Newton-Raphson method requires �nding the inverse of the Hessian matrix H

at each iteration. This can be computationally involved, especially if the number of

the variables in θ is large. Furthermore, the method may fail to converge if Hi is not

positive de�nite. This can occur, for example, when θi is far from the location θ∗ of

the true maximum. If, however, the initial point θ0, is close to θ∗, then convergence

occurs at a rapid rate.
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8 Statistical Inference with MLE

8.1 Asymptotic Standard Errors for MLE

Although MLE's enjoy several optimum �nite sample properties, their asymptotic prop-

erties provide the main justi�cation for the almost universal appeal to the method of

maximum likelihood. As argued, under certain regularity conditions, MLE can be

shown to be consistent, asymptotically normal and asymptotically e�cient.

If the sample size T is su�ciently large, it often turns out that the distribution of

the MLE θ̂ can be well approximated by the following distribution:

√
T (θ̂T − θ)

L−→ N(0, (IT (θ))−1),

where θ denote the true parameter vector. The matrix IT (θ) is known as the informa-

tion matrix and can be estimated in either of three ways.

8.1.1 Estimating the Asymptotic Variance of the MLE, θ is k × 1

The asymptotic covariance matrix of the MLE is a matrix of parameters that must be

estimated. The followings are three methods to estimate this variance.

(a). If the form of the expected value of the second derivative of the log-likelihood is

known, we can evaluate the information matrix at θ̂ to estimate the covariance

matrix for the MLE,

̂[IT (θ)]−1 =

{
−E

[
∂2 lnL(θ)

∂θ∂θ′

]
θ=θ̂

}−1
.

�

If the expected value of the second derivative of the log-likelihood is complicated,

two alternative estimators is

(b).

˜[IT (θ)]−1 =

{
−

[
∂2 lnL(θ̂)

∂θ̂ ∂θ̂′

]}−1
, (17-20)

�

and
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(c). the BHHH estimator

[IT (θ)]−1 =

[
n∑
i=1

ĝiĝ
′
i

]−1
, where ĝi =

∂ ln f(yt|yt−1, yt−2, ...;θ)

∂θ

∣∣∣∣
θ=θ̂

is k × 1.

�

Example.
Let the log likelihood be

lnL(θ) = −1.5θ11 − 2θ22.

We can easily see analytically for this example that the MLE is given by θ̂ = (0, 0)′.

For this case, one can see analytically that

∂2 lnL(θ)

∂θ∂θ′
=

[
−3 0
0 −4

]
,

and so results (17-19) suggest that the variance of the MLE θ̂2 can be approximated

by 1/4. TheMLE for this example was θ̂2 = 0. Thus an approximated 95% con�dence

interval for θ2 is given by

0± 2

√
1

4
= ±1.

8.2 CSS estimators will be equivalent to MLE.

For an large number of observations the CSS estimators will be equivalent to MLE,

i.e.

θ̂CSS − θ̂MLE
p−→ 0.

See Pierce (1971), " Least square estimation of a mixed autoregressive-moving average

process", Biometrika 58: pp. 299-312.
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9 Bias in the OLS (CSS) Estimation of AR(1) Model

For the AR(1) model, Yt = c+φYt−1 + εt, the OLS or CSS estimators (see eq. (17.11))

will be

φ̂ =

∑T
t=2(Yt − Ȳ1)(Yt−1 − Ȳ2)∑T

t=2(Yt−1 − Ȳ2)2
, (17-21)

with Ȳ1 =
∑T

t=2 Yt
T−1 and Ȳ2 =

∑T−1
t=1 Yt
T−1 . Kendall (1954) show that

E(φ̂) ≈ φ− 1 + 3φ

T − 1
,

therefore φ̂ is bias in �nite sample.4 With relatively small T and large φ, which are

typical of macroeconomic time series, the �rst order bias could be quite large.

9.1 Bias-Reduction

9.1.1 Kendall(1954)

Replacing E(φ̂) with the estimate φ̂, leads to Kendall's bias-corrected estimate:5

φ̂K =
T − 1

T − 4
φ̂+

1

T − 4
.

9.1.2 Andrews (1993)

The condition of median-unbiasedness is often more useful than that of mean-unbiasedness

when the parameter space is bounded or when the distribu- tions of estimators are

skewed and/or kurtotic. When the parameter space is bounded and closed and esti-

mators take values in the parameter space, it is impossible to have a mean-unbiased

estimator because all estimators are biased at extreme boundary point.....

9.1.3 Rudebusch (1992)

Although the OLS estimates of the coe�cients of the TS model are consistent and

asymptotically normal, they are biased in small samples because of the presence of

4The bias can be seen from the following: Let X = (Y0, Y1, ..., YT−1)
′, and that E(εtX) =

EXE(εt|X). Because E(εtX) 6= 0, hence E(εt|X) 6= 0, which violate the requirement of assump-
tion for unbiasedness in p.11 of Ch.7.

5Such that E(φ̂K) = T−1
T−4

(
φ− 1+3φ

T−1

)
+ 1

T−4 = φ.
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lagged dependent variables. An arguably more plausible TS alternative would correct

the coe�cient estimates for this bias.

The small-sample bias of the OLS estimates of autoregressive model coe�cients is

most easily documented for an AR(1) process. The middle column of Table 8 provides

the median value of the OLS estimate ρ̂1, based on repeated samples from the �rst-

order process Yt = µ+ γt+ ρ1Yt−1 + εt, for a variety of values of ρ1 (with µ = γ = 0).

This estimate is downwardly biased over a wide range of ρ1, with the deviation of

the median estimate from the true value being particularly pronounced for values of

ρ1 that are just less than one. The third column of Table 8 gives the probability of

obtaining an OLS estimate equal to or greater than ρ1; these probabilities also indicate

that a given estimate is more likely to be below rather than above the true value of

the autoregressive parameter.

Based on Table 8, it is likely that the OLS estimation employed in a TS model ρ̂1

would be lower than the true value of ρ1. A more plausible TS model of the data-

generating process would correct for this downward small-sample bias.

Rudebusch I de�ne the `median-unbiased' TS model as the one that, across repeated

simulations, has a median OLS estimate of each parameter that is equivalent to the

actual sample estimate of that parameter. Formally, let the vector of median-unbiased

TS model coe�cients be denoted as ΦMUE = (µ, γ, ρ1); across repeated samples the

median OLS estimates of these coe�cients is median (Φ̂MUE). Let Φ̂s be the vector

of OLS parameters estimated from the true data sample under consideration (which

formed the parameters of the TS data-generating processes2). The vector (ΦMUE) is

de�ned by the equality of median (Φ̂MUE = Φ̂s); that is, the median-unbiased model

has median OLS parameter estimates equal to the sample estimates.
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End of this Chapter
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