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Panel threshold model with covariate-dependent
thresholds and unobserved individual-specific

threshold effects

Abstract

This article introduces a panel threshold model with covariate-dependent and time-

varying thresholds and unobserved individual-specific threshold effects (PTCDI). We de-

velop methods for estimation and inference for threshold parameters in the proposed

PTCDI model by employing the correlated random effects (CRE) device. We also suggest

test statistics for linearity, threshold constancy, unobserved individual-specific threshold

effects, and for determining the number of thresholds. We derive the asymptotic proper-

ties of the proposed estimator in the small-threshold-effect framework, and establish the

limiting distributions of the suggested test statistics. We also investigate the extension

to dynamic panels and show that both the static and dynamic models can be handled

uniformly in the CRE framework. Monte Carlo simulation results indicate that the esti-

mation, inference and testing procedures have desired performance in finite samples. The

model is illustrated with two empirical applications to the relationship between cash flow

and investment and the nexus between inflation and economic growth.

Keywords Panel threshold model, Multiple covariate-dependent thresholds, Unobserved

threshold effects, Testing, Cash flow/investment relationship, Inflation/economic

growth nexus.

JEL Classification C12, C13, C15, C33.

1 Introduction

Panel threshold models have become increasingly popular in applied econometric studies over

the past two decades, due mainly to that they can capture many essential stylized features

of modern economics including asymmetries, multiple equilibria, and nonlinear effects (e.g.,

Hansen, 2000). However, classical threshold models often assume the thresholds being con-

stant, which has been criticized by the recent literature as the assumption is very restrictive

in applications. Thus, a number of authors have extended threshold models by allowing for

a nonconstant threshold (e.g., Yang and Su, 2018; Zhu et al., 2019; Yu and Fan, 2021; Yang

et al., 2021a; Yang, 2020, 2021; Lee et al., 2021); while these models are promising, they are

often limited to a cross-sectional data or time-series data modelling,1 and are restricted to one

1Yang et al. (2021b) extend the kink threshold model of Hansen (2017) to a panel framework with one
covariate-dependent threshold.



nonconstant threshold setting; furthermore, classical panel threshold models assume that the

unobserved individual effects are the same across the subregimes and the disturbance term

does not experience a threshold effect, which may be not suitable in many applications. If

they are violated, the traditional estimation method based on the within-group transforma-

tion can be inconsistent, as illustrated by Yu et al. (2022).

In this article, we fill this gap in the threshold literature by proposing a panel thresh-

old model with multiple covariate-dependent and time-varying thresholds and unobserved

individual-specific threshold effects (PTCDI), in which we allow for unobserved individual-

specific threshold effects and a covariate-dependent and time-varying threshold modeled as a

function of informative covariates shaping the threshold. Our model can be regarded as an

extension of Yu et al. (2022), who extend Hansen’s (1999) panel threshold model by allowing

for unobserved individual-specific threshold effects, to a time-varying threshold framework.

This article first focuses on estimating the model, inference for threshold parameters, and

testing for threshold effect and threshold constancy in the proposed model with one covariate-

dependent and time-varying threshold and unobserved individual-specific threshold effects,

and then discusses the extension to multiple covariate-dependent and time-varying thresholds.

In estimating the proposed model, we face two important difficulties. First, as discussed by

Yu et al. (2022), the allowance for unobserved individual-specific threshold effects implies the

intercepts in the subregimes can be different, and hence, unobserved individual fixed effects

can not be eliminated using first differencing or the within-group transformation. This leads

to the difficulty in estimating panel models with unobserved individual-specific threshold

effects. Second, although the covariate-dependent and time-varying threshold has the advan-

tage of capturing a time-varying reference for assessing the relative magnitude of an economic

variable in applications (e.g., Dueker et al., 2013; Yang and Su, 2018; Lee et al., 2021; Yu and

Fan, 2021; Yang et al., 2021b),2 the threshold estimation based on grid search, widely used

in the classical threshold literature, is computational expensive, and even infeasible when the

dimension of informative covariates shaping the threshold is large.3

To this end, following Yu et al. (2022), we overcome the first problem by taking the cor-

related random effects (CRE) model and use Chamberlain-Mundlak CRE device to control

the endogeneity, as the involvement of unobserved individual-specific threshold effects results

2The covariate-dependent threshold setting can also be treated as a normalization of the classical threshold
model with a linear index (e.g., Seo and Linton, 2007; Lee et al., 2021).

3We thank an anonymous referee for raising the issue of selecting the (optimal) set of covariates, which is
important as the inappropriate choice of the covariates affecting the threshold can lead to biased estimates
and distorted testing results. Future research can work on this issue.
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in the failure of the traditional estimation methods such as differencing and the within-group

transformation. To overcome the computational problem, we incorporate the MCMC al-

gorithm to lighten the computational burden, and suggest an MCMC-based algorithm to

construct the confidence intervals for threshold parameters. It is worth noting that a similar

MCMC algorithm has been employed in the threshold literature (Yu and Fan, 2021). We also

suggest test statistics for linearity, threshold constancy, and unobserved individual-specific

threshold effects. Then, we derive the asymptotic properties of the proposed estimator in

the small-threshold-effect framework, and establish the limiting distributions of the suggested

test statistics. Moreover, Monte Carlo simulations are conducted to assess the finite sample

properties of the proposed estimation procedure and test statistics, and the model is illus-

trated with two empirical applications to the relationship between cash flow and investment

and the nexus between inflation and economic growth. Both simulation and empirical results

demonstrate the usefulness of the proposed model.

The remainder of the article is organized as follows. Section 2 introduces the panel

threshold model with one covariate-dependent and time-varying threshold and unobserved

individual-specific threshold effects, describes the estimation, inference and testing methods

for the proposed model, and establishes the asymptotic properties of the suggested estimator

and test statistics. Section 3 extends the model to a panel data framework with multiple

covariate-dependent and time-varying thresholds. Section 4 discusses the extension of the

proposed model to dynamic panels. Section 5 presents Monte Carlo simulations evaluating

the finite-sample properties of the estimation, inference and testing procedures. Section 6

provides two empirical applications and Section 7 concludes. In Appendix A, we present a

detailed mathematical proof of the asymptotical results. In Appendix B, we report Monte

Carlo simulation results to confirm the finite sample performances of the proposed estimation

and testing procedures for the model with multiple covariate-dependent thresholds.
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2 The model

The panel threshold model with a covariate-dependent and time-varying threshold and un-

observed individual-specific threshold effects is given by4

yit = (β′
1xit + α1i + σ1uit)I(qit ≤ γ ′sit) + (β′

2xit + α2i + σ2uit)I(qit > γ
′sit), (1)

for i = 1, 2, ..., N and t = 1, 2, ..., T , where E(u2it) = 1, sit = (1, s′1,it)
′ ∈ Rk+1,γ = (γ0,γ

′
s)

′,

and there may be overlap between xit and s1,it.
5 xit is an px−dimensional vector of regressors,

s1,it is a k−dimensional vector of covariates explaining variation in thresholds over time

and/or over individuals, the dependent variable yit and threshold variable qit are scalar, and

uit is the disturbance term. σ1 and σ2 are used to capture a threshold effect in the conditional

variance of yit. α1i and α2i represent the unobserved individual heterogeneity which can be

correlated with xit. The threshold setting can be treated as a normalization of the linear

index threshold in Seo and Linton (2007). Specifically, the indictor function I(qit ≤ γ ′sit)

can be generally modelled through the linear index specification as I(γ∗′q∗it ≤ 0), in which

q∗it = (qit, s
′
it)

′ and γ∗ = (γq, γ0,γ
′
s). When γq is normalized to 1, the linear index threshold

I(γ∗′q∗it ≤ 0) would degenerate to the covariate-dependent threshold setting.

It is worth noting that, when α1i = α2i and σ1 = σ2, the model defined in (1) is actually a

panel version of Yu and Fan’s (2021) threshold model with a covariate-dependent threshold,

and the model can also be treated as an extension of Hansen’s (1999) panel threshold model

with fixed effects to a nonconstant threshold setting with unobserved threshold effects. The

proposed model can also be treated as an extension of Yu et al. (2022) by allowing for a

time-varying threshold.

2.1 The estimates and asymptotic properties

As discussed by Yu et al. (2022), the involvement of unobserved individual-specific threshold

effects results in the failure of the traditional estimation methods such as differencing and

the within-group transformation; therefore they suggest to take the correlated random effects

4We first focus on the model with one covariate-dependent and time-varying threshold and unobserved
individual-specific threshold effects, and then discuss the extension to multiple covariate-dependent and time-
varying thresholds.

5In this article, we do not investigate how to select covariates (shaping the threshold) among many candidate
variables. In applications, we can choose s1,it based on economic intuition as argued by Yu and Fan (2021).
It is interesting to develop a systematic approach to choose covariates shaping the threshold in the panel
data framework with a covariate-dependent and time-varying threshold and unobserved individual-specific
threshold effects.
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(CRE) model and use Chamberlain-Mundlak CRE device to control the endogeneity. Follow-

ing the same logic, the widely used estimation procedure based on the within-group trans-

formation or the inferencing method would lead to inconsistent estimator for both threshold

and slope parameters in the suggested model. Thus, we follow Yu et al. (2022) to control the

endogeneity, and incorporate the MCMC algorithm to lighten the computational burden, and

then describe an MCMC-based algorithm to construct the confidence intervals for threshold

parameters.

Following Mundlak (1978) and Yu et al. (2022), we assume that α1i and α2i in model (1)

are given as follows

αli = ψ
′
lzi + ali (l = 1, 2) with E[ali|Xi] = 0, and E[uit|Xi] = 0, (2)

where z′i = (x̄′
i, z

′
i) with x̄′

i = 1
T

∑T
t=1 xit. Xi = (x′

i1, ...,x
′
iT , z

′
i)
′ in which z′i contains the

time-invariant variables such as the constant 1. We use zi to control the time-invariant

effect, and allow that Cov(a1i, a2i) ̸= 0, and a1i ̸= a2i; thus, the correlation between α1i and

α2i is through zi or a1i and a2i. As in Yu et al. (2022), a1i and a2i can be correlated with

uit.

Then, we have

E[yit|Xi] = (β′
1xit +ψ

′
1zi)I(qit ≤ γ ′sit) + (β′

2xit +ψ
′
2zi)I(qit > γ

′sit), (3)

and the error term

eit = (a1i + σ1uit)I(qit ≤ γ ′sit) + (a2i + σ2uit)I(qit > γ
′sit),

=: e1itI(qit ≤ γ ′sit) + e2itI(qit > γ
′sit). (4)

Define x̌it = (x′
it, z

′
i). Then, the objective function can be written as

S̃SRNT (γ,θ)

=

N∑
i=1

T∑
t=1

[yit − θ′1x̌itI(qit ≤ γ ′sit)− θ2x̌itI(qit > γ
′sit)]

2, (5)

where θ′ = (θ′1,θ
′
2) and θ

′
l = (β′

l,ψ
′
l) for l = 1, 2.

Following the threshold literature (e.g., Hansen, 1999; Yu and Fan, 2021), we suggest a

two-step procedure to estimate γ. In the first step, we run least squares of yit on x̌it to

obtain θ̂(γ). Define S̃SRNT (γ) = S̃SRNT (γ, θ̂(γ)). Then, the threshold parameters can be
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estimated as

γ̂ = (γ̂0, γ̂
′
s)

′ = argmin
γ∈Γ

S̃SRNT (γ), (6)

where Γ = Γ0×Γ1, Γ0 and Γ1 = Γ11×Γ12×· · ·×Γ1k are the parameter spaces and assumed to

be compact. As illustrated by Yu and Fan (2021), the choice of γ̂ that is consistent with the

data cannot be unique in the model with covariate-dependent thresholds. Thus, this article

assumes that the arg min operator denotes the centroid of the minimizing set when this set

includes more than one point as in Yu and Fan (2021). Once the estimates γ̂ = (γ̂0, γ̂
′
s)

′ are

obtained, a natural estimate for θ is given by θ̂ ≡ θ̂(γ̂).

To implement the minimization in (6), we may use a two-step estimation procedure based

on concentration and grid search, which is widely used in the classical threshold literature

(e.g., Hansen, 1999). However, the mentioned grid-search based estimation procedure works

poorly, especially when the dimension of sit becomes large, as the inclusion of one more

covariate would lead to the computational time increasingN×T times. Thus, in implementing

the minimization in (6), following Yu and Fan (2021), we suggest an estimation procedure

based on a Markov chain Monte Carlo (MCMC) to ease the computation burden in estimating

threshold parameters.

Algorithm A. Parameter Estimation and confidence intervals based on the MCMC tech-

nique.

Step 1. Define SNT = S̃SRNT (γ)/NT , and

p(γ) =
exp{−SNT (γ)}I(γ ∈ Γ)∫

Γ exp{−SNT (γ)}dγ
,

which is a quasi-posterior of γ with a uniform prior on Γ.

Step 2. Use the MCMC method to draw a Markov chain

S = (γ(1),γ(2), ...,γ(B)),

whose marginal density is approximately given by p(γ).

Step 3. For each γ(b), b = 1, 2, ..., B, calculate S̃SRNT (γ
(b)). Define the initial estimates

as γ̂I = argmin
γ∈S

S̃SRNT (γ), which may be a set of γ values.

Step 4. If desired, update the simulation set in Step 1 from Γ to a neighborhood of the

initial estimates of γ̂I . Repeat Steps 2 and 3 to obtain an updated set of γ estimation, say,

γ̂U . Then γ̂ is defined as the average of the points in γ̂U , and θ̂ ≡ θ̂(γ̂).
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Step 5. Obtain the residuals êit = yit− θ̂
′
1x̌itI(qit ≤ γ̂ ′sit)− θ̂2x̌itI(qit > γ̂

′sit). Construct

a uniformly consistent density estimator f̂L of eL based on êLit, and a density estimator f̂H

of eH based on êHit by kernel smoothing, where êLit is êit when qit ≤ γ̂
′sit, and ê

H
it is êit when

qit > γ̂
′sit.

Step 6. Denote the estimated likelihood function as

L̂(γ) =

N∏
i=1

T∏
t=1

[
f̂L
(
yit − θ̂

′
1x̌it

)
I
(
qit ≤ γ ′sit

))
+f̂H

(
yit − θ̂

′
2x̌it

)
I
(
qit > γ

′sit
)]

= exp

{
N∑
i=1

T∑
t=1

I
(
qit ≤ γ ′sit

)
ln f̂L

(
yit − θ̂

′
1x̌it

))
+

N∑
i=1

T∑
t=1

I
(
qit > γ

′sit
)
ln f̂H

(
yit − θ̂

′
2x̌it

))}
:= exp

{
L̂(γ)

}
.

Step 7. Use the MCMC technique to draw a Markov chain S = (γ(1),γ(2), ...,γ(B)), whose

marginal density is approximately given as

π̂(γ) =
exp

{
L̂(γ)

}
I(γ ∈ Γ)∫

Γ exp
{
L̂(γ)

}
dγ

.

Step 8. Denote the jth component of S as Sj := (γ
(1)
j ,γ

(2)
j , ...,γ

(B)
j ). Then the (1 − α)

CI for γj can be constructed as [γj(α/2), γj(1−α/2)], where γj(τ) is the τth quantile of Sj .

It is worth noting that the MCMC-based algorithm is only auxiliary to the minimization

problem by simulating the possible minimizers. The MCMC-based estimation method is

more efficient than the grid search method, as we can simulate γ with higher probability

when S̃SRNT (γ) is small, i.e., more γ values are drawn on (and around) the identified

set. As illustrated by Yu and Fan (2021), when B is large enough, one can guarantee that

the global minimizer of S̃SRNT (γ) is achieved in Step 3. This is because when B goes to

infinity, the density of {γ(b)}Bb=1 from Step 2 would converge to p(γ) in Step 1, and we have

p(γ̂U ) > 0 for the minimizing set γ̂U of S̃SRNT (γ). As the inference for θ is standard, we

focus on the inference for γ̂ in Algorithm A. As illustrated by Yu and Fan (2021), a by-

product of Step 8 in Algorithm A is the semiparametric empirical Bayes estimator (SEBE)

of threshold parameters, e.g., the posterior mean based on π̂(γ). Yu and Fan (2021) also

provide simulation evidence for the efficiency improvement of SEBE relative to the least
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square estimator.

In practice, it is important to specify the parameter space for γ = (γ0,γ
′
1)

′. The parameter

space can be specified as follows. Denote the least square estimator of qit on sit as γ̂
L
1 , then

the parameter space of γ1 can be set as Γ1 =
⊗k−1

m=1[γ̂
L
m −C, γ̂Lm +C] for a large C such that

[γ̂Lm − C, γ̂Lm + C] contains zero for each m, ensuring that the estimation procedure works

well even when the true model is a constant threshold model. As in the classical threshold

model, we set the parameter space for γ0 as Γ0 = Γ0(γ1) ⊆ [q(ηNT ), q((1−η)NT )] such that at

least η portion of observations lie in each regime for some η > 0 (say, η = 0.10 or 0.15), in

which q(α) is the αth order statistic of qit. When k = 0, Γ would degenerate to Γ0, which

is exactly the specification of the parameter space for threshold parameter in the classical

constant threshold model.

We next study the asymptotic properties of the estimator. Let ft|s (qit | sit) be the con-

ditional distribution of the threshold variable qit given sit and fk|t,s (qik | qit, sik, sit) be the

conditional distribution of the threshold variable qik given qit, sik and sit. Define the moment

functionals

M =
T∑
t=1

E(x̌itx̌
′
it), M(γ) =

T∑
t=1

E(x̌itx̌
′
itI(qit ≤ γ ′sit)),

M∗(γ) =

 M(γ) 0

0 M−M(γ)

 , M∗ = M∗(γ
0)

Dt (γ | sit) = E
(
x̌itx̌

′
it

∣∣ qit = γ ′sit, sit
)
,

Vlt (γ | sit) = E
(
x̌itx̌

′
ite

2
lit

∣∣ qit = γ ′sit, sit
)
.

Ω1(γ) =

T∑
t=1

T∑
τ=1

E
[
x̌itx̌

′
iτe1ite1iτI(qit ≤ γ ′sit)I(qiτ ≤ γ ′siτ )

]
Ω2(γ) =

T∑
t=1

T∑
τ=1

E
[
x̌itx̌

′
iτe2ite2iτI(qit > γ

′sit)I(qiτ > γ
′siτ )

]
Ω12(γ) =

T∑
t=1

∑
τ ̸=t

E
[
x̌itx̌

′
iτe1ite2iτI(qit ≤ γ ′sit)I(qiτ > γ

′siτ )
]

Ω∗(γ) =

 Ω1(γ) Ω′
12(γ)

Ω12(γ) Ω2(γ)

 , Ω∗ = Ω∗(γ
0)

To establish the asymptotic properties of the estimator of the threshold parameter γ̂ and

the slope θ̂, we first introduce the following assumptions.
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Assumption 1. Assume that

1. For each t, (yit,xit, zi, qit, sit) are independent and identically distributed (iid) across i;

T is fixed and N → ∞.

2. For each i, E (ali |Xi) = 0 and E (uit |Xi) = 0.

3. For each j = 1, . . . , px, P (x
j
i1 = · · · = xjiT ) < 1, where xjit is the jth element of xit and

px is the dimension of xit.

4. For t = 1, . . . , T , E∥x̌it∥4 <∞ and E|elit|4 <∞.

5. For any γ ∈ Γ and t = 1, . . . , T , E
(
∥x̌it∥4

∣∣ qit = γ ′sit, sit
)
≤ C, E

(
∥x̌itelit∥4

∣∣ qit = γ ′sit, sit
)
≤

C for some C <∞, and 0 < ft|s (qit | sit) ≤ f̄ <∞. For k > t, fk|t,s

(
γ0′sit

∣∣∣ qit = sit(γ
0), sik, sit

)
<

∞.

6. ft|s (γ
′sit | sit), Dt(γ|sit) and Vlt(γ|sit) are continuous at γ = γ0, where γ0 is the true

value of γ.

7. sit is not multicollinear.
∑T

t=1E
(
x̌itx̌

′
it

∣∣I (qit ≤ γ ′sit)− I
(
qit ≤ γ0′sit

)∣∣) = 0 and∑T
t=1E

(
x̌itx̌

′
itI (qit ≤ γsit)

[
I (qit ≤ γ ′sit)− I

(
qit ≤ γ0′sit

)])
= 0 if and only if γ =

γ0.

8. θ01 − θ02 = δ0 = cN−α with c ̸= 0 and 0 < α < 1/2, where c is fixed.

9. GT (ω) > 0 and VlT (ω) > 0 with ω ̸= 0 (defined in Theorem 1). det (M) > det (M(γ)) >

0 for all γ ∈ Γ.

Assumption 1.1 restricts us in the large N small T panels, which is widely used in the

panel data models. Assumption 1.2 is the condition of conditional mean independence, while

we do not require a1i, a2i, ui1, ..., uiT and Xi are independent of each other. Assumption

1.3 requires xit to vary over t to avoid the multicollinear problem. Assumptions 1.4 and

1.5 restrict unconditional and conditional moment bounds to be finite, ensuring that the

central limit theorem and the weak law of large numbers hold. Assumption 1.6 requires the

distributions of the threshold variable and the conditional moments are continuous, which

are typically used in the threshold literature. Assumption 1.7 can ensure that the asymptotic

distribution of the threshold estimator is well defined, and ensure that Theorem 2.1 of Newey

and McFadden (1994) is applicable in proving the consistency of the estimator as in Yu
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and Fan (2021). The moment conditions in Assumption 1.7 can be relaxed when T goes

to infinity or in a time series framework. It is worth noting that this assumption can allow

for γ̂ being not unique. Assumption 1.8 is the small threshold effect assumption, which is

conventional in the literature of threshold models. Assumption 1.9 is full rank condition

needed to have nondegenerate asymptotic distributions. These assumptions are typically

used in the threshold literature, including Hansen (2017), Yu and Fan (2021), Yang et al.

(2021a), and among others.

Theorem 1. Under Assumption 1, as N → ∞,

N1−2α
(
γ̂ − γ0

) d−→ argmin
ω∈Rk+1

[
1

2
GT (ω)−RT (ω)

]
, (7)

N1/2
(
θ̂ − θ0

)
d−→ Z, (8)

where RT (ω) = R1T (ω) + R2T (ω), RlT (ω) is a Gaussian process with a positive variance

VlT (ω) when ω ̸= 0, which R1T (ω) and R2T (ω) are independent. GT (ω), V1T (ω) and V2T (ω)

are defined as

GT (ω) =

T∑
t=1

c′E
(
Dt

(
γ0
∣∣ sit) ft|s (γ0′sit

∣∣∣ sit) ∣∣s′itω∣∣ )c,
V1T (ω) =

T∑
t=1

c′E
(
V1t

(
γ0
∣∣ sit) ft|s (γ0′sit

∣∣∣ sit) ∣∣s′itω∣∣ I(s′itω ≤ 0)
)
c,

V2T (ω) =
T∑
t=1

c′E
(
V2t

(
γ0
∣∣ sit) ft|s (γ0′sit

∣∣∣ sit) ∣∣s′itω∣∣ I(s′itω > 0)
)
c, (9)

in which V1T (ω) and V2T (ω)are both positive when ω ̸= 0. Z is a Gaussian process with

variance M−1
∗ Ω∗M

−1
∗ .

Proof of Theorem 1. See the Appendix.

Theorem 1 can be viewed as a generalization of the asymptotic result of Theorem 2 in

Yu and Fan (2021). It is worth noting that the asymptotic results in Theorem 1 can not

be expressed in the form of the two-sided Brownian motion as in the classical threshold

literature (e.g., Hansen, 2000; Yu et al., 2022), which is because of the involvement of a

covariate-dependent threshold as illustrated by Yu and Fan (2021).

10



2.2 Model specification testing

In this section, we suggest test statistics for linearity, threshold constancy, and unobserved

individual-specific threshold effects, and then establish their limiting distributions.

Before using the proposed panel threshold model with a covariate-dependent threshold

and unobserved individual-specific threshold effects, it is desirable to first test whether there

is a threshold effect. Consider the null hypothesis of no threshold effect

H1
0 : θ1 = θ2

against the alternative hypothesis

H1
1 : θ1 ̸= θ2.

Under the null, the model (1) degenerates to the linear panel model yit = θ
′
1x̌it+ ai+ εit.

Denote the usual least square estimator of the linear panel model as θ̃
′
1, and obtain the

residuals ẽit = yit − θ̃
′
1x̌it, yielding the sum of squared errors SSR0 =

∑N
i=1

∑T
t=1 ẽ

2
it. In

addition, we denote the sum of squared errors of the proposed model as S̃SRNT (γ̂). Likewise,

we denote the sum of squared errors of Hansen’s (1999) constant threshold model as SSRC(γ̃),

where γ̃ = (γ̃, γ̃ ′
s)

′ = (γ̃,0′)′ . Then, a natural test statistic for the null hypothesis of no

threshold effect can be constructed as

F1 =
SSR0 − S̃SRNT (γ̂)

S̃SRNT (γ̂)/NT
= sup

γ∈Γ

SSR0 − S̃SRNT (γ)

S̃SRNT (γ)/NT
. (10)

If we pass the test for linearity, it is reasonable to determine whether or not the threshold

is constant, and whether there are unobserved individual-specific threshold effects. The null

hypothesis of threshold constancy can be written as H2
0 : γs = 0. Then, a test statistic for

threshold constancy can be given as

FC =
SSRC(γ̃)− S̃SRNT (γ̂)

S̃SRNT (γ̂)/NT
. (11)

If we reject the null H1
0 , then there is a threshold effect. Then, it is also natural to test

for unobserved individual-specific threshold effects. The null is represented as α1i = α2i; in

the CRE setting (2), this null for no unobserved threshold effect reduces to H3
0 : ψ1 = ψ2.

Under the null H3
0 , the model (1) degenerates to yit = (β′

1xit)I(qit ≤ γ ′sit) + (β′
2xit)I(qit >

γ ′sit) + αi + εit = (β′
1xit)I(qit ≤ γ ′sit) + (β′

2xit)I(qit > γ
′sit) + ψ

′zi + ai + εit. Denote the

sum of squared errors of the above null model as SSRI . Then, a natural test can be given

11



as follows:

FI =
SSRI − S̃SRNT (γ̂)

S̃SRNT (γ̂)/NT
. (12)

We next derive the asymptotic distributions of the proposed test statistics for linearity,

threshold constancy, and unobserved individual-specific threshold effects.6

Theorem 2. Suppose Assumption 1 holds. Under H1
0 : θ1 = θ2, we have

F1
d−→ 1

σ2
sup
γ∈Γ

Z ′(γ)R′
∗
[
R∗M

−1
∗ (γ)R′

∗
]−1

R∗Z(γ), (13)

under H2
0 : γs = 0, we have

FC
d−→ 1

σ2

[(
min

ω∈Rk+1
c

GT (ω)− 2RT (ω)

)
−
(

min
ω∈Rk+1

GT (ω)− 2RT (ω)

)]
, (14)

and under H3
0 : ψ1 = ψ2, we have

FI
d−→ 1

σ2
Z ′R′

I

[
RIM

−1
∗ R′

I

]−1
RIZ, (15)

where R∗ and RI are matrices such that R∗θ = θ1 − θ2 = 0 and RIθ = ψ1 − ψ2 = 0,

σ2 = T−1
∑T

t=1E(e2it), Rk+1
c = {ω ∈ Rk+1 : ωs = 0}, Z(γ) is a Gaussian process with

variance M−1
∗ (γ)Ω∗(γ)M

−1
∗ (γ), and GT (ω), RT (ω) and Z are defined as in Theorem 1.

Proof of Theorem 2. See the Appendix.

As is now well known, threshold models are not identified under the null of linearity,

due to the famous Davies problem (Davies, 1977, 1987). Thus, the limiting distribution

of the test statistic for linearity is the supremum of a quadratic form of Gaussian process;

hence, it is generally not straightforward to tabulate the critical values. Therefore, following

the threshold literature (e.g., Hansen, 2017; Yang et al., 2021b), we suggest a parametric

bootstrap procedure to calculate the p-values or critical values in implementing the above

test statistics.

Algorithm B. Testing for linearity, threshold constancy, and unobserved individual-specific

threshold effects

Step 1. Use the original sample (yit,x
′
it, qit, s

′
it)’s to estimate the linear panel model

yit = θ′1x̌it + ai + uit and the constant threshold model yit = θ′1x̌itI(qit ≤ γ) + θ′2x̌itI(qit >

6It is worth noting that SSR(γ)/NT is not asymptotically equivalent to SSR(γ)/(NT −N − 2px) under
the framework with large N and fixed T , as T

T−1
̸= 1. Thus, the limiting distributions of the proposed test

statistics would differ if we replace the denominator SSR(γ)/NT with SSR(γ)/(NT −N − 2px). We thank
an anonymous referee for raising this point with us.
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γ)+ai+u
c
it, and the threshold model with no unobserved threshold effects yit = (β′

1xit)I(qit ≤

γ ′sit) + (β′
2xit)I(qit > γ ′sit) + ψ

′zi + ai + uIit, obtain the residual êlit = yit − θ′1x̌it, ê
c
it =

yit − θ′1x̌itI(qit ≤ γ) − θ′2x̌itI(qit > γ) and êIit = yit − (β̂
′
1xit)I(qit ≤ γ̂ ′sit) − (β̂

′
2xit)I(qit >

γ̂ ′sit)− ψ̂
′
zi.

Step 2. Generate i.i.d draws ε∗i from the N(0, 1) distribution for i = 1, ..., N , and set el∗it =

êlitε
∗
i and yl∗it = θ̂

′
1x̌it + el∗it ; Set e

c∗
it = êcitε

∗
i and yc∗it = θ̂

′
1x̌itI(qit ≤ γ̂) + θ̂

′
2x̌itI(qit > γ̂) + ec∗it ;

Set eI∗it = êIitε
∗
i and yI∗it = (β̂

′
1xit)I(qit ≤ γ̂ ′sit) + (β̂

′
2xit)I(qit > γ̂

′sit) + ψ̂
′
zi + eI∗it .

Step 3. Use the bootstrap sample (yl∗it ,x
′
it, qit, s

′
it)’s, (y

c∗
it ,x

′
it, qit, s

′
it)’s and (yI∗it ,x

′
it, qit, s

′
it)’s

to compute the F-type statistics F1, FC and FI .

Step 4. Repeat Steps 1-3 B times to obtain three samples F ∗
1 (1), F

∗
1 (2), ..., F

∗
1 (B), F ∗

C(1),

F ∗
C(2), ..., F

∗
C(B) and F ∗

I (1), F
∗
I (2), ..., F

∗
I (B) of simulated F1, FC and FI statistics.

Step 5. Calculate the empirical p-values by the percentage of the simulated statistics that

exceed actual values when the number of B is sufficiently large.

3 Extension to multiple covariate-dependent and time-varying

thresholds

In this section, we extend the model to the framework with multiple covariate-dependent and

time-varying thresholds. Consider the following panel threshold model with two covariate-

dependent thresholds and unobserved individual-specific threshold effects given as7

yit = (β′
1xit + α1i + σ1εit)I(qit ≤ γ ′

1sit) + (β′
2xit + α2i + σ2εit)I(γ

′
1sit < qit ≤ γ ′

2sit)

+(β′
3xit + α3i + σ3εit)I(qit > γ

′
2sit), (16)

for i = 1, 2, ..., N and t = 1, 2, ..., T , where sit = (1, s′1,it)
′ ∈ Rk+1,γ1 = (γ10,γ

′
11)

′,γ2 =

(γ20,γ
′
21)

′. αli (l = 1, 2, 3), defined as in (2), represent the unobserved individual heterogene-

ity which can be correlated with xit. Other notations are defined as in model (1).

We focus on the model with two covariate-dependent thresholds, as extensions to higher-

order threshold models are straightforward following Hansen (1999). We first discuss the

estimation and inference for model parameters, and then consider the testing for determining

the number of thresholds.

7In this article, we assume γ′
1sit < γ′

2sit for all sit’s, and exclude the case in which γ′
1sit < γ′

2sit for some
sit’s while γ′

1sit ≥ γ′
2sit for other sit’s. Future research can focus on the latter case.
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3.1 Estimation

In estimation, we suggest a two-stage procedure. Denote the concentrated sum of squared er-

rors in (16) as SSRNT (γ1,γ2). One can estimate (γ1,γ2) jointly by minimizing SSRNT (γ1,γ2),

while solving the joint minimization is often computational expensive. Following the multiple

changepoint literature (e.g., Bai, 1997) and the threshold literature (e.g., Hansen, 1999), we

can use a sequential estimation procedure to estimate the threshold parameters. In the first

stage, we use the objective function defined in (5), and denote the estimator as γ̂1. In the

constant threshold case, Yu (2015) has showed that such a least square estimator is esti-

mating one of the true threshold parameters under suitable assumptions. Thus, we expect

a similar result to hold in the covariate-dependent model, as our model can be treated as a

normalization of the classical threshold model with a linear index.8

Given the first-stage estimate γ̂1, we then define the second-stage objective function as

SSRr
NT (γ2) =

 SSRNT (γ̂1,γ2), γ̂
′
1sit < γ

′
2sit

SSRNT (γ2, γ̂1),γ
′
2sit < γ̂

′
1sit

, (17)

and the second-stage estimator is

γ̂2 = argmin
γ2

SSRr
NT (γ2). (18)

In the second stage, we estimate the threshold parameter based on Algorithm A with

S̃SRNT (γ) being replaced by SSRr
NT (γ2). Given γ̂2, we can update γ̂1 by replacing S̃SRNT (γ)

with SSRr
NT (γ1) =

 SSRNT (γ1, γ̂2),γ
′
1sit < γ̂

′
2sit

SSRNT (γ̂2,γ1), γ̂
′
2sit < γ

′
1sit

. Given γ̂1 and γ̂2, βl can be estimated

as β̂l = β̂l(γ̂1, γ̂2).

3.2 Confidence Intervals

In this section, we extend the method for constructing confidence intervals for model (1)

to the framework with two covariate-dependent thresholds, and thus provide an algorithm

to construct confidence intervals for the threshold parameters (γ1,γ2). The algorithm is as

follows.

Algorithm C. Confidence intervals for threshold parameters.

8We provide simulation evidence supporting the consistency of the estimator in the case with multiple
covariate-dependent and time-varying thresholds. Future research can focus on providing a rigorous proof for
this result, i.e., γ̂1 would be consistent for either γ1 or γ2 depending on which effect is stronger. We thank
an anonymous referee for raising this point to us.

14



Step 1. Use the original sample (yit,x
′
it, qit, s

′
it)’s to estimate model (16), yielding (θ̂, γ̂1, γ̂2)

and the residuals êit = yit − θ̂
′
1x̌itI(qit ≤ γ̂ ′

1sit) − θ̂2x̌itI(γ̂
′
1sit < qit ≤ γ̂ ′

2sit) − θ̂3x̌itI(qit >

γ̂ ′
2sit).

Step 2. Obtain a uniformly consistent density estimator f̂L of eL based on êLit, f̂
M of eM

based on êMit , and a density estimator f̂H of eH based on êHit by kernel smoothing, where êLit

is êit when qit ≤ γ̂ ′
1sit, ê

m
it is êit when γ̂

′
1sit < qit ≤ γ̂ ′

2sit, and ê
H
it is êit when qit > γ̂

′
2sit.

Step 3. Define the estimated likelihood function as

L̂(γ1,γ2) =
N∏
i=1

T∏
t=1

[
f̂L
(
yit − θ̂1x̌it

)
I
(
qit ≤ γ ′

1sit
))

+f̂M
(
yit − θ̂2x̌it

)
I
(
γ ′
1sit < qit ≤ γ ′

2sit
)

+f̂H
(
yit − θ̂3x̌it

)
I
(
qit > γ

′
2sit
)]

= exp

{
N∑
i=1

T∑
t=1

I
(
qit ≤ γ ′

1sit
)
ln f̂L

(
yit − θ̂1x̌it

))
+

N∑
i=1

T∑
t=1

I
(
γ ′
1sit < qit ≤ γ ′

2sit
)
ln f̂M

(
yit − θ̂2x̌it

))
+

N∑
i=1

T∑
t=1

I
(
qit > γ

′
2sit
)
ln f̂H

(
yit − θ̂3x̌it

))}
:= exp

{
L̂(γ1,γ2)

}
.

Step 4. Use the MCMC method to draw a Markov chain S = (γ
(1)
k ,γ

(2)
k , ...,γ

(B)
k ) with

k = 1, 2, whose marginal density is approximately given by

p̂(γ1,γ2) =
exp

{
L̂(γ1,γ2)

}
I(γ ∈ Γ)∫

Γ exp
{
L̂(γ1,γ2)

}
dγ1dγ2

.

Step 5. Take out the jth component of S, denoted as Sj := (γ
(1)
j ,γ

(2)
j , ...,γ

(B)
j ). Then

the (1−α) CI for γj can be constructed as [γj(α/2), γj(1−α/2)], where γj(τ) is the τth quantile

of Sj .

3.3 Determining the number of thresholds

To determine the number of thresholds, we conduct sequential tests based on the test statistic

F1, which tests the null of no threshold against one threshold. If the null is rejected, then we

continue to test the null of one threshold against two thresholds by employing the following
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test statistic

F2 =
SSR(γ̂)− SSR2(γ̂1, γ̂2)

SSR2(γ̂1, γ̂2)/NT
, (19)

in which SSR2(γ̂1, γ̂2) is the sum of squared errors of the model with two thresholds, and

SSR(γ̂) is the sum of squared errors of the model with one threshold.

To implement the above test F2, we can use a parametric bootstrap procedure based on

the null model with one covariate-dependent threshold and unobserved individual-specific

threshold effects by employing an algorithm similar with Algorithm B. Based on a similar

logic as above, a test statistic, say F3, for two thresholds against three thresholds can be

easily constructed.

4 Extension to dynamic panels

In this section, we briefly discuss an extension of the proposed model to a dynamic setting,

i.e., dynamic panel threshold model with a covariate-dependent and time-varying threshold

and unobserved individual-specific threshold effects.

Following Yu et al. (2022), we consider the dynamic panel data model given by

yit = (β′
1xit + ρ1yi,t−1 + α1i + σ1εit)I(qit ≤ γ ′sit)

+(β′
2xit + ρ2yi,t−1 + α2i + σ2εit)I(qit > γ

′sit), (20)

for i = 1, . . . , N and t = 0, 1, . . . , T . yi,t−1 is the lag of the dependent variable yit, and other

notations are defined as in (1).

Following Yu et al. (2022) and Wooldridge (2000, 2005), for unobserved heterogeneity αli

we assume

αli = ψ
′
lzi + πlyi0 + ali (l = 1, 2) with E[alt|XT

i ] = 0, and E[εit|Xt
i ] = 0, (21)

where zi = (x̄′
i, z

′
i)
′ with x̄i =

1
T+1

∑T
t=0 xit, xit = (x′

it, qit)
′,Xt

i = (x′
i0,x

′
i1, ...,x

′
iT , z

′
i, yi,t−1, . . . , yi0)

′,

t = 1, ..., T , and yi0 controls the initial condition effect. Then, we have

E[yit|Xt
i ] = (β′

1xit + ρ1yi,t−1 +ψ
′
1zi + π1yi0)I(qit ≤ γ ′sit)

+ (β′
2xit + ρ2yi,t−1 +ψ

′
2zi + π2yi0)I(qit > γ

′sit)

=: x̌′
itθ1I(qit ≤ γ ′sit) + x̌′

itθ2I(qit > γ
′sit) (22)
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for t = 2, . . . , T , and the error term takes the same form as (4), where x̌it = (x′
it, yi,t−1, z

′
i, yi0)

′

and θl = (β′
l, ρl,ψ

′
l, πl)

′ for l = 1, 2. Then, the objective function can be written as

S̃SRNT (γ,θ)

=

N∑
i=1

T∑
t=1

[
yit − θ′1x̌itI(qit ≤ γ ′sit)− θ′2x̌itI(qit > γ

′sit)
]2
, (23)

where θ = (θ′1,θ
′
2)

′. Clearly, the structure of the estimated parameters in dynamic models

is the same as in non-dynamic models except for new definitions of x̌it and θl. Therefore,

the estimation procedure in the non-dynamic model discussed in Section 2 can be directly

applied in the dynamic setting.

Denote the estimators of γ and θ as γ̂ and θ̂. We next study the asymptotic properties

of γ̂ and θ̂. Let M, M(γ), M∗(γ), Dt (γ | sit), Vlt (γ | sit), Ω1(γ), Ω2(γ), Ω12(γ), Ω∗(γ)

and Ω∗ take the same form as in non-dynamic models with the new definition of x̌it, and

ft|s (qit | sit) and fk|t,s (qik | qit, sik, sit) have the same definition as in non-dynamic models.

Assumption 2. Assume Assumption 1.4-1.9 hold. We also assume

1. For each t, (yit,xit, yi,t−1, zi, yi0, qit, sit) are independent and identically distributed (iid)

across i.

2. For each i, E
(
ali
∣∣XT

i

)
= 0 and E

(
uit
∣∣Xt

i

)
= 0.

3. For each j = 1, . . . , p∗, P (x
j
i1 = · · · = xjiT ) < 1, where xjit is the jth element of

(x′
it, yi,t−1)

′ and p∗ is the dimension of (x′
it, yi,t−1)

′.

Assumption 2 is essentially similar to Assumption 1. The following theorem establishes

the asymptotic distribution of γ̂ and θ̂ in the dynamic model.

Theorem 3. Under Assumption 2, N1−2α(γ̂ − γ0) and N1/2(θ̂− θ0) have the same form of

asymptotic distributions as in Theorem 1 except that Dt (γ | sit), Vlt (γ | sit), M∗ and Ω∗ are

adjusted with new x̌it.

Proof of Theorem 3. It is noted that the dynamic model can be treated as a non-dynamic

model with the addition of variables yi,t−1 and yi0. Therefore, under fixed T and N → ∞,

the proof of Theorem 3 is the same as Theorem 1 after substituting the new x̌it defined as

in (22).
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As the structures of non-dynamic models and dynamic models in the CRE setting are

similar, the estimation and inference methods discussed in non-dynamic models are valid in

dynamic models.

5 Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to examine the finite sample perfor-

mances of the proposed estimation and inference procedures and the test statistics. To this

end, we consider the following data generating process (DGP):

yit = (β1xit + β11qit + α1i + σ1uit) I (qit ≤ γit)

+ (β2xit + β22qit + α2i + σ2uit) I (qit > γit) , (24)

where αℓi = ψℓ1x̄i + ψℓ2q̄i + ψℓ0 + aℓi for l = 1, 2, x̄i =
1
T

∑T
t=1 xit, q̄i =

1
T

∑T
t=1 qit, γit =

γ0 + γ1sit, and u1it = u2it ∼ N(0, 1), σ1 = σ2 = 0.5, a1i and a2i follow N(0, 1). qit, xit and

sit follow i.i.d.N(0, 1), and are independent of each other.

In examining the finite sample performance of the estimator, we set the true parameters

as (γ0, γ1) = (0.2, 0.5) and (β2, β22, ψ20, ψ21, ψ22) = (-0.2, -0.2, 0, -0.2, -0.2). For the case

with α1i = α2i, we set (β11, ψ10, ψ11, ψ12) = (β22, ψ20, ψ21, ψ22), but vary β1 ∈ {0.2, 0.5, 1}

to assess the effect of threshold effects on estimation. For the case with α1i ̸= α2i, we

set ψ11 = {0.2, 0.5, 1}, and other parameters are the same as in the α1i = α2i case. In

all simulations, we set the number of replications at 1000. We run simulation experiments

on a range of sample sizes T = 2, 5, 10, and N = 250, 500, 1000. To implement the MCMC-

based algorithms, our estimation and inference softwares are written based on the runMCMC

function in the R package BayesianTools.9 The simulation results are reported in Tables 1

and 2, in which we report the empirical mean and standard deviation (Std.dev) for each

parameter. The simulation results show that the mean of each parameter is fairly close to

its true value for all combinations of T and N , and the standard deviations decrease to zero

as either T or N increases. When N changes from 500 to 1000 (for a fixed T ), the standard

deviations of γ0 and γ1 decrease by almost half, which is consistent with the N1−2α = N

(α = 0) convergence rate implied by Theorem 1,10 especially in the case with α1i ̸= α2i.

Comparing Table 1 (the case with α1i = α2i) with Table 2 (the case with α1i ̸= α2i), we can

9For the details, please see the appendix.
10In the simulations, we set the magnitude of the threshold effect being fixed, which implies α = 0 in

Theorem 1.
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see that the estimator of the threshold parameters in Table 1 is more accurate than that in

Table 2 in terms of standard deviation, which could be contributed to an extra unobserved

threshold effect contained in the case considered in Table 2.

In investigating the performance of the test statistics, we set (γ0, γ1) = (0.2, 0.5), {(β2, β22,

ψ20, ψ21, ψ22), (β12, ψ10, ψ12)} = {(−0.2,−0.2, 0,−0.2,−0.2), (−0.2, 0,−0.2)}, and vary the

parameters (β1, ψ11) = {(−0.2,−0.2), (0.2, 0.2), (0.5, 0.5)} to assess the size and power of

the F1 test for threshold effect; we set {(β2, β22, ψ20, ψ21, ψ22), (β1, β12, ψ10, ψ11, ψ12)} =

{(−0.2,−0.2, 0,−0.2,−0.2), (1,−0.2,−0.2, 1,−0.2)}, and vary (γ0, γ1) = {(0.2, 0), (0.2, 0.2),

(0.2, 0.5)} to assess the size and power of the FC test for threshold constancy. In addition, we

set (γ0, γ1) = (0.2, 0.5) and {(β2, β22, ψ20, ψ21, ψ22), (β1, β12, ψ10, ψ11, ψ12)} = {(−0.2,−0.2, 0,

−0.2,−0.2), (1, 1, 0,−0.2,−0.2)} to assess the size of the FI test for unobserved threshold

effect, and vary (ψ11, ψ12) = {(0.2, 0.2), (0.5, 0.5)} to assess the power of the FI test. As

reported in Table 3, the simulation results show that the empirical size is close to the 5%

nominal level for all the three tests, and the power for the test statistic F1 (FC or FI) increases

as either the magnitude of threshold effect (threshold constancy or unobserved threshold ef-

fect) or the sample size becomes larger. These results indicate that the proposed test statistics

have desired performance in finite samples.

For the case of multiple covariate-dependent thresholds, we also conduct simulations to

investigate the performance of the estimation and testing procedures suggested in Section 3.

The simulation results support that the estimation and testing procedures work well in finite

samples. These simulation results are reported in the appendix.

6 Empirical applications

In this section, we provide two empirical applications to illustrate the proposed model. One

is about the famous empirical relationship between firms’ cash flow and capital investment

spending, following Hansen (1999) who illustrates his well-known panel threshold model with

the cash flow/investment relationship. For comparison, the data we use are the same as

in Hansen (1999), available from Hansen’s website.11 The other is about the relationship

between inflation and economic growth, following Yu et al. (2022) who further capture

the unobserved individual-specific threshold effects based on Ramı́rez-Rondán (2020). For

comparison, the data we use in this application are the same as in Yu et al. (2022) and

11https://www.ssc.wisc.edu/bhansen. We are grateful to Bruce Hansen for making his data and code pub-
licly available.
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Table 3: Finite-sample size and power of the F-type test statistics.
F1 FC FI

size power size power size power

(β1, ψ11) (γ0, γ1) (ψ11, ψ12)
T N (−0.2,−0.2) (0.2, 0.2) (0.5, 0.5) (0.2, 0) (0.2, 0.2) (0.2, 0.5) (−0.2,−0.2) (0.2, 0.2) (0.5, 0.5)
2 250 0.048 0.725 0.998 0.041 0.999 1.000 0.046 0.531 0.833

500 0.051 1.000 1.000 0.047 1.000 1.000 0.052 0.930 1.000
1000 0.053 1.000 1.000 0.048 1.000 1.000 0.049 1.000 1.000

5 250 0.051 1.000 1.000 0.056 1.000 1.000 0.048 0.925 1.000
500 0.050 1.000 1.000 0.051 1.000 1.000 0.051 1.000 1.000
1000 0.049 1.000 1.000 0.050 1.000 1.000 0.050 1.000 1.000

10 250 0.050 1.000 1.000 0.050 1.000 1.000 0.051 1.000 1.000
500 0.050 1.000 1.000 0.050 1.000 1.000 0.050 1.000 1.000
1000 0.050 1.000 1.000 0.050 1.000 1.000 0.050 1.000 1.000

Ramı́rez-Rondán (2020).12

6.1 Investment and financing constraints

According to the literature (e.g, Fazzari et al., 1988; Hansen, 1999), the impact of a firm’s

cash flow on its investment varies with financing constraints; thus, a positive impact would

be observed only when the firm faces financing constraints, and the relationship between

firms’ cash flow and investment is enhanced with the increasing of the degree of financing

constraints. Based on the classical panel threshold model, Hansen (1999) concludes that his

empirical results “are somewhat consistent with the theory of financing constraints”, and

hence partly consistent with Fazzari et al. (1988). In this section, we show that the empirical

results will be completely consistent with Fazzari et al. (1988) by allowing for covariate-

dependent thresholds and unobserved individual-specific threshold effects.

Following Hansen (1999), threshold models are employed to distinguish constrained and

unconstrained firms by using the ratio of long-term debt to assets as a threshold variable.

In doing so, a higher value of this ratio is associated with a higher degree of financing

constraints. The reason why we consider a nonconstant threshold can be justified as follows.

In distinguishing constrained and unconstrained firms, “banks will be reluctant to lend money

to debt-heavy firms” as argued by Hansen (1999); however, a reasonable logic is that, if a

debt-heavy firm has a very good investment opportunity, banks may be willing to lend money

to such a firm, which will ease financial constraints faced by the firm. Moreover, a firm may

have different individual-specific and time-invariant effects when facing different degrees of

financing constraints, thus it is reasonable to expect unobserved individual-specific threshold

effects in investigating the cash flow/investment relationship. This motivates us to modify

12We thank N.R. Ramı́rez-Rondán for sharing his dataset to us.
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Hansen’s (1999) empirical model as follows

Iit = θ1Qit−1 + θ2Q
2
it−1 + θ3Q

3
it−1 + θ4Dit−1 + θ5Qit−1Dit−1

+(β1CFit−1 + α1i + σ1uit)I(Dit−1 ≤ γ ′
1Sit)

+(β2CFit−1 + α2i + σ2uit)I(γ
′
1Sit < Dit−1 ≤ γ ′

2Sit)

+(β3CFit−1 + α3i + σ3uit)I(Dit−1 > γ
′
2Sit), (25)

where Iit is the ratio of investment to capital, Qit is the ratio of total market value to assets

(known as Tobin’s Q), CFit is the ratio of cash flow to assets, and Dit is the ratio of long

term debt to assets as in Hansen (1999). Sit is set as (1, Qit−1) reflecting that the threshold

may vary with firms’ investment opportunity. Compared with Hansen’s (1999) empirical

model, the main differences of our empirical model are as follows. First, we allow for time-

varying/covariate-dependent thresholds. Second, we allow for unobservable threshold effects.

When Sit ≡ 1, the model will degenerate to Hansen’s (1999) empirical model. The time-

varying/covariate-dependent thresholds (γ ′
1Sit and γ

′
2Sit) can be explained as time-varying

references to separate the debt level into three regimes, i.e., low debt, moderate debt and

high debt.

Table 4: Empirical application of investment and financing constraints.

Hansen’s (1999) model PTCDI
Estimate 95%CI Estimate 95%CI

Qit−1 0.010 [0.006,0.014] 0.010 [0.005,0.014]
Q2

it−1/10
3 -0.198 [-0.323,-0.073] -0.182 [-0.423,0.060]

Q3
it−1/10

6 1.047 [0.169,1.925] 0.947 [-2.241,4.135]
Dit−1 -0.016 [-0.034,0.002] -0.011 [-0.023,0.002]

Qit−1Di−1 0.001 [-0.003,0.005] -0.001 [-0.009,0.007]
CFit−1I (Dit−1 ≤ γ̂′1Sit) 0.063 [0.036,0.090] 0.062 [0.045,0.079]

CFit−1I (γ̂
′
1Sit < Dit−1 ≤ γ̂′2Sit) 0.098 [0.078,0.118]

CFit−1I (Dit−1 > γ̂′2Sit) 0.039 [-0.022,0.100] 0.112 [0.033,0.191]
Threshold1 0.0157 [0.014,0.018] -0.363 [-0.485,-0.311]

1.373 [1.266,1.659]
Threshold2 0.5362 [0.531,0.563]

Statistic p-value Statistic p-value
F1 32.649 0.003 143.206 0.029
F2 25.799 0.013 353.532 0.167
F3 4.181 0.736
FC 62.352 0.008
FI 121.155 0.031
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Table 4 reports the empirical results, in which 95% confidence intervals for threshold

parameters are based on Algorithm A and p−values of the tests are computed based on

Algorithm B with 1000 bootstrap replications. The confidence intervals for slope parameters

are based on cluster-robust standard errors. For the sake of comparison, we also replicate

and report the empirical results of Hansen (1999) in Column 1 using the R codes and data

available from Hansen’s website. We first focus on the testing results. The test statistics

F1 and F2 are employed to determine the number of thresholds by using 1000 replications

in simulating the p-values. Different from Hansen (1999), our testing results support one

threshold in the empirical model. Therefore, in Table 4 we only report the slope estimates

based on the PTCDI model with one threshold. Compared with Hansen’s (1999) results of

regime-dependent coefficients (β̂1 = 0.063, β̂2 = 0.098, β̂3 = 0.039), which are not increasing

with the degree of financing constraints, and hence not expected from the theory of financing

constraints, our results show that regime-dependent coefficients (β̂1 = 0.062, β̂2 = 0.112) are

completely consistent with theory of financing constraints, as they are strictly increasing with

the degree of financing constraints.

According to the FC test statistic for threshold constancy and the FI test statistic for

unobserved threshold effects, both the null of constant threshold and the null of no unobserved

threshold effect are rejected. Thus, the difference in the empirical results based on the PTCDI

model and Hansen’s (1999) can be explained by the nonconstant threshold and unobserved

threshold effects. Therefore, we conclude that the PTCDI model seems to be a meaningful

complement of the classical model of Hansen (1999) in empirical studies.

6.2 Inflation and economic growth

A vast amount of literature argues that low inflation has no effect on economic growth, while

high inflation is harmful to economic growth (e.g., Dornbusch and Fischer, 1993; Bruno

and Easterly, 1998). Thus, a number of empirical literature focuses on the inflation threshold

under which inflation has an effect on economic growth (e.g., Khan and Senhadji, 2001; Vaona

and Schiavo, 2007; Kremer et al., 2013). More recently, Ramı́rez-Rondán (2020) suggests a

dynamic panel threshold model to study this question on the basis of Kremer et al. (2013). To

further capture the unobserved individual-specific threshold effects, Yu et al. (2022) revisit

the same empirical question by extending Ramı́rez-Rondán’s (2020) empirical model to allow

for heterogenous individual fixed effects.

In this section, we add the literature by considering a covariate-dependent inflation thresh-
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old. As industrialized and nonindustrialized countries have different inflation thresholds

(Khan and Senhadji, 2001; Kremer et al., 2013; Ramı́rez-Rondán, 2020), the literature men-

tioned above conducts separate analyses for industrialized and nonindustrialized countries to

achieve this goal to some extent. However, if the sample size of a subsample is too small rel-

ative to the number of parameters, the analysis of this subsample would become inaccurate;

moreover, it is difficult to test whether the threshold difference is statistically significant.

Therefore, based on the work of Yu et al. (2022), to further demonstrate the usefulness of

the proposed model, we extend their empirical model by allowing for a covariate-dependent

threshold given by

yit − yi,t−1 = x′
1itβ1 + (log(Infit)β12 + α1i + σ1uit)I(Infit ≤ γ0 + γ1Indi)

+ (log(Infit)β22 + α2i + σ2uit)I(Infit > γ0 + γ1Indi), (26)

for i = 1, 2, ..., 74 and t = 1, 2, ..., 11, where yit−yi,t−1 is the average growth rate of real GDP

per capita over 5 years, Infit is the average inflation rate, Indi is a dummy variable that

equals one if the country is industrialized and zero otherwise, and x′
1it = (yi,t−1,x

′
1it) with

x′
1it including Indi and other determinants of economic growth as listed in Ramı́rez-Rondán

(2020). yi,t−1 is also included as an explanatory variable to account for the initial position

of the economy. Among the slope parameters, we mainly focus on β1,yi,t−1 (the coefficient of

yi,t−1), β12 and β22, as in Yu et al. (2022).

In Ramı́rez-Rondán (2020), three specifications of x′
1it are considered as control variables.

The first specification includes only yi,t−1 as a regressor, the second also includes another six

determinants of economic growth, and the third includes further 10 time dummy variables.

Since the third (most general) specification loses too many degrees of freedom, Yu et al.

(2022) only consider the second one for illustration. Following Yu et al. (2022), we also only

consider the second specification, but further include Indi in x′
1it as a control variable. In

addition, our zi also includes the within-group averages of the six determinants of economic

growth and the constant 1 as in Yu et al. (2022). On the other hand, Ramı́rez-Rondán (2020)

also conducts separate analyses for industrialized and nonindustrialized countries, while Yu et

al. (2022) only consider the analysis for all countries because the sample size of nonindustri-

alized countries is too small relative to the number of parameters. We follow Yu et al. (2022),

however, our covariate-dependent threshold model can intrinsically discern the disparate im-

pacts of inflation on economic growth for industrialized and nonindustrialized countries. This
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capability stems from the fact that the threshold in (26) depends on the development level

of a country, i.e., γ0 for nonindustrialized countries and γ0 + γ1 for industrialized countries.

Table 5: Empirical application of inflation and economic growth.

Yu et al.’s (2022) model PTCDI
Estimate 95% CI Estimate 95% CI

[-0.0081, 0.0035]
β1,yi,t−1 -0.0023 [-0.0120, 0.0075] -0.0020 [-0.0084, 0.0043]

[-72.494, 72.489]
[0.0335, 0.478]

β12 0.256 [-0.175, 1.816] 0.224 [-0.063, 0.512]
[-15.030, 16.971]
[-1.161, -0.372]

β22 -0.767 [-1.457, -0.0762] -0.700 [-1.053, -0.347]
[-5.416, 3.941]
[2.172, 19.432]

γ0 15.947 [1.212, 51.888] 15.923 [15.737, 16.917]
[14.128, 16.871]

γ1 -13.418 [-14.511, -12.927]

Statistic p-value Statistic p-value
F1 28.756 0.014 90.471 0.017
F2 20.367 0.284 33.232 0.337
FC 9.350 0.019
FI 55.355 0.000 36.856 0.057

Notes: The three confidence intervals of Yu et al. (2022) are, in order, (LRn, LR1n, LR2n) for γ0, and
(t, LRn, LR2n) for β1,yi,t−1 , β12 and β22.

Table 5 reports the empirical results, in which 95% confidence intervals for threshold

parameters are based on Algorithm A and p−values of the tests are computed based on

Algorithm B with 1000 bootstrap replications. The confidence intervals for slope parameters

are based on cluster-robust standard errors. For comparison, we also replicate and report

the empirical results of Yu et al. (2022) in Column 1 of Table 1. First, we determine the

number of thresholds according to the test statistics F1 and F2. Consistent with Ramı́rez-

Rondán (2020) and Yu et al. (2022), our testing results also support only one threshold in

the empirical model, as can be seen from Table 5. Therefore, in Table 5 we only report the

slope estimates based on the PTCDI model with one threshold.

Turning now to the estimation and inferences on the threshold parameters, Ramı́rez-

Rondán (2020) finds a threshold inflation of 3.1-3.5% and 16.0-16.1% for industrialized and

nonindustrialized countries, respectively, and the estimate for all countries is the same as
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that for nonindustrialized countries. Yu et al. (2022) obtain a roughly same estimate for

the worldwide sample, but do not conduct separate analyses for industrialized and nonin-

dustrialized countries. Our estimate for nonindustrialized countries (γ0) is close to that of

Ramı́rez-Rondán (2020), and thus similar to the 17% threshold estimated by Kremer et al.

(2013). For industrialized countries, our estimate is 2.505% (γ0+γ1), which is lower than that

of Ramı́rez-Rondán (2020) but close to the 2.5% threshold estimated by Kremer et al. (2013).

Our 95% confidence intervals for threshold parameters are tight, indicating low uncertainty

regarding the estimates, and the confidence interval for γ0 is close to that of Ramı́rez-Rondán

(2020) and the one based on LR2n of Yu et al. (2022).

In the next, we focus on the estimation and inferences on the slope parameters. The

estimates and confidence intervals of Yu et al. (2022) are very different from those of Ramı́rez-

Rondán (2020) due to the difference in methodologies. Our estimates are close to those of Yu

et al. (2022) and thus also consistent with the economic theory, indicating that rich countries

have slower growth rates (β̂1,yi,t−1 < 0), and high inflation is detrimental to economic growth

(β̂12 > 0, β̂22 < 0). Consistent with Yu et al. (2022), our confidence intervals suggest that

β1,yi,t−1 and β12 are not significant, and β22 is significant.

Finally, we test threshold constancy and unobserved individual-specific threshold effects.

According to the FC test statistic for threshold constancy, the null of a constant threshold

is rejected with the p−value 0.019. As for the FI test statistic for unobserved threshold

effects, the simulated p−value is 0.057. Therefore, the rejection conclusion for no unobserved

threshold effects is not as clear as that for threshold constancy, which may be attributed to

some elements of zi blurring the test, as in the empirical case of investment and financing

constraints in Yu et al. (2022). In summary, these empirical results demonstrate the exis-

tence of a covariate-dependent inflation threshold, indicating that the inflation threshold for

industrialized countries is statistically significantly different from that for nonindustrialized

countries. Hence, we conclude that the PTCDI model is a meaningful complement to the

models proposed by Ramı́rez-Rondán’s (2020) and Yu et al. (2022) in empirical studies.

7 Conclusion

This article studies the estimation and inferences of panel threshold models with covariate-

dependent thresholds and unobserved individual-specific threshold effects. Based on the CRE

device and the MCMC technique, we suggest an estimation procedure to estimate the model
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parameters. We also propose test statistics to test for threshold effect, threshold constancy,

and unobserved individual-specific threshold effects. Asymptotic results are established for

both the suggested estimator and test statistics. Monte Carlo simulations are conducted and

the simulation results show that the suggested estimation, inference and testing methods have

desired performance in finite samples. We apply the PTCDI model to revisit two empirical

relationships, and both applications demonstrate the usefulness of the proposed model.
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Appendix A: Mathematical proofs

This appendix provides the proofs of Theorems 1-2 in the article. Before proving Theorem

1, we first prove the following Lemmas, which are useful to prove Theorem 1. For notational

simplicity, we first clarify the following denotations.

1. I(qit ≤ s′itγ) = Iit(γ) and x̌it(γ) = x̌itIit(γ).

2. sgn (x) = 1(x > 0)− 1(x ≤ 0) (i.e. the sign function), hence |x| = x1(x > 0)− x1(x ≤
0) = x[1(x > 0)− 1(x ≤ 0)] = x sgn (x).

3. aN = N1−2α, γ10 = γ0, γs = (γ11, . . . , γ1k)
′ ,γ = (γ0,γ

′
s)

′ = (γ10, . . . , γ1k)
′ and ω =

(ω0,ω
′
s)

′ = (ω10, . . . , ω1k)
′.

4. ∇Iit(γ) = Iit(γ)− Iit(γ
0).

5. JN (γ) = N−1/2
∑N

i=1

∑T
t=1 c

′x̌iteitIit(γ).

6. GN (ω, h) = (Nh)−1
∑N

i=1

∑T
t=1 c

′x̌itx̌
′
itc|∇Iit(γ)|.

7. VlN (ω, h) = (Nh)−1
∑N

i=1

∑T
t=1 c

′x̌itx̌
′
ite

2
litc|Ilit(γ)|, where I1it(γ) = −I(s′itγ < qit ≤

s′itγ
0) and I2it(γ) = I(s′itγ

0 < qit ≤ s′itγ).

8. RN (ω, h) = (Nh)−1/2
∑N

i=1

∑T
t=1 c

′x̌iteit∇Iit(γ).

9. Aθ = θδ = (θ′2, δ
′)′, δ = θ1 − θ2, Aθ0 = θ0δ = (θ02

′, δ′0)
′ and δ0 = θ

0
1 − θ02, where

A =

[
0 I

I −I

]
, A−1 =

[
I I

I 0

]
. (A1)

32



Lemma 1. Under Assumption 1, E|ϕ(xit)|2 <∞ and E∥sit∥ ≤ C <∞, Γ is a compact set,

then

sup
γ∈Γ

∣∣∣∣∣ 1N
N∑
i=1

ϕ(xit)I
(
qit ≤ s′itγ

)
− E

(
ϕ(xit)I

(
qit ≤ s′itγ

))∣∣∣∣∣ a.s.−→ 0 (A2)

as N → ∞.

Lemma 2. There is a C3 <∞ such that for γ1,γ2 ∈ Γ, and r ≤ 4, we have

E
(
∥x̌it∥r |Iit(γ2)− Iit(γ1)|

)
≤ C3 ∥γ2 − γ1∥ , (A3)

E
(
∥x̌iteit∥r |Iit(γ2)− Iit(γ1)|

)
≤ C3 ∥γ2 − γ1∥ , (A4)

where Iit(γ) = I(qit ≤ s′itγ).

Lemma 3. There is a K <∞ such that for γ1,γ2 ∈ Γ, we have

E

∣∣∣∣∣ 1√
N

N∑
i=1

[
b2it(γ1,γ2)− E(b2it(γ1,γ2))

]∣∣∣∣∣
2

≤ K ∥γ2 − γ1∥ , (A5)

E

∣∣∣∣∣ 1√
N

N∑
i=1

[
h2it(γ1,γ2)− E(h2it(γ1,γ2))

]∣∣∣∣∣
2

≤ K ∥γ2 − γ1∥ , (A6)

where bit(γ1,γ2) = ∥x̌it∥|Iit(γ2)− Iit(γ1)| and hit(γ1,γ2) = ∥x̌iteit∥|Iit(γ2)− Iit(γ1)|.

Lemma 4. There are finite constants K1 and K2 such that for all γ, ε > 0, η > 0, and

δ ≥ N−1, if
√
N ≥ K2/η, we have

P

(
sup

∥γ−γ1∥<δ

∥∥JN (γ)− JN (γ1)
∥∥ > η

)
≤ K1δ

2

η4
. (A7)

Lemma 5. Under Assumption 1, JN (γ) →d J(γ), which is a mean-zero Gaussian process

with almost surely continuous sample paths.

proof of Lemma 1-5. The proofs are similar with Hansen (1996, 2000) and Yang et al. (2021a).

To save space, the proofs are skipped here and is available from the authors upon request.

Lemma 6. Under Assumption 1, γ̂ →p γ
0.

Proof. Let yi = (yi1, . . . , yiT )
′, x̌i = (x̌i1, . . . , x̌iT )

′, x̌i(γ) = (x̌i1(γ), . . . , x̌iT (γ))
′, and ei =

(ei1, . . . , eiT )
′. Let y, x̌, x̌γ and e denote the data stacked over all individuals, i.e., y =

(y′1, . . . , y
′
N )′, x̌ = (x̌′

1, . . . , x̌
′
N )′, x̌γ = (x̌′

1(γ), . . . , x̌
′
N (γ))′, and e = (e′1, . . . , e

′
N )′. Thus,

model can be rewritten as y = x̌θ2 + x̌γδ + e = X̌γθδ + e.

By Lemma 1-5, we have the following results
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1

N
X̌′

γX̌γ = Op(1),

1

N
∇x̌′

γ∇x̌γ = Op(1),

1

N
X̌′

γ∇x̌γ = Op(1),

1√
N

X̌′
γe = Op(1),

1√
N

∇x̌′
γe = Op(1), (A8)

where ∇x̌γ = x̌γ − x̌0 and x̌0 = x̌γ0 .

First, we derive the convergence rate of θ̂δ(γ). Note that

Nα
(
θ̂δ(γ)− θ0δ

)
=

(
1

N
X̌′

γX̌γ

)−1

Nα−1X̌′
γ (∇x̌γδ0 + e)

=

(
1

N
X̌′

γX̌γ

)−1( 1

N
X̌′

γ∇x̌γc+Nα−1X̌′
γe

)
= Op(1)

(
Op(1) +Op(N

α−1/2)
)

= Op(1), (A9)

and

Nα
(
θ̂δ(γ

0)− θ0δ
)

=

(
1

N
X̌′

0X̌0

)−1 (
Nα−1X̌′

0e
)

= Op(1)Op(N
α−1/2)

= op(1), (A10)

where X̌0 = X̌γ0 .

Next, we derive the convergence rate of S̃SRNT (γ), which can be written as

N2α−1
(
S̃SRNT (γ)− e′e

)
= N2α−1

(
ê′(γ)ê(γ)− e′e

)
= S1 + S2 − 2 (S3 + S4 − S5) , (A11)

where

S1 = c′
1

N
∇x̌′

γ∇x̌γc = Op(1),

S2 = Nα
(
θ̂δ(γ)− θ0δ

)′ 1

N
X̌′

γX̌γN
α
(
θ̂δ(γ)− θ0δ

)
= Op(1)Op(1)Op(1) = Op(1)

S3 = Nα−1/2 1√
N

c′∇x̌′
γe = O(Nα−1/2)Op(1) = op(1)

S4 = Nα−1/2Nα
(
θ̂δ(γ)− θ0δ

) 1√
N

X̌′
γe

= O(Nα−1/2)Op(1)Op(1) = op(1)

S5 = Nα
(
θ̂δ(γ)− θ0δ

)′ 1

N
X̌′

γ∇x̌γc = Op(1)Op(1) = Op(1). (A12)
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Thus, we have the following result:

S1 − 2S5 + S2 =
1

N

[
c′∇x̌′

γ −Nα
(
θ̂δ(γ)− θ0δ

)′
X̌′

γ

]
×
[
∇x̌γc− X̌γN

α
(
θ̂δ(γ)− θ0δ

)]
≥ 0, (A13)

In addition, when γ = γ0, we have S1 = S3 = S5 = 0 and S2 = op(1). Combining the

above results, we obtain

N2α−1
(
S̃SRNT (γ)− e′e

)
p−→ b(γ) ≥ 0. (A14)

It is easily seen that b(γ0) = 0 when γ = γ0. Since γ minimizes N2α−1(S̃SRNT (γ)−e′e),

using Theorem 2.1 of Newey and McFadden (1994) we have γ̂ →p γ
0. This completes the

proof of Lemma 6.

Lemma 7. Under Assumption 1, set γ = γ0 + ωh, and h→ 0 as N → ∞, then

Nα
(
θ̂δ(γ)− θ0δ

)
p−→ 0. (A15)

Proof. Note that, for any γ1 ∈ Γ

1

N
X̌′

γ1
X̌γ1

p−→

[
M M(γ1)

M(γ1) M(γ1)

]
≡ S (γ1),

1

N
X̌′

γ1
∇x̌γ1

c
p−→

[
M(γ1)−M(γ0)

M(γ1)−M(γ1,γ
0)

]
c ≡ A (γ1),

where M(γ,γ0) =
∑T

t=1E(x̌itx̌
′
itI(qit ≤ min(s′itγ, s

′
itγ

0))), and therefore,

Nα
(
θ̂δ(γ1)− θ0δ

)
=

(
1

N
X̌′

γ1
X̌γ1

)−1( 1

N
X̌′

γ1
∇x̌γ1

c+Nα−1X̌′
γ1
e

)
p−→ S (γ1)

−1A (γ1).

It is easily seen that A (γ0) = 0. Since S (γ) and A (γ) are continuous, S −1(γ)A (γ) is

continuous in Γ. By setting γ → γ0, we can conclude that

Nα
(
θ̂δ(γ)− θ0δ

)
p−→ S −1(γ0)A (γ0) = S −1(γ0)0 = 0. (A16)

Lemma 8. Under Assumption 1, set γ = γ0 + ωh, and h→ 0 as N → ∞,

P (Ait(γ) | sit)
s′itγ − s′itγ

0
−→ ft|s

(
s′itγ

0
∣∣ sit) , (A17)

P (Aiτ (γ) |Ait(γ), siτ , sit)

s′iτγ − s′iτγ
0

−→ fτ |t,s
(
s′iτγ

0
∣∣A0

it, siτ , sit
)
, (A18)
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Mitt(γ)

s′itγ − s′itγ
0

−→ E
(
x̌itx̌

′
it

∣∣A0
it, sit

)
ft|s
(
s′itγ

0
∣∣ sit) sgn (∇Iit(γ)), (A19)

Vlitt(γ)

s′itγ − s′itγ
0

−→ E
(
x̌itx̌

′
ite

2
lit

∣∣A0
it, sit

)
ft|s
(
s′itγ

0
∣∣ sit) sgn (∇Iit(γ)), (A20)

and for τ ̸= t

Miτt(γ) = Op(h
2), Vliτt(γ) = Op(h

2), (A21)

E
(
x̌iτ x̌

′
ite1iτe2itI1iτ (γ)I2it(γ)

)
= Op(h

2) (A22)

as N → ∞, where Ait(γ) = {s′itγ0 < qit ≤ s′itγ}, A0
it = {qit = s′itγ

0}, Miτt(γ) =

E (∇x̌iτ (γ)∇x̌′
it(γ) | siτ , sit), Vliτt(γ) = E (∇x̌iτ (γ)∇x̌′

it(γ)eliτelit | siτ , sit), ∇x̌it(γ) = x̌it(γ)−
x̌it(γ

0), and ∇Iit(γ) = Iit(γ)− Iit(γ
0).

Proof. First, note that as N → ∞, we have h→ 0 and

s′itγ − s′itγ
0 = s′it

(
γ − γ0

)
= s′itωh

−→ 0.

Next, denote h∗ = s′itγ − s′itγ
0, then we have h∗ → 0 as N → ∞ and

P (Ait(γ) | sit)
s′itγ − s′itγ

0
=

P (qit ≤ s′itγ | sit)− P
(
qit ≤ s′itγ

0
∣∣ sit)

s′itγ − s′itγ
0

=
P
(
qit ≤ s′itγ

0 + h∗
∣∣ sit)− P

(
qit ≤ s′itγ

0
∣∣ sit)

h∗
. (A23)

By the definition of a Differential, we have

∂P (a | sit)
∂a

∣∣∣∣
a=s′itγ

0

≡ lim
h∗→0

P
(
qit ≤ s′itγ

0 + h∗
∣∣ sit)− P

(
qit ≤ s′itγ

0
∣∣ sit)

h∗

= ft|s
(
s′itγ

0
∣∣ sit) . (A24)

A similar argument can prove (A18). Therefore, for τ ̸= t, we have

h−2Miτt(γ) = E
(
x̌iτ x̌

′
it

∣∣Aiτ (γ), Ait(γ), siτ , sit
)

×P (Ait(γ) | siτ , sit)
s′itγ − s′itγ

0
× s′itω

×P (Aiτ (γ) |Ait(γ), siτ , sit)

s′iτγ − s′iτγ
0

× s′iτω

−→ E
(
x̌iτ x̌

′
it

∣∣A0
iτ , A

0
it, siτ , sit

)
ft|s
(
s′itγ

0
∣∣ sit)× s′itω

×fτ |t,s
(
s′iτγ

0
∣∣A0

it, siτ , sit
)
× s′iτω (A25)

, and for τ = t

Mitt(γ)

s′itγ − s′itγ
0

= E
(
x̌itx̌

′
it

∣∣Ait(γ), sit
) P (Ait(γ) | sit)

s′itγ − s′itγ
0

sgn (∇Iit(γ))

−→ E
(
x̌itx̌

′
it

∣∣A0
it, sit

)
ft|s
(
sit(γ

0)
∣∣ sit) sgn (∇Iit(γ)). (A26)

A similar argument can prove (A20), (A21) and (A22). This completes the proof of Lemma

8.
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Lemma 9. Under Assumption 1, on a compact set Ψ = ×d
n=0Ψn, we have the following

uniform convergence results, set γ = γ0 + ωh such that h → 0 and Nh → ∞ as N → ∞,

than

GN (ω, h)
p−→ GT (ω), (A27)

VlN (ω, h)
p−→ VlT (ω), (A28)

where

GT (ω) =
T∑
t=1

c′E
(
Dt

(
γ0
∣∣ sit) ft|s (s′itγ0

∣∣ sit) ∣∣s′itω∣∣ )c,
V1T (ω) =

T∑
t=1

c′E
(
V1t

(
γ0
∣∣ sit) ft|s (s′itγ0

∣∣ sit) ∣∣s′itω∣∣ I(s′itω ≤ 0)
)
c,

V2T (ω) =

T∑
t=1

c′E
(
V2t

(
γ0
∣∣ sit) ft|s (s′itγ0

∣∣ sit) ∣∣s′itω∣∣ I(s′itω > 0)
)
c,

in which

Dt

(
γ0
∣∣ sit) = E

(
x̌itx̌

′
it

∣∣ qit = s′itγ, sit
)
.

Vlt

(
γ0
∣∣ sit) = E

(
x̌itx̌

′
ite

2
lit

∣∣ qit = s′itγ, sit
)
.

Proof. Note that

{qit ≤ s′itγ} ≤ {qit ≤ s′itγ
0} ⇔ s′itγ ≤ s′itγ

0 (A29)

{qit ≤ s′itγ} > {qit ≤ s′itγ
0} ⇔ s′itγ > s′itγ

0, (A30)

(A29) and (A30) imply that

sgn (Iit(γ)− Iit(γ
0)) = sgn (s′itγ − s′itγ

0), (A31)

and therefore,[
s′itγ − s′itγ

0
]
sgn (Iit(γ)− Iit(γ

0)) =
[
s′itγ − s′itγ

0
]
sgn (s′itγ − s′itγ

0)

=
∣∣s′itγ − s′itγ

0
∣∣ . (A32)

Denote GNt(ω, h) = (Nh)−1
∑N

i=1 c
′x̌itx̌

′
itc
∣∣Iit(γ)− Iit(γ

0)
∣∣. By Lemma 8 and (A32),
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we can obtain

E (GNt(ω, h) | sit)

= E

(
1

Nh

N∑
i=1

c′x̌itx̌
′
itc
∣∣Iit(γ)− Iit(γ

0)
∣∣ ∣∣∣∣∣ sit

)

=
1

h
c′Mitt(γ)c

=
1

h
c′

Mitt(γ)

s′itγ − s′itγ
0
c
(
s′itγ − s′itγ

0
)

= c′
Mitt(γ)

s′itγ − s′itγ
0
c
(
s′itω

)
−→ c′E

(
x̌itx̌

′
it

∣∣ qit = s′itγ
0, sit

)
ft|s
(
s′itγ

0
∣∣ sit) c sgn (∇Iit(γ)) (s′itω)

= c′Dt

(
γ0
∣∣ sit) ft|s (s′itγ0

∣∣ sit) c ∣∣s′itω∣∣ , (A33)

in which we use the following result

h−1
[
s′itγ − s′itγ

0
]

= h−1s′it
(
γ − γ0

)
= h−1s′itωh = s′itω. (A34)

Taking the expectation over both sides of (A33), we have

E (GNt(ω, h)) = E (E (GNt(ω, h) | sit))

−→ c′E
(
Dt

(
γ0
∣∣ sit) f (s′itγ0

∣∣ sit) ∣∣s′it0ω∣∣ )c. (A35)

Next, note that we have the following result

E
∥∥GNt(ω, h)− E(GNt(ω, h))

∥∥2
≤ ∥c∥2E

∣∣∣∣∣ 1

Nh

N∑
i=1

∥x̌it∥2 |∇Iit(γ)| − E
(
∥x̌it∥2 |∇Iit(γ)|

)∣∣∣∣∣
2

=
1

Nh2
∥c∥2E

∣∣∣∣∣ 1√
N

N∑
i=1

b2it(γ
0,γ)− E(b2it(γ

0,γ))

∣∣∣∣∣
2

≤ 1

Nh2
∥c∥2K

∥∥γ − γ0
∥∥ =

1

Nh2
∥c∥2K ∥ωh∥

=
1

Nh
∥c∥2K ∥ω∥

−→ 0. (A36)

The inequality is based on Lemma 3. Furthermore, by Markov’s inequality, we have

P
(∥∥GNt(ω, h)− E(GNt(ω, h))

∥∥ > ε
)

≤
E
∥∥GNt(ω, h)− E(GNt(ω, h))

∥∥2
ε2

−→ 0, (A37)
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and

P
(∥∥GN (ω, h)− E(GN (ω, h))

∥∥ > ε
)

≤
T∑
t=1

P
(∥∥GNt(ω, h)− E(GNt(ω, h))

∥∥ > ε/T
)
−→ 0. (A38)

Finally, we have

GN (ω, h)
p−→

T∑
t=1

c′E
(
Dt

(
γ0
∣∣ sit) ft|s (s′itγ0

∣∣ sit) ∣∣s′itω∣∣ )c. (A39)

The proof for (A28) is similar with (A27). This completes the proof of Lemma 9.

Lemma 10. Under Assumption 1, on any compact set Ψ = ×d
n=0Ψn, set γ = γ0 +ωh such

that h→ 0 and Th→ ∞ as T → ∞, then

RN (ω, h)
d−→ RT (ω), (A40)

where RT (ω) = R1T (ω) + R2T (ω), RlT (ω) is a Gaussian process with a positive variance

VlT (ω) when ω ̸= 0, which R1T (ω) and R2T (ω) are independent.

Proof. Denote

R1N (ω, h) =

√
1

Nh

N∑
i=1

T∑
t=1

c′x̌ite1itI1it(γ),

R2N (ω, h) =

√
1

Nh

N∑
i=1

T∑
t=1

c′x̌ite2itI2it(γ),

where I1it(γ) = −I(s′itγ < qit ≤ s′itγ
0) and I2it(γ) = I(s′itγ

0 < qit ≤ s′itγ). According to the

definition of eit, we have the following result

eit
(
Iit(γ)− Iit(γ

0)
)
=

{
e1itI1it(γ) , if s′itγ ≤ s′itγ

0

e2itI2it(γ) , if s′itγ > s′itγ
0
, (A41)

and hence RN (ω, h) = R1N (ω, h) +R2N (ω, h).

39



First, we prove that E(R2
lN (ω)) →p VlT (ω). Note that by Lemma 8, we have

E(R2
lN (ω, h)) =

1

Nh
E

(
N∑
i=1

T∑
t=1

c′x̌itelitIlit(γ)

)2

=
1

Nh

N∑
i=1

E

(
T∑
t=1

c′x̌itelitIlit(γ)

)2

=
1

h

(
c′

T∑
t=1

E
(
x̌itx̌

′
ite

2
lit|Ilit(γ)|

)
c

+ c′
∑
τ ̸=t

E
(
x̌iτ x̌

′
iteliτelitIliτ (γ)Ilit(γ)

)
c


=

1

h

T∑
t=1

c′Vlitt(γ)c+
1

h

∑
τ ̸=t

c′Vlitτ (γ)c

−→ VlT (ω) <∞, (A42)

and

E(R1N (ω, h)R2N (ω, h))

=
1

Nh
E

(
N∑
i=1

T∑
t=1

c′x̌ite1itI1it(γ)

)
E

(
N∑
i=1

T∑
t=1

c′x̌ite2itI2it(γ)

)

=
1

Nh

N∑
i=1

E

(
T∑
t=1

c′x̌ite1itI1it(γ)

)(
T∑
t=1

c′x̌ite2itI2it(γ)

)

=
1

h

∑
τ ̸=t

E
(
c′x̌iτ x̌

′
itce1iτe2itI1iτ (γ)I2it(γ)

)
−→ 0. (A43)

Under Assumption 1, ∇x̌iteit is an i.i.d. random sequence across i, so RN (ω) converges

pointwise to a Gaussian distribution with variance V1T (ω) + V2T (ω) by the CLT.

Next, given lemma 4, the proof of the tightness of RN (ω, h) is same as Lemma A.11 in

Hansen (2000). This completes the proof of Lemma 10.

Lemma 11. Under Assumption 1, we have aN (γ̂ − γ0) = Op(1).

Proof. To prove Lemma 11, we need to prove that, for some ω̄ > 0, we have

lim
T→∞

P

(∥∥γ − γ0
∥∥ ≤ ω̄

aN

)
= 1. (A44)

For any B > 0, define VB = {γ : ∥γ − γ0∥ ≤ B}. Then, when the sample size N is large

enough, we have ω̄/aN ≤ B. By Lemma 6, we have γ̂ →p γ
0, and hence limN→∞ P (γ̂ ∈

VB) = 1. Therefore, we only need to exmine the limiting behavior in VB.

Define a subset of VB : V ′
B = {γ : ω̄/aN < ∥γ − γ0∥ ≤ B}. To prove (A44), we just need

to prove limN→∞ P (γ̂ ∈ V ′
B) = 0.
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Let θ̂δ = (θ̂
′
2, δ̂

′
)′ be the estimation of yit = x̌itθ2 + x̌it(γ)δ + eit. Denote S̃SR

∗
NT (γ) =

S̃SRNT (θ̂δ(γ̂),γ) and S̃SR
∗
NT (γ

0) = S̃SRNT (θ̂δ(γ̂),γ
0), where S̃SRNT (θ̂δ(γ̂),γ) = ∥ê(θ̂δ(γ̂),γ)∥2.

From the estimation procedure of γ̂, we have S̃SR
∗
NT (γ̂) ≤ S̃SR

∗
NT (γ

0). Thus it suffices to

prove that for any γ ∈ V ′
B,

lim
N→∞

P
(
S̃SR

∗
NT (γ)− S̃SR

∗
NT (γ

0) > 0
)
= 1. (A45)

Note that, the equation (A45) is equivalent to prove

lim
N→∞

P

(
S̃SR

∗
NT (γ)− S̃SR

∗
NT (γ

0)

aN∥γ − γ0∥
> 0

)
= 1. (A46)

Since the true model can be rewritten as y = X̌0θ
0
δ + e, thus we have

ê(ϕ̂(γ̂),γ) = y − X̌γ θ̂δ

= X̌0θ
0
δ + e− X̌γ θ̂δ

= e−∇x̌γδ0 − X̌γ(θ̂δ − θ0δ). (A47)

Therefore,

S̃SR
∗
NT (γ)− S̃SR

∗
NT (γ

0) =
∥∥∥ê(θ̂(γ̂),γ)∥∥∥2 − ∥∥∥ê(θ̂(γ̂),γ0)

∥∥∥2
= S1 + S2 − 2(S3 + S4 − S5), (A48)

where

S1 = T−2αc′∇x̌′
γ∇x̌γc

S2 =
(
θ̂δ − θ0δ

)′ (
X̌′

γX̌γ − X̌′
0X̌0

) (
θ̂δ − θ0δ

)
S3 = T−αc′∇x̌′

γe

S4 =
(
θ̂δ − θ0δ

)′
∇X̌′

γe

S5 = T−αc′∇x̌′
γX̌γ

(
θ̂δ − θ0δ

)
.

Let γ = γ0 + ωh, h = N2δ−1, where α < δ < 2, then we have limN→∞ P (γ ∈ V ′
B) = 1.
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Using Lemma 9 and Assumption 1 (θ01 − θ02 = cN−α), we can show

S1
aN∥γ − γ0∥

= ∥ω∥−1GN (ω, h) = Op(1) > 0 (A49)

S2
aN∥γ − γ0∥

=
(
θ̂δ − θ0δ

)′(X̌′
γX̌γ − X̌′

0X̌0

∥ω∥Nh

)(
θ̂δ − θ0δ

)
= op(1)Op(1)op(1)

= op(1), (A50)

|S3|
aN∥γ − γ0∥

=
(
aN
∥∥γ − γ0

∥∥)−1/2 ×
∣∣∥ω∥−1RN (ω, h)

∣∣
≲ ω̄−1/2 ×

∣∣∥ω∥−1RN (ω, h)
∣∣ = O(ω̄−1/2)Op(1), (A51)

|S4|
aN∥γ − γ0∥

=
(
aN
∥∥γ − γ0

∥∥)−1/2 ×

∣∣∣∣∣(θ̂δ − θ0δ)′ 1√
∥ω∥Nh

∇X̌′
γe

∣∣∣∣∣
≲ O(ω̄−1/2)op(1)Op(1) = op(1), (A52)

S5
aN∥γ − γ0∥

=
1

∥ω∥Nh
c′∇x̌′

γX̌γ

(
θ̂δ − θ0δ

)
= Op(1)op(1) = op(1), (A53)

where we denote AN ≲ BN (Asymptotic inequality), if AN ≤ CBN holds for all sufficiently

large absolute constant N .

Hence, we can show that for any γ ∈ V ′
B, it is possible to find a ω̄ <∞ such that∣∣∣∣ S1

aN∥γ − γ0∥

∣∣∣∣ > 5∑
k=2

∣∣∣∣ Sk
aN∥γ − γ0∥

∣∣∣∣ (A54)

holds for all sufficiently large N in probability. By (A54), we obtain (A45) and (A46).

Therefore, we have established limN→∞ P (γ̂ ∈ V ′
B) = 0 and (A44), thus we obtain the

convergence rate. This completes the proof of Lemma 11.

Lemma 12. Under Assumption 1, set γ = γ0 + ω/aN , then

√
N
[
θ̂δ(γ)− θ̂δ(γ0)

]
p−→ 0, and

√
N
[
θ̂δ(γ

0)− θ0δ
]

d−→ Z∗∗, (A55)

where Z∗∗ is a Gaussian process with variance M−1
∗∗ Ω∗∗M

−1
∗∗ , in which

M∗∗ =

[
M M1

M1 M1

]
, Ω∗∗ =

[
Ω1 +Ω2 +Ω12 +Ω′

12 Ω1 +Ω12

Ω1 +Ω′
12 Ω1

]
, (A56)

M1 = M(γ0), Ω1 = Ω1(γ
0), Ω2 = Ω2(γ

0) and Ω12 = Ω12(γ
0).

Proof. By Lemma 5, on any compact set Ψ, we have

1√
N

X̌′
γe

d−→ Z0∗∗, (A57)

where Z0∗∗ is a Gaussian process with variance Ω∗∗. Also,

√
N
[
θ̂δ(γ)− θ0δ

]
=

[
1

N
X̌′

γX̌γ

]−1 [ 1√
N

X̌′
γe− a

−1/2
N

1

N
X̌γ∇x̌γc

]
(A58)

d−→ M−1
∗∗ Z0∗∗ ≡ Z∗∗. (A59)
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We have established
√
N(θ̂δ(γ)− θ0δ)

d−→ Z∗∗, and it implies

√
N
[
θ̂δ(γ)− θ̂δ(γ0)

]
=

√
N
[
θ̂δ(γ)− θ0δ

]
−
√
N
[
θ̂δ(γ

0)− θ0δ
]

d−→ Z∗∗ −Z∗∗ = 0. (A60)

This completes the proof of Lemma 12.

Proof of Theorem 1. Using Lemma 11-12, we can conclude that
√
N
(
θ̂δ − θ0δ

)
d−→ Z∗∗, (A61)

and

√
NA−1

(
θ̂δ − θ0δ

)
=

√
N
(
θ̂ − θ0

)
d−→ A−1Z∗∗ = Z. (A62)

From Lemma 11, the threshold estimator is consistent with convergence rate aN = N1−2α;

thus, we can study their asymptotic behavior in the neighborhood of the true thresholds,

γ̂ = γ0 + ω̂/aN .

By the definition of the threshold estimator, we have

aN
(
γ̂ − γ0

)
= ω̂

= argmin
ω∈Ψ

S̃SRNT

(
θ̂δ(γ

0 +
ω

aN
),γ0 +

ω

aN

)
− S̃SRNT

(
θ̂δ(γ

0),γ0
)

= argmin
ω∈Ψ

QN (ω). (A63)

As in Lemma 11, we can obtain QN (ω) = Q1+Q2+Q3−2(Q4−Q5+Q6+Q7+Q8) (defined

in the later). We next derive the limiting behavior of each Qi (i=1,2,...,8), respectively. Thus,
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by Lemma 1-12, let γ = γ0 + ωh and h = a−1
N , we have the following results

Q1 = N−2αc′∇x̌′
γ∇x̌γc = GN (ω, h), (A64)

Q2 =
√
N
(
θ̂δ(γ

0)− θ0δ
)′ 1

N

(
X̌′

γX̌γ − X̌′
0X̌0

)√
N
(
θ̂δ(γ

0)− θ0δ
)

= Op(1)op(1)Op(1) = op(1), (A65)

Q3 =
√
N
(
θ̂δ(γ)− θ̂δ(γ0)

)′ 1

N
X̌′

γX̌γ

√
N
(
θ̂δ(γ)− θ̂δ(γ0)

)
= op(1)Op(1)op(1) = op(1), (A66)

Q4 = N−αc′∇x̌′
γe = RN (ω, h), (A67)

Q5 =
√
N
(
θ̂δ(γ

0)− θ0δ
)′ 1√

N
∇X̌γe = Op(1)op(1) = op(1), (A68)

Q6 =
√
N
(
θ̂δ(γ)− θ0δ

)′ 1√
Nh

X̌γ∇x̌γcN
−α = Op(1)Op(1)op(1) = op(1), (A69)

Q7 =
√
N
(
θ̂δ(γ)− θ̂δ(γ0)

)′ 1

N
X̌′

γX̌γ

√
N
(
θ̂δ(γ

0)− θ0δ
)

= op(1)Op(1)op(1) = op(1) (A70)

Q8 =
√
N
(
θ̂δ(γ)− θ̂δ(γ0)

)′ 1√
N

X̌γe = op(1)Op(1) = op(1), (A71)

and therefore,

QN (ω) = Q1 − 2Q4 + op(1)
d−→ GT (ω)− 2RT (ω). (A72)

Moreover, we have

aN (γ̂ − γ0)
d−→ argmin

ω∈Rk+1

GT (ω)− 2RT (ω)

= argmin
ω∈Rk+1

[
1

2
GT (ω)−RT (ω)

]
. (A73)

This completes the proof of Theorem 1.

Proof of Theorem 2. We first derive the limiting distribution for F1, then the limiting distri-

bution for FC , and finally the limiting distribution for FI .

First, we derive the limiting distribution of θ̂δ(γ) under H
1
0 : θ1 = θ2.

Under H1
0 : θ1 = θ2, by Lemma 1-5, for any fixed γ ∈ Γ, we have

√
N
[
θ̂δ(γ)− θ0δ

]
=

[
1

N
X̌′

γX̌γ

]−1 [ 1√
N

X̌′
γe

]
(A74)

p−→ Z∗∗(γ), (A75)
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where Z∗∗(γ) is a Gaussian process with variance M−1
∗∗ (γ)Ω∗∗(γ)M

−1
∗∗ (γ), in which

M∗∗(γ) =

[
M M(γ)

M(γ) M(γ)

]

Ω∗∗(γ) =

[
Ω1(γ) +Ω2(γ) +Ω12(γ) +Ω′

12(γ) Ω1(γ) +Ω12(γ)

Ω1(γ) +Ω′
12(γ) Ω1(γ)

]
. (A76)

Denote θ̃δ = argminθ∈Θc1 S̃SRNT (θδ,γ), where Θc1 = {θ ∈ Θ : θ1 = θ2}. Next, we

derive the limit distribution of θ̃δ − θ̂δ(γ). Under H1
0 : θ1 = θ2, the model degenerates into

a linear regression model when estimating parameters using the restriction of θ1 = θ2, in

which case we have θ̃δ−θ0δ →p 0. This,
√
N(θ̃δ−θ0δ) can be solved using the restricted least

squared estimator

√
N
(
θ̃δ − θ0δ

)
=

[
Ĥ−1

N (θ0δ,γ)− Ĥ−1
N (θ0δ,γ)R

′
∗∗

(
R∗∗Ĥ

−1
N (θ0δ,γ)R

′
∗∗

)−1

×R∗∗Ĥ
−1
N (θ0δ,γ)

]
K̂N (θ0δ,γ), (A77)

where R∗∗ is a matrix such that R∗∗θδ = δ = 0, K̂N (θ0δ,γ) = N−1/2X̌′
γe and ĤN (θ0δ,γ) =

X̌′
γX̌γ/N . From (A74) and (A77), we have

√
N
(
θ̃δ − θ0δ

)
=

√
N
(
θ̂δ(γ)− θ0δ

)
− Ĥ−1

N (θ0δ,γ)R
′
∗∗

(
R∗∗Ĥ

−1
N (θ0δ,γ)R

′
∗∗

)−1
R∗∗

× Ĥ−1
N (θ0δ,γ)K̂N (θ0δ,γ), (A78)

it can be rewritten as

√
N
(
θ̃δ − θ̂δ(γ)

)
= −Ĥ−1

N (θ0δ,γ)R
′
∗∗

(
R∗∗Ĥ

−1
N (θ0δ,γ)R

′
∗∗

)−1
R∗∗Ĥ

−1
N (θ0δ,γ)

× K̂N (θ0δ,γ), (A79)

, we therefore also have θ̃δ − θ̂δ(γ) →p 0.

Next, a Taylor’s expansion of S̃SRNT (θ̃δ,γ) at θ̂δ(γ) gives

S̃SRNT (θ̃δ,γ) = S̃SRNT (θ̂δ(γ),γ)− 2K̂N (θ̂δ(γ),γ)
√
N
[
θ̃δ − θ̂δ(γ)

]
+
√
N
[
θ̃δ − θ̂δ(γ)

]′
ĤN (θ̂δ(γ),γ)

√
N
[
θ̃δ − θ̂δ(γ)

]
. (A80)

Consequently , we have

S̃SRNT (θ̃δ,γ)− S̃SRNT (θ̂δ(γ),γ)

=
√
N
[
θ̃δ − θ̂δ(γ)

]′
ĤN (θ̂δ(γ),γ)

√
N
[
θ̃δ − θ̂δ(γ)

]
d−→ Z ′

∗∗(γ)R
′
∗∗
[
R∗∗M

−1
∗∗ (γ)R

′
∗∗
]−1

R∗∗Z∗∗(γ), (A81)
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and a Taylor’s expansion of S̃SRNT (θ̂δ(γ),γ) at θ
0
δ gives

S̃SRNT (θ̂δ(γ),γ) = S̃SRNT (θ
0
δ,γ)− 2K̂N (θ0δ,γ)

√
N
[
θ̂δ(γ)− θ0δ

]
+
√
N
[
θ̂δ(γ)− θ0δ

]′
ĤN (θ0δ,γ)

√
N
[
θ̂δ(γ)− θ0δ

]
= ∥e∥2 +Op(1) +Op(1), (A82)

and we obtain

1

NT
S̃SRNT (θ̂δ(γ),γ) =

1

NT
∥e∥2 +Op(N

−1) +Op(N
−1)

p−→ σ2. (A83)

Finally, combining the above results, we obtain

F1 =
S̃SRNT (θ̃δ, γ̂)− S̃SRNT (θ̂δ(γ̂), γ̂)

S̃SRNT (θ̂δ(γ̂), γ̂)/(NT )

= sup
γ∈Γ

S̃SRNT (θ̃δ,γ)− S̃SRNT (θ̂δ(γ),γ)

S̃SRNT (θ̂δ(γ),γ)/(NT )

d−→ 1

σ2
sup
γ∈Γ

Z ′
∗∗(γ)R

′
∗∗
[
R∗∗M

−1
∗∗ (γ)R

′
∗∗
]−1

R∗∗Z∗∗(γ). (A84)

The limiting distribution of F1 is obtained, as it is easy to show that

Z ′
∗∗(γ)R

′
∗∗
[
R∗∗M

−1
∗∗ (γ)R

′
∗∗
]−1

R∗∗Z∗∗(γ)

= Z ′
∗∗(γ)A

−1AR′
∗∗
[
R∗∗AA

−1M−1
∗∗ (γ)A

−1AR′
∗∗
]−1

R∗∗AA
−1Z∗∗(γ)

= Z ′(γ)R′
∗
[
R∗M

−1
∗ (γ)R′

∗
]−1

R∗Z(γ). (A85)

Next, we derive the limiting distribution of FC . Denote

θ̂δ(γ) = argmin
θ∈Θ

S̃SRNT (θδ,γ), (A86)

γ̃ = argmin
γ∈Γc

S̃SRNT (θ̂δ(γ),γ), (A87)

where Γc = {γ ∈ Γ : γs = 0} and γ̃ = (γ̃0, γ̃
′
s)

′ = (γ̃0,0
′)′.

Under H2
0 : γs = 0, the model degenerates into a panel threshold model with a constant

threshold when estimating parameters using the restriction of γs = 0. Similarly with the

proof of Theorem 1, we obtain

S̃SRNT (θ̂δ(γ̃), γ̃)− S̃SRNT (θ̂δ(γ
0),γ0)

= min
γ∈Γc

[
S̃SRNT (θ̂δ(γ),γ)− S̃SRNT (θ̂δ(γ

0),γ0)
]

= min
ω∈Ψc

[
S̃SRNT (θ̂δ(γ0 +

ω

aN
),γ0 +

ω

aN
)− S̃SRNT (θ̂δ(γ

0),γ0)

]
d−→ min

ω∈Rk+1
c

GT (ω)− 2RT (ω), (A88)

where Ψc = {ω ∈ Ψ : ωs = 0}, Rk+1
c = {ω ∈ Rk+1 : ωs = 0}. From the proof of Theorem 1,
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we have

S̃SRNT (θ̂δ(γ̂), γ̂)− S̃SRNT (θ̂δ(γ
0),γ0)

d−→ min
ω∈Rk+1

GT (ω)− 2RT (ω), (A89)

and

1

NT
S̃SRNT (θ̂δ(γ̂), γ̂)

=
1

NT
∥e∥2 + 1

NT

√
N
(
θ̂δ(γ

0)− θ0δ
)′ 1

N
X̌′

0X̌0

√
N
(
θ̂δ(γ

0)− θ0δ
)

− 2

NT

√
N
(
θ̂δ(γ

0)− θ0δ
)′

X̌′
0e+Op(N

−1)

p−→ σ2, (A90)

Finally, we have the following result

FC =
S̃SRNT (θ̂δ(γ̃), γ̃)− S̃SRNT (θ̂δ(γ̂), γ̂)

S̃SRNT (θ̂δ(γ̂), γ̂)/(NT )

=
S̃SRNT (θ̂δ(γ̃), γ̃)− S̃SRNT (θ̂δ(γ

0),γ0)

S̃SRNT (θ̂δ(γ̂), γ̂)/(NT )

− S̃SRNT (θ̂δ(γ̂), γ̂)− S̃SRNT (θ̂δ(γ
0),γ0)

S̃SRNT (θ̂δ(γ̂), γ̂)/(NT )

d−→ 1

σ2

[(
min

ω∈Rk+1
c

GT (ω)− 2RT (ω)

)
−
(

min
ω∈Rk+1

GT (ω)− 2RT (ω)

)]
. (A91)

Next, we derive the limiting distribution of FI . Denote

θ̃δ(γ) = argmin
θ∈Θc

S̃SRNT (θδ,γ), (A92)

γ̃ = argmin
γ∈Γ

S̃SRNT (θ̃δ(γ),γ), (A93)

where Θc = {θ ∈ Θ : ψ1 = ψ2}.
First, we derive the limiting distribution of

√
N [θ̃δ(γ

0) − θ̂δ(γ0)] under H3
0 : ψ1 = ψ2.

Note that,
√
N [θ̃δ(γ

0)− θ0δ] can be solved as a restricted least squared estimator

√
N
(
θ̃δ(γ

0)− θ0δ
)

=

[
Ĥ−1

N (θ0δ,γ
0)− Ĥ−1

N (θ0δ,γ
0)R′

I∗

(
RI∗Ĥ

−1
N (θ0δ,γ

0)R′
I∗

)−1

×RI∗Ĥ
−1
N (θ0δ,γ

0)

]
K̂N (θ0δ,γ

0), (A94)

where RI∗ is a matrix such that RI∗θδ = ψ1 − ψ2 = 0, K̂N (θ0δ,γ
0) = N−1/2X̌′

0(e−∇x̌δ0)

and ĤN (θ0δ,γ
0) = X̌′

0X̌0/N . From (A58) and (A94), we have

√
N
(
θ̃δ(γ

0)− θ0δ
)

=
√
N
(
θ̂δ(γ

0)− θ0δ
)
− Ĥ−1

N (θ0δ,γ
0)R′

I∗

(
RI∗Ĥ

−1
N (θ0δ,γ

0)R′
I∗

)−1

×RI∗Ĥ
−1
N (θ0δ,γ

0)K̂N (θ0δ,γ
0). (A95)
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(A95) can be rewritten as

√
N
(
θ̃δ(γ

0)− θ̂δ(γ0)
)

= −Ĥ−1
N (θ0δ,γ

0)R′
I∗

(
RI∗Ĥ

−1
N (θ0δ,γ

0)R′
I∗

)−1
RI∗Ĥ

−1
N (θ0δ,γ

0)

× K̂N (θ0δ,γ
0). (A96)

Next, a Taylor’s expansion of S̃SRNT (θ̃δ(γ
0),γ0) at θ̂δ(γ

0) gives

S̃SRNT (θ̃δ(γ
0),γ0) = S̃SRNT (θ̂δ(γ

0),γ0)− 2K̂N (θ̂δ(γ
0),γ0)

√
N
[
θ̃δ(γ)− θ̂δ(γ0)

]
+
√
N
[
θ̃δ(γ

0)− θ̂δ(γ0)
]′
ĤN (θ̂δ(γ

0),γ0)

×
√
N
[
θ̃δ(γ

0)− θ̂δ(γ0)
]
. (A97)

Thus, we have

S̃SRNT (θ̃δ(γ
0),γ0)− S̃SRNT (θ̂δ(γ

0),γ0)

=
√
N
[
θ̃δ(γ

0)− θ̂δ(γ0)
]′
ĤN (θ̂δ(γ

0),γ0)
√
N
[
θ̃δ(γ

0)− θ̂δ(γ0)
]

d−→ Z ′
∗∗R

′
I∗
[
RI∗M

−1
∗∗ R

′
I∗
]−1

RI∗Z∗∗. (A98)

From Theorem 1, we obtain

S̃SRNT (θ̂δ(γ̂), γ̂)− S̃SRNT (θ̂δ(γ
0),γ0)

d−→ min
ω∈Rk+1

GT (ω)− 2RT (ω), (A99)

and

S̃SRNT (θ̃δ(γ̃), γ̃)− S̃SRNT (θ̃δ(γ
0),γ0)

= min
γ∈Γ

[
S̃SRNT (θ̃δ(γ),γ)− S̃SRNT (θ̃δ(γ

0),γ0)
]

= min
ω∈Ψ

[
S̃SRNT (θ̃δ(γ0 +

ω

aN
),γ0 +

ω

aN
)− S̃SRNT (θ̃δ(γ

0),γ0)

]
d−→ min

ω∈Rk+1
GT (ω)− 2RT (ω). (A100)

Hence, we have[
S̃SRNT (θ̃δ(γ̃), γ̃)− S̃SRNT (θ̃δ(γ

0),γ0)
]
−
[
S̃SRNT (θ̂δ(γ̂), γ̂)− S̃SRNT (θ̂δ(γ

0),γ0)
]

d−→ min
ω∈Rk+1

GT (ω)− 2RT (ω)− min
ω∈Rk+1

GT (ω)− 2RT (ω) = 0. (A101)

From (A90), we have the following result

1

NT
S̃SRNT (θ̂δ(γ̂), γ̂)

p−→ σ2. (A102)
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Combining the above results, we obtain

FI =
S̃SRNT (θ̃δ(γ̃), γ̃)− S̃SRNT (θ̂δ(γ̂), γ̂)

˜SSRNT (θ̂δ(γ̂), γ̂)/(NT )

=
S̃SRNT (θ̃δ(γ̃), γ̃)− S̃SRNT (θ̃δ(γ

0),γ0)

˜SSRNT (θ̂δ(γ̂), γ̂)/(NT )

− S̃SRNT (θ̂δ(γ̂), γ̂)− S̃SRNT (θ̂δ(γ
0),γ0)

˜SSRNT (θ̂δ(γ̂), γ̂)/(NT )

+
S̃SRNT (θ̂δ(γ

0),γ0)− S̃SRNT (θ̂δ(γ
0),γ0)

˜SSRNT (θ̂δ(γ̂), γ̂)/(NT )

d−→ 0

σ2
+

1

σ2
Z ′
∗∗R

′
I∗
[
RI∗M

−1
∗∗ R

′
I∗
]−1

RI∗Z∗∗

=
1

σ2
Z ′
∗∗R

′
I∗
[
RI∗M

−1
∗∗ R

′
I∗
]−1

RI∗Z∗∗. (A103)

The limiting distribution of FI can be immediately obtained, as it is easy to see that

Z ′
∗∗R

′
I∗
[
RI∗M

−1
∗∗ R

′
I∗
]−1

RI∗Z∗∗

= Z ′
∗∗A

−1AR′
I∗
[
RI∗AA

−1M−1
∗∗ A

−1AR′
I∗
]−1

RI∗AA
−1Z∗∗

= Z ′R′
I

[
RIM

−1
∗ R′

I

]−1
RIZ. (A104)
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Appendix B: Simulation results of the model with multiple
covariate-dependent thresholds

In this section, we conduct Monte Carlo simulations to examine the finite sample per-

formances of the proposed estimation and testing procedures for the model with multiple

covariate-dependent thresholds. To this end, we consider the following data generating pro-

cess (DGP) with double thresholds:

yit = (β1xit + β11qit + α1i + σ1uit) I (qit ≤ γ1,it)

+ (β2xit + β21qit + α2i + σ2u2it) I(γ1,it < qit ≤ γ2,it)

+ (β3xit + β31qit + α3i + σ3uit) I (qit > γ2,it) + δzit, (B1)

γ1,it = γ10 + γ11sit, (B2)

γ2,it = γ20 + γ21sit, (B3)

where αℓi = ψℓ1x̄i + ψℓ2q̄i + ψℓ3z̄i + ψℓ0 + aℓi for l = 1, 2, 3, x̄i =
1
T

∑T
t=1 xit, q̄i =

1
T

∑T
t=1 qit,

z̄i =
1
T

∑T
t=1 zit, γit = γ0+γ1sit, and uit ∼ N(0, 1), σ1 = σ2= σ3 = 0.5, a1i, a2i and a3i follow

N(0, 1). qit, xit, zit and sit follow ∼ i.i.d.N(0, 1), and are independent of each other. The

number of replications is set as 1000.

In examining the performance of the estimation procedure for the multiple threshold

model, we set the true parameters as (β1, β11, β2, β21, β3, β31, δ) = (0.2, 0.2,−0.2,−0.2,−0.5,−0.5, 2),

(γ10, γ11, γ20, γ21) = (−0.5, 0.3, 0.2, 0.5), (ψ11, ψ12, ψ13, , ψ10) = (−0.2,−0.2, 1, 0.3), (ψ21, ψ22,

ψ23, , ψ20) = (−0.5,−0.5, 2, 0.6), and (ψ31, ψ32, ψ33, , ψ30) = (−1,−1, 3, 0.9). Table 5 reports

the simulation results.13 As expected, the simulation results show that the empirical mean

of each parameter is close to its true value for all combinations of T and N , and the standard

deviations decrease as the sample size increases. These simulation results support that the

proposed estimation procedure for the PTCDI model with multiple threshold model works

well in finite samples.

Table 6: Estimation for the PTCDI with two thresholds
T N γ10 γ11 γ20 γ21 β1 β11 β2 β21 β3 β31 δ
2 250 Mean -0.496 0.309 0.205 0.501 0.201 0.192 -0.204 -0.195 -0.503 -0.512 2.001

Std.dev 0.066 0.080 0.076 0.115 0.118 0.191 0.155 0.327 0.093 0.138 0.036
2 500 Mean -0.500 0.301 0.203 0.504 0.201 0.195 -0.202 -0.210 -0.500 -0.502 1.999

Std.dev 0.019 0.025 0.031 0.037 0.081 0.127 0.092 0.200 0.065 0.093 0.024
2 1000 Mean -0.500 0.300 0.200 0.500 0.200 0.200 -0.197 -0.196 -0.501 -0.502 2.000

Std.dev 0.009 0.011 0.013 0.017 0.056 0.091 0.063 0.134 0.043 0.063 0.016
5 250 Mean -0.501 0.300 0.201 0.501 0.199 0.199 -0.199 -0.207 -0.499 -0.508 2.000

Std.dev 0.016 0.020 0.025 0.031 0.055 0.098 0.063 0.170 0.044 0.072 0.016
5 500 Mean -0.500 0.300 0.200 0.501 0.200 0.203 -0.200 -0.203 -0.501 -0.499 2.000

Std.dev 0.008 0.010 0.012 0.016 0.036 0.070 0.044 0.117 0.031 0.050 0.011
5 1000 Mean -0.500 0.300 0.200 0.500 0.200 0.203 -0.199 -0.198 -0.500 -0.498 2.000

Std.dev 0.005 0.006 0.007 0.008 0.026 0.049 0.031 0.078 0.022 0.036 0.008
10 250 Mean -0.500 0.300 0.201 0.501 0.200 0.199 -0.199 -0.198 -0.501 -0.498 2.000

Std.dev 0.008 0.010 0.013 0.015 0.037 0.068 0.043 0.111 0.029 0.048 0.011
10 500 Mean -0.500 0.300 0.200 0.500 0.200 0.204 -0.200 -0.197 -0.499 -0.499 2.000

Std.dev 0.005 0.006 0.007 0.008 0.026 0.049 0.030 0.082 0.022 0.035 0.008
10 1000 Mean -0.500 0.300 0.200 0.500 0.198 0.202 -0.200 -0.194 -0.499 -0.498 2.000

Std.dev 0.004 0.005 0.005 0.006 0.017 0.033 0.022 0.058 0.015 0.024 0.005

13To save space, we do not report the simulation results for (ψl1, ψl2, ψl3, , ψl0) (l=1,2,3). The results show
that the empirical mean of each parameter is also close to its true value for all combinations of T and N , and
the standard deviations decrease as either T or N increases. These simulation results are available from the
authors upon request.
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To examine the size and power properties for the tests determining the number of thresh-

olds is very time-consuming, while we conduct a small number of simulations and find that

the tests have good size and power performance in small samples in an unreported appendix,

which are available from the authors upon request.
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